Chaotic Harris Hawks Optimization with Quasi-Reflection-Based Learning: An Application to Enhance CNN Design

. 2021 Oct 07 ; 21 (19) : . [epub] 20211007

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34640973

Grantová podpora
44006 Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
2208/2021-2022 University of Hradec Králové

The research presented in this manuscript proposes a novel Harris Hawks optimization algorithm with practical application for evolving convolutional neural network architecture to classify various grades of brain tumor using magnetic resonance imaging. The proposed improved Harris Hawks optimization method, which belongs to the group of swarm intelligence metaheuristics, further improves the exploration and exploitation abilities of the basic algorithm by incorporating a chaotic population initialization and local search, along with a replacement strategy based on the quasi-reflection-based learning procedure. The proposed method was first evaluated on 10 recent CEC2019 benchmarks and the achieved results are compared with the ones generated by the basic algorithm, as well as with results of other state-of-the-art approaches that were tested under the same experimental conditions. In subsequent empirical research, the proposed method was adapted and applied for a practical challenge of convolutional neural network design. The evolved network structures were validated against two datasets that contain images of a healthy brain and brain with tumors. The first dataset comprises well-known IXI and cancer imagining archive images, while the second dataset consists of axial T1-weighted brain tumor images, as proposed in one recently published study in the Q1 journal. After performing data augmentation, the first dataset encompasses 8.000 healthy and 8.000 brain tumor images with grades I, II, III, and IV and the second dataset includes 4.908 images with Glioma, Meningioma, and Pituitary, with 1.636 images belonging to each tumor class. The swarm intelligence-driven convolutional neural network approach was evaluated and compared to other, similar methods and achieved a superior performance. The obtained accuracy was over 95% in all conducted experiments. Based on the established results, it is reasonable to conclude that the proposed approach could be used to develop networks that can assist doctors in diagnostics and help in the early detection of brain tumors.

Zobrazit více v PubMed

Yang X.S. Nature-Inspired Metaheuristic Algorithms. Luniver Press; Cambridge, UK: 2010.

Bačanin Dzakula N. Ph.D. Thesis. Univerzitet u Beogradu-Matematički Fakultet; Belgrade, Serbia: 2015. Unapređenje Hibridizacijom Metaheuristika Inteligencije Rojeva za Resavanje Problema Globalne Optimizacije.

Glover F., McMillan C. The general employee scheduling problem. An integration of MS and AI. Comput. Oper. Res. 1986;13:563–573. doi: 10.1016/0305-0548(86)90050-X. DOI

Storn R., Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997;11:341–359. doi: 10.1023/A:1008202821328. DOI

Osaba E., Yang X.S. Applied Optimization and Swarm Intelligence: A Systematic Rreview and Prospect Opportunities. Springer; Heidelberg, Germany: 2021. pp. 1–23.

Heidari A.A., Mirjalili S., Faris H., Aljarah I., Mafarja M., Chen H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019;97:849–872. doi: 10.1016/j.future.2019.02.028. DOI

Zhang H., Nguyen H., Bui X.N., Pradhan B., Asteris P.G., Costache R., Aryal J. A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm. Eng. Comput. 2021:1–14. doi: 10.1007/s00366-020-01272-9. DOI

Naik M.K., Panda R., Wunnava A., Jena B., Abraham A. A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding. Multimed. Tools Appl. 2021:1–41. doi: 10.1007/s11042-020-10467-7. DOI

Anaraki A.K., Ayati M., Kazemi F. Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybern. Biomed. Eng. 2019;39:63–74. doi: 10.1016/j.bbe.2018.10.004. DOI

Bacanin N., Bezdan T., Venkatachalam K., Al-Turjman F. Optimized convolutional neural network by firefly algorithm for magnetic resonance image classification of glioma brain tumor grade. J. Real Time Image Process. 2021;18:1085–1098. doi: 10.1007/s11554-021-01106-x. DOI

Kennedy J., Eberhart R. Particle swarm optimization; Proceedings of the ICNN’95—International Conference on Neural Networks; Perth, WA, Australia. 27 November–1 December 1995; pp. 1942–1948. DOI

Yang X.S., Slowik A. Swarm Intelligence Algorithms. CRC Press; Boca Raton, FL, USA: 2020. Firefly algorithm; pp. 163–174.

