Optimal Design and Testing of a Thermoplastic Pressurized Passenger Door Manufactured Using Thermoforming

. 2021 Oct 02 ; 13 (19) : . [epub] 20211002

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34641209

Grantová podpora
FV30033, Institutional funding Ministry of Industry and Trade

The present paper documents and discusses research work associated with a newly designed passenger door structure demonstrator. The composite structure was manufactured from carbon-fiber-reinforced thermoplastic resin. A composite frame with a variable cross-section was designed, optimized, and fabricated using thermoforming technology. Both numerical simulations and experiments supported structural verification according to the damage tolerance philosophy; i.e., impact damage is presented. The Tsai-Wu and maximal stress criteria were used for damage analysis of the composite parts. Topological optimization of the metal hinges from the point of view of weight reduction was used. All expected parameters and proposed requirements of the mechanical properties were proved and completed. The door panel showed an expected numerically evaluated residual strength (ultimate structure load) as well as meeting airworthiness requirements. No impact damage propagation in the composite parts was observed during mechanical tests, even though visible impact damage was introduced into the structure. No significant difference between the numerical simulations and the experimentally measured total deformation was observed. Repeated deformation measurements during fatigue showed a nonlinear structure behavior. This can be attributed to the relaxation of thermoplastics.

Zobrazit více v PubMed

Dale B. Thermosets vs. Thermoplastics: Is the Battle Over? 2015. [(accessed on 10 February 2020)]. Available online: www.compositesword.com.

Brown K.A., Brooks R., Warrior N. Characterizing the Strain Rate Sensitivity of the Tensile Mechanical Properties of a Thermoplastic Composite. JOM. 2009;61:43–46. doi: 10.1007/s11837-009-0007-9. DOI

Hron R., Kadlec M., Růžek R. Effect of the Test Procedure and Thermoplastic Composite Resin Type on the Curved Beam Strength. Materials. 2021;14:352. doi: 10.3390/ma14020352. PubMed DOI PMC

Lee J.H., Vogel J.H. An Investigation of the Formability of Long Fiber Thermoplastic Composite Sheets. J. Eng. Mater. Technol. 1995;117:127–132. doi: 10.1115/1.2804363. DOI

Martin T.A., Bhattacharyya D., Pipes R.B. Deformation Characteristics and Formability of Fibre-reinforced Thermoplastic Sheets. Compos. Manuf. 1992;3:165–172. doi: 10.1016/0956-7143(92)90079-A. DOI

Ageorges C., Ye L. Resistance Welding of Thermosetting Composite/Thermoplastic Composite Joints. Compos. Part A. 2001;32:1603–1612. doi: 10.1016/S1359-835X(00)00183-4. DOI

Yousefpour A., Hojjati M., Immarigeon J.P. Fusion Bonding/Welding of Thermoplastic Composites. J. Thermoplast. Compos. Mater. 2004;17:303–341. doi: 10.1177/0892705704045187. DOI

Yuan Y.C., Yin T., Rong M.Z., Zhang M.Q. Self Healing in Polymers and Polymer Composites. Concepts, Realization and Outlook: A Review. Express Polym. Lett. 2008;2:238–250. doi: 10.3144/expresspolymlett.2008.29. DOI

Yao L., Rong M.Z., Zhang M.Q., Yuan Y.C. Self-healing of Thermoplastics via Reversible Addition—Fragmentation Chain Transfer Polymerization. J. Mater. Chem. 2011;21:9060–9065. doi: 10.1039/c1jm10655d. DOI

Schinner G., Brandt J., Richter H. Recycling Carbon-fiber-reinforced Thermoplastic Composites. J. Thermoplast. Compos. Mater. 1996;9:239–245. doi: 10.1177/089270579600900302. DOI

Sisca L., Locatelli Quacchia P.T., Messana A., Airale A.G., Ferraris A., Carello M., Monti M., Palenzona M., Romeo A., Liebold C., et al. Validation of a Simulation Methodology for Thermoplastic and Thermosetting Composite Materials Considering the Effect of Forming Process on the Structural Performance. Polymers. 2020;12:2801. doi: 10.3390/polym12122801. PubMed DOI PMC

Lopes C.S., Gürdal Z., Camanho P.P. Tailoring for strength of composite steered-fiber panels with cutouts. Compos. Part A Appl. Sci. Manuf. 2010;41:1760–1767. doi: 10.1016/j.compositesa.2010.08.011. DOI

Crothers P.J., Drechsler K., Feltin D., Herszberg I., Kruckenberg T. Tailored fiber placement to minimise stress concen-trations. Compos. Part A Appl. Sci. Manuf. 1997;28:619–625. doi: 10.1016/S1359-835X(97)00022-5. DOI

Peeters D.M.J., Irisarri F.X., Groenendijk C., Růžek R. Optimal design, manufacturing and testing of non-conventional laminates. Compos. Struct. 2019;210:29–40. doi: 10.1016/j.compstruct.2018.10.062. DOI

IJsselmuiden S.T. Ph.D. Thesis. Delft univesrity of Technology; Delft, The Netherlands: 2011. [(accessed on 26 September 2021)]. Optimal Design of Variable Stiffness Composite Structures using Lamination Parameters. Available online: https://agris.fao.org/agris-search/search.do?recordID=AV2012066516.

