Chaotic Harris Hawks Optimization with Quasi-Reflection-Based Learning: An Application to Enhance CNN Design
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
44006
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
2208/2021-2022
University of Hradec Králové
PubMed
34640973
PubMed Central
PMC8512121
DOI
10.3390/s21196654
PII: s21196654
Knihovny.cz E-zdroje
- Klíčová slova
- Harris Hawks optimization, chaotic, classification, convolutional neural networks, exploitation–exploration trade-off, quasi-reflection-based learning, swarm intelligence,
- MeSH
- algoritmy MeSH
- Falconiformes * MeSH
- meningeální nádory * MeSH
- nádory mozku * diagnostické zobrazování MeSH
- neuronové sítě MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The research presented in this manuscript proposes a novel Harris Hawks optimization algorithm with practical application for evolving convolutional neural network architecture to classify various grades of brain tumor using magnetic resonance imaging. The proposed improved Harris Hawks optimization method, which belongs to the group of swarm intelligence metaheuristics, further improves the exploration and exploitation abilities of the basic algorithm by incorporating a chaotic population initialization and local search, along with a replacement strategy based on the quasi-reflection-based learning procedure. The proposed method was first evaluated on 10 recent CEC2019 benchmarks and the achieved results are compared with the ones generated by the basic algorithm, as well as with results of other state-of-the-art approaches that were tested under the same experimental conditions. In subsequent empirical research, the proposed method was adapted and applied for a practical challenge of convolutional neural network design. The evolved network structures were validated against two datasets that contain images of a healthy brain and brain with tumors. The first dataset comprises well-known IXI and cancer imagining archive images, while the second dataset consists of axial T1-weighted brain tumor images, as proposed in one recently published study in the Q1 journal. After performing data augmentation, the first dataset encompasses 8.000 healthy and 8.000 brain tumor images with grades I, II, III, and IV and the second dataset includes 4.908 images with Glioma, Meningioma, and Pituitary, with 1.636 images belonging to each tumor class. The swarm intelligence-driven convolutional neural network approach was evaluated and compared to other, similar methods and achieved a superior performance. The obtained accuracy was over 95% in all conducted experiments. Based on the established results, it is reasonable to conclude that the proposed approach could be used to develop networks that can assist doctors in diagnostics and help in the early detection of brain tumors.
Zobrazit více v PubMed
Yang X.S. Nature-Inspired Metaheuristic Algorithms. Luniver Press; Cambridge, UK: 2010.
Bačanin Dzakula N. Ph.D. Thesis. Univerzitet u Beogradu-Matematički Fakultet; Belgrade, Serbia: 2015. Unapređenje Hibridizacijom Metaheuristika Inteligencije Rojeva za Resavanje Problema Globalne Optimizacije.
Glover F., McMillan C. The general employee scheduling problem. An integration of MS and AI. Comput. Oper. Res. 1986;13:563–573. doi: 10.1016/0305-0548(86)90050-X. DOI
Storn R., Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997;11:341–359. doi: 10.1023/A:1008202821328. DOI
Osaba E., Yang X.S. Applied Optimization and Swarm Intelligence: A Systematic Rreview and Prospect Opportunities. Springer; Heidelberg, Germany: 2021. pp. 1–23.
Heidari A.A., Mirjalili S., Faris H., Aljarah I., Mafarja M., Chen H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019;97:849–872. doi: 10.1016/j.future.2019.02.028. DOI
Zhang H., Nguyen H., Bui X.N., Pradhan B., Asteris P.G., Costache R., Aryal J. A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm. Eng. Comput. 2021:1–14. doi: 10.1007/s00366-020-01272-9. DOI
Naik M.K., Panda R., Wunnava A., Jena B., Abraham A. A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding. Multimed. Tools Appl. 2021:1–41. doi: 10.1007/s11042-020-10467-7. DOI
Anaraki A.K., Ayati M., Kazemi F. Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybern. Biomed. Eng. 2019;39:63–74. doi: 10.1016/j.bbe.2018.10.004. DOI
Bacanin N., Bezdan T., Venkatachalam K., Al-Turjman F. Optimized convolutional neural network by firefly algorithm for magnetic resonance image classification of glioma brain tumor grade. J. Real Time Image Process. 2021;18:1085–1098. doi: 10.1007/s11554-021-01106-x. DOI
Kennedy J., Eberhart R. Particle swarm optimization; Proceedings of the ICNN’95—International Conference on Neural Networks; Perth, WA, Australia. 27 November–1 December 1995; pp. 1942–1948. DOI
Yang X.S., Slowik A. Swarm Intelligence Algorithms. CRC Press; Boca Raton, FL, USA: 2020. Firefly algorithm; pp. 163–174.