Karaboga D., Basturk B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008;8:687–697. doi: 10.1016/j.asoc.2007.05.007. DOI

Dhiman G., Kumar V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl. Based Syst. 2019;165:169–196. doi: 10.1016/j.knosys.2018.11.024. DOI

Yang X.S., Gandomi A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012;29:464–483. doi: 10.1108/02644401211235834. DOI

Gandomi A.H., Yang X.S., Alavi A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Eng. Comput. 2013;29:17–35. doi: 10.1007/s00366-011-0241-y. DOI

Mirjalili S., Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI

Strumberger I., Bacanin N., Tuba M., Tuba E. Resource Scheduling in Cloud Computing Based on a Hybridized Whale Optimization Algorithm. Appl. Sci. 2019;9:4893. doi: 10.3390/app9224893. DOI

Sreenu K., Sreelatha M. W-Scheduler: Whale optimization for task scheduling in cloud computing. Clust. Comput. 2017 doi: 10.1007/s10586-017-1055-5. DOI

Strumberger I., Minovic M., Tuba M., Bacanin N. Performance of Elephant Herding Optimization and Tree Growth Algorithm Adapted for Node Localization in Wireless Sensor Networks. Sensors. 2019;19:2515. doi: 10.3390/s19112515. PubMed DOI PMC

Benmansour F.L., Labraoui N. A Comprehensive Review on Swarm Intelligence-Based Routing Protocols in Wireless Multimedia Sensor Networks. Int. J. Wirel. Inf. Netw. 2021;28:175–198. doi: 10.1007/s10776-021-00508-9. DOI

Al-Tashi Q., Rais H., Abdulkadir S.J. Hybrid swarm intelligence algorithms with ensemble machine learning for medical diagnosis; Proceedings of the 2018 4th International Conference on Computer and Information Sciences (ICCOINS); Kuala Lumpur, Malaysia. 13–14 August 2018; pp. 1–6.

Zemmal N., Azizi N., Sellami M., Cheriguene S., Ziani A., AlDwairi M., Dendani N. Particle swarm optimization based swarm intelligence for active learning improvement: Application on medical data classification. Cogn. Comput. 2020;12:991–1010. doi: 10.1007/s12559-020-09739-z. DOI

Qaddoura R., Aljarah I., Faris H., Mirjalili S. Evolutionary Data Clustering: Algorithms and Applications. Algorithms for Intelligent Systems. Springer; Singapore: 2021. A grey Wolf-Based clustering algorithm for medical diagnosis problems; pp. 73–87.

Zivkovic M., Bacanin N., Venkatachalam K., Nayyar A., Djordjevic A., Strumberger I., Al-Turjman F. COVID-19 cases prediction by using hybrid machine learning and beetle antennae search approach. Sustain. Cities Soc. 2021;66:102669. doi: 10.1016/j.scs.2020.102669. PubMed DOI PMC

Mishra S., Sagban R., Yakoob A., Gandhi N. Swarm intelligence in anomaly detection systems: An overview. Int. J. Comput. Appl. 2021;43:109–118. doi: 10.1080/1206212X.2018.1521895. DOI

Schranz M., Di Caro G.A., Schmickl T., Elmenreich W., Arvin F., Şekercioğlu A., Sende M. Swarm intelligence and cyber-physical systems: Concepts, challenges and future trends. Swarm Evol. Comput. 2021;60:100762. doi: 10.1016/j.swevo.2020.100762. DOI

Gu Q., Chang Y., Li X., Chang Z., Feng Z. A novel F-SVM based on FOA for improving SVM performance. Expert Syst. Appl. 2021;165:113713. doi: 10.1016/j.eswa.2020.113713. DOI

Xue B., Zhang M., Browne W.N. Novel initialisation and updating mechanisms in PSO for feature selection in classification; Proceedings of the European Conference on the Applications of Evolutionary Computation; Vienna, Austria. 3–5 April 2013; pp. 428–438.