Peeters D., van Baalen D., Abdallah M. Combining topology and lamination parameter optimisation. Struct Multidisc Optim. 2015;52:105–120. doi: 10.1007/s00158-014-1223-7. DOI

Autio M. Determining the real lay-up of a laminate corresponding to optimal lamination parameters by genetic search. Struct Multidisc Optim. 2000;20:301–310. doi: 10.1007/s001580050160. DOI

Setoodeh S., Blom A., Abdalla M., Gürdal Z. Generating Curvilinear Fiber Paths from Lamination Parameters Distribution; Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; Newport, Rhode Island. 1–4 May 2006; DOI

Blom A.W., Abdalla M.M., Gürdal Z. Optimization of course locations in fiber-placed panels for general fiber angle dis-tributions. Compos. Sci. Technol. 2010;70:564–570. doi: 10.1016/j.compscitech.2009.12.003. DOI

Fayazbakhsh K., Nik M.A., Pasini D., Lessard L. Defect layer method to capture effect of gaps and overlaps in variable stiffness laminates made by Automated Fiber Placement. Compos. Struct. 2013;97:245–251. doi: 10.1016/j.compstruct.2012.10.031. DOI

Gurdal Z., Tatting B., Tow W. Placement Technology and Fabrication Issues for Laminated Composite Structures; Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; Austin, TX, USA. 18–21 April 2005; DOI

Růžek R., Šedek J., Kadlec M., Kucharský P. Mechanical behavior of thermoplastic rib under loading representing real structure conditions; Proceedings of the EAN 2016—54th International Conference on Experimental Stress Analysis; Srní, Czech Republic. 30 May–2 June 2016; EID: 2-s2.0-84986296610.

Růžek R., Kadlec M., Petrusová L. Effect of fatigue loading rate on lifespan and temperature of tailored blank C/PPS thermoplastic composite. Int. J. Fatigue. 2018;113:253–263. doi: 10.1016/j.ijfatigue.2018.04.023. DOI

Miraglia A., Felline F., Rocco C., Ceresa A., Raganato U., Zavala-Arredondo M., Flipo B., Liaptsis G., Riise J., Cui X., et al. TOD—Thermoplastics on Doors: Development of full scale innovative composites doors, surrounds and sub-structure for Regional Aircraft Fuselage barrel on-ground demonstrators. Innovative overall manufacturing and assembly approach and preliminary results obtained at the early stage of the project. IOP Conf. Ser. Mater. Sci. Eng. 2021;1024:012023.

CMH 17—Composite Material Handbook. T6 SAE International; Amsterdam, The Netherlands: 2002.

SAE AMS/2A—Technical Specification: Carbon Fiber Fabric and Epoxy Resin Wet Lay-Up Repair Material. Part 2—Qualification Program. SAE International; Amsterdam, The Netherlands: 2006.

FAA Code of Federal Regulations (CFR): Aeronautics and Space. [(accessed on 26 September 2021)];2007 Available online: http://www.access.gpo.gov/cgi-bin/cfrassemble.cgi?title=200714.

FAA Advisory Circular 20-107A: Composite Aircraft Structures. Federal Aviation Administration, US Department of Transportation; Washington, DC, USA: 1984.

FAA Advisory Circular 21-26: Quality Control for the Manufacture of Composite Materials. Federal Aviation Administration, US Department of Transportation; Washington, DC, USA: 1989.

Růžek R., Běhal J. Certification programme of airframe primary structure composite part with environmental simulation. Int. J. Fatigue. 2009;31:1073–1080. doi: 10.1016/j.ijfatigue.2008.05.028. DOI

Certification Specifications for Large Aeroplanes CS-25 Amendment 2. EASA; Cologne, Germany: 2006.

SW Aniform Manual. [(accessed on 26 September 2021)]. Available online: www.aniform.com.

Tsai S.W., Wu E.M. A general theory of strength for anisotropic materials. J. Compos. Mater. 1971;5:58–80. doi: 10.1177/002199837100500106. DOI

Varvani-Fahrani A., Shirazi A. Prediction of Stiffness Degradation and Damage of Unidirectional CRP Composites Under Fatigue Cycles. Sci. Eng. Compos. Mater. 2007;14:197–204. doi: 10.1515/SECM.2007.14.3.197. DOI

Philippidis T.P., Vassilopoulos A.P. Fatigue design allowable for CFRP laminates based on stiffness degradation measurements. Compos. Sci. Technol. 2000;60:2819–2828. doi: 10.1016/S0266-3538(00)00150-0. DOI

Mitchell C., Dangora L., Bielmeir C., Sherwood J. Investigation into the Changes in Bending Stiffness of a Textile Reinforce Composite due to In-Plane Fabric Shear: Part 1—Experiment. Compos. Part A Appl. Sci. Manuf. 2016;85:94–102. doi: 10.1016/j.compositesa.2016.03.008. DOI

Jollivet T., Peyrac C., Lefebvre F. Damage of Composite Materials. Procedia Eng. 2013;66:746–758. doi: 10.1016/j.proeng.2013.12.128. DOI

Kruse T., Körwien T., Růžek R. Fatigue behaviour and damage tolerant design of composite bonded joints for aerospace ap-plication; Proceedings of the ECCM 2016 17th European Conference on Composite Materials ECCM-17; Munich, Germany. 26–30 June 2016;

Kruse T., Körwien T., Růžek R., Hangx R., Rans C. Fatigue behaviour and damage tolerant design of bonded joints for aerospace application on Fibre Metal Laminates and composites; Proceedings of the 29th Symposium of the International Committee on Aeronautical Fatigue (ICAF 2017); Nagoya, Japan. 5–9 June 2017;

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...