Karaboga D., Basturk B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008;8:687–697. doi: 10.1016/j.asoc.2007.05.007. DOI
Dhiman G., Kumar V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl. Based Syst. 2019;165:169–196. doi: 10.1016/j.knosys.2018.11.024. DOI
Yang X.S., Gandomi A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012;29:464–483. doi: 10.1108/02644401211235834. DOI
Gandomi A.H., Yang X.S., Alavi A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Eng. Comput. 2013;29:17–35. doi: 10.1007/s00366-011-0241-y. DOI
Mirjalili S., Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI
Strumberger I., Bacanin N., Tuba M., Tuba E. Resource Scheduling in Cloud Computing Based on a Hybridized Whale Optimization Algorithm. Appl. Sci. 2019;9:4893. doi: 10.3390/app9224893. DOI
Sreenu K., Sreelatha M. W-Scheduler: Whale optimization for task scheduling in cloud computing. Clust. Comput. 2017 doi: 10.1007/s10586-017-1055-5. DOI
Strumberger I., Minovic M., Tuba M., Bacanin N. Performance of Elephant Herding Optimization and Tree Growth Algorithm Adapted for Node Localization in Wireless Sensor Networks. Sensors. 2019;19:2515. doi: 10.3390/s19112515. PubMed DOI PMC
Benmansour F.L., Labraoui N. A Comprehensive Review on Swarm Intelligence-Based Routing Protocols in Wireless Multimedia Sensor Networks. Int. J. Wirel. Inf. Netw. 2021;28:175–198. doi: 10.1007/s10776-021-00508-9. DOI
Al-Tashi Q., Rais H., Abdulkadir S.J. Hybrid swarm intelligence algorithms with ensemble machine learning for medical diagnosis; Proceedings of the 2018 4th International Conference on Computer and Information Sciences (ICCOINS); Kuala Lumpur, Malaysia. 13–14 August 2018; pp. 1–6.
Zemmal N., Azizi N., Sellami M., Cheriguene S., Ziani A., AlDwairi M., Dendani N. Particle swarm optimization based swarm intelligence for active learning improvement: Application on medical data classification. Cogn. Comput. 2020;12:991–1010. doi: 10.1007/s12559-020-09739-z. DOI
Qaddoura R., Aljarah I., Faris H., Mirjalili S. Evolutionary Data Clustering: Algorithms and Applications. Algorithms for Intelligent Systems. Springer; Singapore: 2021. A grey Wolf-Based clustering algorithm for medical diagnosis problems; pp. 73–87.
Zivkovic M., Bacanin N., Venkatachalam K., Nayyar A., Djordjevic A., Strumberger I., Al-Turjman F. COVID-19 cases prediction by using hybrid machine learning and beetle antennae search approach. Sustain. Cities Soc. 2021;66:102669. doi: 10.1016/j.scs.2020.102669. PubMed DOI PMC
Mishra S., Sagban R., Yakoob A., Gandhi N. Swarm intelligence in anomaly detection systems: An overview. Int. J. Comput. Appl. 2021;43:109–118. doi: 10.1080/1206212X.2018.1521895. DOI
Schranz M., Di Caro G.A., Schmickl T., Elmenreich W., Arvin F., Şekercioğlu A., Sende M. Swarm intelligence and cyber-physical systems: Concepts, challenges and future trends. Swarm Evol. Comput. 2021;60:100762. doi: 10.1016/j.swevo.2020.100762. DOI
Gu Q., Chang Y., Li X., Chang Z., Feng Z. A novel F-SVM based on FOA for improving SVM performance. Expert Syst. Appl. 2021;165:113713. doi: 10.1016/j.eswa.2020.113713. DOI
Xue B., Zhang M., Browne W.N. Novel initialisation and updating mechanisms in PSO for feature selection in classification; Proceedings of the European Conference on the Applications of Evolutionary Computation; Vienna, Austria. 3–5 April 2013; pp. 428–438.