Mohammadi F.G., Abadeh M.S. Image steganalysis using a bee colony based feature selection algorithm. Eng. Appl. Artif. Intell. 2014;31:35–43. doi: 10.1016/j.engappai.2013.09.016. DOI

Brezočnik L., Fister I., Podgorelec V. Swarm intelligence algorithms for feature selection: A review. Appl. Sci. 2018;8:1521. doi: 10.3390/app8091521. DOI

Heidari A.A., Faris H., Aljarah I., Mirjalili S. An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft Comput. 2019;23:7941–7958. doi: 10.1007/s00500-018-3424-2. DOI

Agrawal U., Arora J., Singh R., Gupta D., Khanna A., Khamparia A. Hybrid Wolf-Bat Algorithm for Optimization of Connection Weights in Multi-layer Perceptron. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2020;16:1–20. doi: 10.1145/3350532. DOI

Selvaraj S., Choi E. Swarm Intelligence Algorithms in Text Document Clustering with Various Benchmarks. Sensors. 2021;21:3196. doi: 10.3390/s21093196. PubMed DOI PMC

Manju S., Helenprabha K. A structured support vector machine for hyperspectral satellite image segmentation and classification based on modified swarm optimization approach. J. Ambient. Intell. Humaniz. Comput. 2021;12:3659–3668. doi: 10.1007/s12652-019-01643-1. DOI

Guermoui M., Gairaa K., Boland J., Arrif T. A Novel Hybrid Model for Solar Radiation Forecasting Using Support Vector Machine and Bee Colony Optimization Algorithm: Review and Case Study. J. Sol. Energy Eng. 2021;143:020801. doi: 10.1115/1.4047852. DOI

Hongtao L., Qinchuan Z. Applications of deep convolutional neural network in computer vision. J. Data Acquis. Process. 2016;31:1–17.

Xiao T., Xu Y., Yang K., Zhang J., Peng Y., Zhang Z. The application of two-level attention models in deep convolutional neural network for fine-grained image classification; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Boston, MA, USA. 7–12 June 2015; pp. 842–850.

Zhang Y., Zhao D., Sun J., Zou G., Li W. Adaptive convolutional neural network and its application in face recognition. Neural Process. Lett. 2016;43:389–399. doi: 10.1007/s11063-015-9420-y. DOI

Li Z., Liu F., Yang W., Peng S., Zhou J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021:1–21. PubMed

Hinton G., Srivastava N., Swersky K. Neural Networks for Machine Learning Lecture 6a Overview of Mini-Batch Gradient Descent. [(accessed on 4 October 2021)];2012 Volume 14:2. Available online: http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf.

Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014;15:1929–1958.

Bochinski E., Senst T., Sikora T. Hyper-parameter optimization for convolutional neural network committees based on evolutionary algorithms; Proceedings of the International Conference on Image Processing (ICIP); Beijing, China. 17–20 September 2017; pp. 3924–3928. DOI

Bacanin N., Bezdan T., Tuba E., Strumberger I., Tuba M. Monarch butterfly optimization based convolutional neural network design. Mathematics. 2020;8:936. doi: 10.3390/math8060936. DOI

Rahman M.M., Islam M.S., Sassi R., Aktaruzzaman M. Convolutional neural networks performance comparison for handwritten Bengali numerals recognition. Appl. Sci. 2019;1:1660. doi: 10.1007/s42452-019-1682-y. DOI

Choraś M., Pawlicki M. Intrusion detection approach based on optimised artificial neural network. Neurocomputing. 2021;452:705–715. doi: 10.1016/j.neucom.2020.07.138. DOI

Jia H., Peng X., Kang L., Li Y., Jiang Z., Sun K. Pulse coupled neural network based on Harris hawks optimization algorithm for image segmentation. Multimed. Tools Appl. 2020;79:28369–28392. doi: 10.1007/s11042-020-09228-3. DOI