Mohammadi F.G., Abadeh M.S. Image steganalysis using a bee colony based feature selection algorithm. Eng. Appl. Artif. Intell. 2014;31:35–43. doi: 10.1016/j.engappai.2013.09.016. DOI
Brezočnik L., Fister I., Podgorelec V. Swarm intelligence algorithms for feature selection: A review. Appl. Sci. 2018;8:1521. doi: 10.3390/app8091521. DOI
Heidari A.A., Faris H., Aljarah I., Mirjalili S. An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft Comput. 2019;23:7941–7958. doi: 10.1007/s00500-018-3424-2. DOI
Agrawal U., Arora J., Singh R., Gupta D., Khanna A., Khamparia A. Hybrid Wolf-Bat Algorithm for Optimization of Connection Weights in Multi-layer Perceptron. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2020;16:1–20. doi: 10.1145/3350532. DOI
Selvaraj S., Choi E. Swarm Intelligence Algorithms in Text Document Clustering with Various Benchmarks. Sensors. 2021;21:3196. doi: 10.3390/s21093196. PubMed DOI PMC
Manju S., Helenprabha K. A structured support vector machine for hyperspectral satellite image segmentation and classification based on modified swarm optimization approach. J. Ambient. Intell. Humaniz. Comput. 2021;12:3659–3668. doi: 10.1007/s12652-019-01643-1. DOI
Guermoui M., Gairaa K., Boland J., Arrif T. A Novel Hybrid Model for Solar Radiation Forecasting Using Support Vector Machine and Bee Colony Optimization Algorithm: Review and Case Study. J. Sol. Energy Eng. 2021;143:020801. doi: 10.1115/1.4047852. DOI
Hongtao L., Qinchuan Z. Applications of deep convolutional neural network in computer vision. J. Data Acquis. Process. 2016;31:1–17.
Xiao T., Xu Y., Yang K., Zhang J., Peng Y., Zhang Z. The application of two-level attention models in deep convolutional neural network for fine-grained image classification; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Boston, MA, USA. 7–12 June 2015; pp. 842–850.
Zhang Y., Zhao D., Sun J., Zou G., Li W. Adaptive convolutional neural network and its application in face recognition. Neural Process. Lett. 2016;43:389–399. doi: 10.1007/s11063-015-9420-y. DOI
Li Z., Liu F., Yang W., Peng S., Zhou J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021:1–21. PubMed
Hinton G., Srivastava N., Swersky K. Neural Networks for Machine Learning Lecture 6a Overview of Mini-Batch Gradient Descent. [(accessed on 4 October 2021)];2012 Volume 14:2. Available online: http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf.
Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014;15:1929–1958.
Bochinski E., Senst T., Sikora T. Hyper-parameter optimization for convolutional neural network committees based on evolutionary algorithms; Proceedings of the International Conference on Image Processing (ICIP); Beijing, China. 17–20 September 2017; pp. 3924–3928. DOI
Bacanin N., Bezdan T., Tuba E., Strumberger I., Tuba M. Monarch butterfly optimization based convolutional neural network design. Mathematics. 2020;8:936. doi: 10.3390/math8060936. DOI
Rahman M.M., Islam M.S., Sassi R., Aktaruzzaman M. Convolutional neural networks performance comparison for handwritten Bengali numerals recognition. Appl. Sci. 2019;1:1660. doi: 10.1007/s42452-019-1682-y. DOI
Choraś M., Pawlicki M. Intrusion detection approach based on optimised artificial neural network. Neurocomputing. 2021;452:705–715. doi: 10.1016/j.neucom.2020.07.138. DOI
Jia H., Peng X., Kang L., Li Y., Jiang Z., Sun K. Pulse coupled neural network based on Harris hawks optimization algorithm for image segmentation. Multimed. Tools Appl. 2020;79:28369–28392. doi: 10.1007/s11042-020-09228-3. DOI
Wen P.Y., Kesari S. Malignant gliomas in adults. N. Engl. J. Med. 2008;359:492–507. doi: 10.1056/NEJMra0708126. PubMed DOI
Louis D.N., Perry A., Reifenberger G., Von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 2016;131:803–820. doi: 10.1007/s00401-016-1545-1. PubMed DOI
Kelly P.J. Gliomas: Survival, origin and early detection. Surg. Neurol. Int. 2010;1:96. doi: 10.4103/2152-7806.74243. PubMed DOI PMC
Das T.K., Roy P.K., Uddin M., Srinivasan K., Chang C.Y., Syed-Abdul S. Early tumor diagnosis in brain MR images via deep convolutional neural network model. Comput. Mater. Contin. 2021;68:2413–2429.
Badža M.M., Barjaktarović M.Č. Segmentation of Brain Tumors from MRI Images Using Convolutional Autoencoder. Appl. Sci. 2021;11:4317. doi: 10.3390/app11094317. DOI
Kapila D., Bhagat N. Efficient feature selection technique for brain tumor classification utilizing hybrid fruit fly based abc and ann algorithm. Mater. Today Proc. 2021 doi: 10.1016/j.matpr.2021.04.089. DOI
Yang X.S., He X. Firefly Algorithm: Recent Advances and Applications. Int. J. Swarm Intell. 2013;1:36–50. doi: 10.1504/IJSI.2013.055801. DOI
Mirjalili S.Z., Mirjalili S., Saremi S., Faris H., Aljarah I. Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 2018;48:805–820. doi: 10.1007/s10489-017-1019-8. DOI
Caponetto R., Fortuna L., Fazzino S., Xibilia M.G. Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 2003;7:289–304. doi: 10.1109/TEVC.2003.810069. DOI
Wang M., Chen H. Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl. Soft Comput. 2020;88:105946. doi: 10.1016/j.asoc.2019.105946. DOI
Kose U. An ant-lion optimizer-trained artificial neural network system for chaotic electroencephalogram (EEG) prediction. Appl. Sci. 2018;8:1613. doi: 10.3390/app8091613. DOI
Baykasoğlu A., Ozsoydan F.B. Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl. Soft Comput. 2015;36:152–164. doi: 10.1016/j.asoc.2015.06.056. DOI
Jin Q., Lin N., Zhang Y. K-Means Clustering Algorithm Based on Chaotic Adaptive Artificial Bee Colony. Algorithms. 2021;14:53. doi: 10.3390/a14020053. DOI
Tharwat A., Hassanien A.E. Chaotic antlion algorithm for parameter optimization of support vector machine. Appl. Intell. 2018;48:670–686. doi: 10.1007/s10489-017-0994-0. DOI
Yu H., Zhao N., Wang P., Chen H., Li C. Chaos-enhanced synchronized bat optimizer. Appl. Math. Model. 2020;77:1201–1215. doi: 10.1016/j.apm.2019.09.029. DOI
Rahnamayan S., Tizhoosh H.R., Salama M.M.A. Quasi-oppositional Differential Evolution; Proceedings of the 2007 IEEE Congress on Evolutionary Computation; Singapore. 25–28 September 2007; pp. 2229–2236. DOI
Liang X., Cai Z., Wang M., Zhao X., Chen H., Li C. Chaotic oppositional sine–cosine method for solving global optimization problems. Eng. Comput. 2020:1–17. doi: 10.1007/s00366-020-01083-y. DOI
Awad N., Ali M., Liang J., Qu B., Suganthan P., Definitions P. Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. 2016. [(accessed on 4 October 2021)]. Available online: http://home.elka.pw.edu.pl/~ewarchul/cec2017-specification.pdf.
Price K., Awad N., Ali M., Suganthan P. Nanyang Technological University; 2018. [(accessed on 4 October 2021)]. Problem Definitions and Evaluation Criteria for the 100-Digit Challenge Special Session and Competition on Single Objective Numerical Optimization. Available online: http://home.elka.pw.edu.pl/~ewarchul/cec2019-specification.pdf.