Wen P.Y., Kesari S. Malignant gliomas in adults. N. Engl. J. Med. 2008;359:492–507. doi: 10.1056/NEJMra0708126. PubMed DOI

Louis D.N., Perry A., Reifenberger G., Von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 2016;131:803–820. doi: 10.1007/s00401-016-1545-1. PubMed DOI

Kelly P.J. Gliomas: Survival, origin and early detection. Surg. Neurol. Int. 2010;1:96. doi: 10.4103/2152-7806.74243. PubMed DOI PMC

Das T.K., Roy P.K., Uddin M., Srinivasan K., Chang C.Y., Syed-Abdul S. Early tumor diagnosis in brain MR images via deep convolutional neural network model. Comput. Mater. Contin. 2021;68:2413–2429.

Badža M.M., Barjaktarović M.Č. Segmentation of Brain Tumors from MRI Images Using Convolutional Autoencoder. Appl. Sci. 2021;11:4317. doi: 10.3390/app11094317. DOI

Kapila D., Bhagat N. Efficient feature selection technique for brain tumor classification utilizing hybrid fruit fly based abc and ann algorithm. Mater. Today Proc. 2021 doi: 10.1016/j.matpr.2021.04.089. DOI

Yang X.S., He X. Firefly Algorithm: Recent Advances and Applications. Int. J. Swarm Intell. 2013;1:36–50. doi: 10.1504/IJSI.2013.055801. DOI

Mirjalili S.Z., Mirjalili S., Saremi S., Faris H., Aljarah I. Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 2018;48:805–820. doi: 10.1007/s10489-017-1019-8. DOI

Caponetto R., Fortuna L., Fazzino S., Xibilia M.G. Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 2003;7:289–304. doi: 10.1109/TEVC.2003.810069. DOI

Wang M., Chen H. Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl. Soft Comput. 2020;88:105946. doi: 10.1016/j.asoc.2019.105946. DOI

Kose U. An ant-lion optimizer-trained artificial neural network system for chaotic electroencephalogram (EEG) prediction. Appl. Sci. 2018;8:1613. doi: 10.3390/app8091613. DOI

Baykasoğlu A., Ozsoydan F.B. Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl. Soft Comput. 2015;36:152–164. doi: 10.1016/j.asoc.2015.06.056. DOI

Jin Q., Lin N., Zhang Y. K-Means Clustering Algorithm Based on Chaotic Adaptive Artificial Bee Colony. Algorithms. 2021;14:53. doi: 10.3390/a14020053. DOI

Tharwat A., Hassanien A.E. Chaotic antlion algorithm for parameter optimization of support vector machine. Appl. Intell. 2018;48:670–686. doi: 10.1007/s10489-017-0994-0. DOI

Yu H., Zhao N., Wang P., Chen H., Li C. Chaos-enhanced synchronized bat optimizer. Appl. Math. Model. 2020;77:1201–1215. doi: 10.1016/j.apm.2019.09.029. DOI

Rahnamayan S., Tizhoosh H.R., Salama M.M.A. Quasi-oppositional Differential Evolution; Proceedings of the 2007 IEEE Congress on Evolutionary Computation; Singapore. 25–28 September 2007; pp. 2229–2236. DOI

Liang X., Cai Z., Wang M., Zhao X., Chen H., Li C. Chaotic oppositional sine–cosine method for solving global optimization problems. Eng. Comput. 2020:1–17. doi: 10.1007/s00366-020-01083-y. DOI

Awad N., Ali M., Liang J., Qu B., Suganthan P., Definitions P. Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. 2016. [(accessed on 4 October 2021)]. Available online: http://home.elka.pw.edu.pl/~ewarchul/cec2017-specification.pdf.

Price K., Awad N., Ali M., Suganthan P. Nanyang Technological University; 2018. [(accessed on 4 October 2021)]. Problem Definitions and Evaluation Criteria for the 100-Digit Challenge Special Session and Competition on Single Objective Numerical Optimization. Available online: http://home.elka.pw.edu.pl/~ewarchul/cec2019-specification.pdf.

Wang G.G., Deb S., Gao X.Z., Coelho L.D.S. A new metaheuristic optimisation algorithm motivated by elephant herding behaviour. Int. J. Bio-Inspired Comput. 2016;8:394–409. doi: 10.1504/IJBIC.2016.081335. DOI

Muthusamy H., Ravindran S., Yaacob S., Polat K. An improved elephant herding optimization using sine–cosine mechanism and opposition based learning for global optimization problems. Expert Syst. Appl. 2021;172:114607. doi: 10.1016/j.eswa.2021.114607. DOI

Mirjalili S., Gandomi A.H., Mirjalili S.Z., Saremi S., Faris H., Mirjalili S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017;114:163–191. doi: 10.1016/j.advengsoft.2017.07.002. DOI

Mirjalili S. SCA: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 2016;96:120–133. doi: 10.1016/j.knosys.2015.12.022. DOI

Simon D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008;12:702–713. doi: 10.1109/TEVC.2008.919004. DOI

Mirjalili S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015;89:228–249. doi: 10.1016/j.knosys.2015.07.006. DOI

Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937;32:675–701. doi: 10.1080/01621459.1937.10503522. DOI

Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 1940;11:86–92. doi: 10.1214/aoms/1177731944. DOI

Sheskin D.J. Handbook of Parametric and Nonparametric Statistical Procedures. Chapman and Hall/CRC; Boca Raton, FL, USA: 2020.

Iman R.L., Davenport J.M. Approximations of the critical region of the fbietkan statistic. Commun. Stat. Theory Methods. 1980;9:571–595. doi: 10.1080/03610928008827904. DOI

IXI Dataset. 2015. [(accessed on 4 October 2021)]. Available online: http://brain-development.org/ixi-dataset/

Scarpace L., Flanders A.E., Jain R., Mikkelsen T., Andrews D.W. Data from REMBRANDT. Cancer Imaging Arch. 2015;10:K9.

Scarpace L., Mikkelsen L., Cha T., Rao S., Tekchandani S., Gutman S., Pierce D. Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA-GBM] collection. Cancer Imaging Arch. 2016;11

Pedano N., Flanders A., Scarpace L., Mikkelsen T., Eschbacher J., Hermes B., Ostrom Q. Radiology data from the cancer genome atlas low grade glioma [TCGA-LGG] collection. Cancer Imaging Arch. 2016

Cheng J., Huang W., Cao S., Yang R., Yang W., Yun Z., Wang Z., Feng Q. Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE. 2015;10:e0140381. doi: 10.1371/journal.pone.0140381. PubMed DOI PMC

Yang X.S. Firefly Algorithms for Multimodal Optimization. In: Watanabe O., Zeugmann T., editors. Stochastic Algorithms: Foundations and Applications. Springer; Berlin/Heidelberg, Germany: 2009. pp. 169–178.

Kalbkhani H., Shayesteh M.G., Zali-Vargahan B. Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series. Biomed. Signal Process. Control. 2013;8:909–919. doi: 10.1016/j.bspc.2013.09.001. DOI

Zacharaki E.I., Wang S., Chawla S., Soo Yoo D., Wolf R., Melhem E.R., Davatzikos C. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine. Wiley InterScience; Hoboken, NJ, USA: 2009. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme; pp. 1609–1618. PubMed PMC

Lecun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proc. IEEE. 1998;86:2278–2324. doi: 10.1109/5.726791. DOI

Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv. 20141409.1556

Huang G., Liu Z., Van Der Maaten L., Weinberger K.Q. Densely connected convolutional networks; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Honolulu, HI, USA. 21–26 July 2017; pp. 4700–4708.

Tarvainen A., Valpola H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. arXiv. 20171703.01780

Baur C., Albarqouni S., Navab N. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; Berlin/Heidelberg, Germany: 2017. Semi-supervised deep learning for fully convolutional networks; pp. 311–319.

Doulamis N., Doulamis A. Semi-supervised deep learning for object tracking and classification; Proceedings of the International Conference on Image Processing (ICIP); Paris, France. 27–30 October 2014; pp. 848–852.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...