Wang G.G., Deb S., Gao X.Z., Coelho L.D.S. A new metaheuristic optimisation algorithm motivated by elephant herding behaviour. Int. J. Bio-Inspired Comput. 2016;8:394–409. doi: 10.1504/IJBIC.2016.081335. DOI
Muthusamy H., Ravindran S., Yaacob S., Polat K. An improved elephant herding optimization using sine–cosine mechanism and opposition based learning for global optimization problems. Expert Syst. Appl. 2021;172:114607. doi: 10.1016/j.eswa.2021.114607. DOI
Mirjalili S., Gandomi A.H., Mirjalili S.Z., Saremi S., Faris H., Mirjalili S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017;114:163–191. doi: 10.1016/j.advengsoft.2017.07.002. DOI
Mirjalili S. SCA: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 2016;96:120–133. doi: 10.1016/j.knosys.2015.12.022. DOI
Simon D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008;12:702–713. doi: 10.1109/TEVC.2008.919004. DOI
Mirjalili S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015;89:228–249. doi: 10.1016/j.knosys.2015.07.006. DOI
Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937;32:675–701. doi: 10.1080/01621459.1937.10503522. DOI
Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 1940;11:86–92. doi: 10.1214/aoms/1177731944. DOI
Sheskin D.J. Handbook of Parametric and Nonparametric Statistical Procedures. Chapman and Hall/CRC; Boca Raton, FL, USA: 2020.
Iman R.L., Davenport J.M. Approximations of the critical region of the fbietkan statistic. Commun. Stat. Theory Methods. 1980;9:571–595. doi: 10.1080/03610928008827904. DOI
IXI Dataset. 2015. [(accessed on 4 October 2021)]. Available online: http://brain-development.org/ixi-dataset/
Scarpace L., Flanders A.E., Jain R., Mikkelsen T., Andrews D.W. Data from REMBRANDT. Cancer Imaging Arch. 2015;10:K9.
Scarpace L., Mikkelsen L., Cha T., Rao S., Tekchandani S., Gutman S., Pierce D. Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA-GBM] collection. Cancer Imaging Arch. 2016;11
Pedano N., Flanders A., Scarpace L., Mikkelsen T., Eschbacher J., Hermes B., Ostrom Q. Radiology data from the cancer genome atlas low grade glioma [TCGA-LGG] collection. Cancer Imaging Arch. 2016
Cheng J., Huang W., Cao S., Yang R., Yang W., Yun Z., Wang Z., Feng Q. Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE. 2015;10:e0140381. doi: 10.1371/journal.pone.0140381. PubMed DOI PMC
Yang X.S. Firefly Algorithms for Multimodal Optimization. In: Watanabe O., Zeugmann T., editors. Stochastic Algorithms: Foundations and Applications. Springer; Berlin/Heidelberg, Germany: 2009. pp. 169–178.
Kalbkhani H., Shayesteh M.G., Zali-Vargahan B. Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series. Biomed. Signal Process. Control. 2013;8:909–919. doi: 10.1016/j.bspc.2013.09.001. DOI
Zacharaki E.I., Wang S., Chawla S., Soo Yoo D., Wolf R., Melhem E.R., Davatzikos C. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine. Wiley InterScience; Hoboken, NJ, USA: 2009. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme; pp. 1609–1618. PubMed PMC
Lecun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proc. IEEE. 1998;86:2278–2324. doi: 10.1109/5.726791. DOI
Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv. 20141409.1556
Huang G., Liu Z., Van Der Maaten L., Weinberger K.Q. Densely connected convolutional networks; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Honolulu, HI, USA. 21–26 July 2017; pp. 4700–4708.
Tarvainen A., Valpola H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. arXiv. 20171703.01780
Baur C., Albarqouni S., Navab N. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; Berlin/Heidelberg, Germany: 2017. Semi-supervised deep learning for fully convolutional networks; pp. 311–319.
Doulamis N., Doulamis A. Semi-supervised deep learning for object tracking and classification; Proceedings of the International Conference on Image Processing (ICIP); Paris, France. 27–30 October 2014; pp. 848–852.
Modified firefly algorithm for workflow scheduling in cloud-edge environment