Effect of the Test Procedure and Thermoplastic Composite Resin Type on the Curved Beam Strength
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FV 3003
Ministerstvo Průmyslu a Obchodu
PubMed
33445774
PubMed Central
PMC7828226
DOI
10.3390/ma14020352
PII: ma14020352
Knihovny.cz E-zdroje
- Klíčová slova
- composite, curved beam, interlaminar strength, polyaryletherketone, polyetheretherketone, polyphenylensulfid, thermoplastic,
- Publikační typ
- časopisecké články MeSH
The application of thermoplastic composites (TPCs) in aircraft construction is growing. This paper presents a study of the effect of an applied methodology (standards) on out-of-plane interlaminar strength characterization. Additionally, the mechanical behaviour of three carbon fibre-reinforced thermoplastic composites was compared using the curved beam strength test. Data evaluated using different standards gave statistically significantly different results. The study also showed that the relatively new polyaryletherketone (PAEK) composite had significantly better performance than the older and commonly used polyphenylensulfid (PPS) and polyetheretherketone (PEEK). Furthermore, considering the lower processing temperature of PAEK than PEEK, the former material has good potential to be used in serial aerospace production.
Zobrazit více v PubMed
Dale B. Thermosets vs. Thermoplastics: Is the Battle Over? [(accessed on 10 February 2020)];2015 Available online: www.compositesword.com.
Ye L., Beehag A., Friedrich K. Mesostructural Aspects of Interlaminar Fracture in Thermoplastic Composites: Is Crystallinity a Key? Compos. Sci. Technol. 1995;53:167–173. doi: 10.1016/0266-3538(95)00015-1. DOI
Brown K.A., Brooks R., Warrior N. Characterizing the Strain Rate Sensitivity of the Tensile Mechanical Properties of a Thermoplastic Composite. JOM. 2009;61:43–46. doi: 10.1007/s11837-009-0007-9. DOI
Čoban O., Bora M.Ö., Sinmazçelik T., Cürgül İ., Günay V. Fracture Morphology and Deformation Characteristics of Repeatedly Impacted Thermoplastic Matrix Composites. Mater. Des. 2009;30:628–634. doi: 10.1016/j.matdes.2008.05.042. DOI
Lee J.H., Vogel J.H. An Investigation of the Formability of Long Fiber Thermoplastic Composite Sheets. J. Eng. Mater. Technol. 1995;117:127–132. doi: 10.1115/1.2804363. DOI
Martin T.A., Bhattacharyya D., Pipes R.B. Deformation Characteristics and Formability of Fibre-reinforced Thermoplastic Sheets. Compos. Manuf. 1992;3:165–172. doi: 10.1016/0956-7143(92)90079-A. DOI
Ageorges C., Ye L. Resistance Welding of Thermosetting Composite/Thermoplastic Composite Joints. Compos. Part A. 2001;32:1603–1612. doi: 10.1016/S1359-835X(00)00183-4. DOI
Yousefpour A., Hojjati M., Immarigeon J.P. Fusion Bonding/Welding of Thermoplastic Composites. J. Thermoplast. Compos. Mater. 2004;17:303–341. doi: 10.1177/0892705704045187. DOI
Yuan Y.C., Yin T., Rong M.Z., Zhang M.Q. Self Healing in Polymers and Polymer Composites. Concepts, Realization and Outlook: A Review. eXPRESS Polym. Lett. 2008;2:238–250. doi: 10.3144/expresspolymlett.2008.29. DOI
Yao L., Rong M.Z., Zhang M.Q., Yuan Y.C. Self-healing of Thermoplastics via Reversible Addition—Fragmentation Chain Transfer Polymerization. J. Mater. Chem. 2011;21:9060–9065. doi: 10.1039/c1jm10655d. DOI
Schinner G., Brandt J., Richter H. Recycling Carbon-fiber-reinforced Thermoplastic Composites. J. Thermoplast. Compos. Mater. 1996;9:239–245. doi: 10.1177/089270579600900302. DOI
Šedek J., Hron R., Kadlec M. Bond Joint Analysis of Thermoplastic Composite Made from Stacked Tailored Blanks. Appl. Mech. Mater. 2016;827:161–168. doi: 10.4028/www.scientific.net/AMM.827.161. DOI
Kruse T., Körwien T., Růžek R. Fatigue behaviour and damage tolerant design of bonded joints for aerospace application; In Proceeding of the ECCM 2016 17th European Conference on Composite Materials, ECCM 2016; Munich, Germany. 26–30 June 2016;
Růžek R., Šedek J., Kadlec M., Kucharský P. Mechanical behavior of thermoplastic rib under loading representing real structure conditions; Proceedings of the EAN 2016—54th International Conference on Experimental Stress Analysis; Srní, Czech Republic. 30 May–2 June 2016.
Kadlec M., Nováková L., Růžek R. An Experimental Investigation of Factors Considered for the Short Beam Shear Strength Evaluation of Carbon Fiber–reinforced Thermoplastic Laminates. J. Test. Eval. 2014;42:580–592. doi: 10.1520/JTE20120043. DOI
Hron R., Kadlec M., Růžek R. Effect of Temperature on the Interlaminar Strength of Carbon Fibre Reinforced Thermoplastic; Proceedings of the EAN 2020—58th International Conference on Experimental Stress Analysis; Online, Czech Republic. 19–22 October 2020.
Guo Y., Bradshaw R.D. Isothermal physical aging characterization of Polyether-ether-ketone (PEEK) and Polyphenylene sulfide (PPS) films by creep and stress relaxation. Mech. Time Depend. Mater. 2017;11:61–89. doi: 10.1007/s11043-007-9032-7. DOI
Escale L., de Almeida O., Bernhart G., Ferrero G.J. Comparison of the Impast Resistance of Carbon/ Epoxy and Carbon /PEEK Composite Laminates; Proceedings of the ECCM15—15th European Conference on Composite Materials; Venice, Italy. 24–28 June 2012.
Nikishkov Y., Makeev A., Seon G. Simulation of damage in composites based on solid finite elements. J. Am. Helicopter Soc. 2010;55:042009. doi: 10.4050/JAHS.55.042009. DOI
Nikishkov Y., Makeev A., Seon G. Progressive fatigue damage simulation method for composites. Int. J. Fatigue. 2013;48:266–279. doi: 10.1016/j.ijfatigue.2012.11.005. DOI
Makeev A., Seon G., Nikishkov Y., Lee E. Methods for assessment of interlaminar tensile strength of composite materials. J. Compos. Mater. 2015;49:783–794. doi: 10.1177/0021998314525979. DOI
ASTM D6415-06a Standard Test Method for Measuring the Curved Beam Strength of Fiber-Reinforced Polymer-Matrix Composite. ASTM International; West Conshohocken, PA, USA: 2013.
Airbus S.A.S. AITM1-00069, Issue2, Determination of Curved-Beam Failure. Engineering Directorate; Blagnac, France: 2011.
ASTM D7291-15 Standard Test Method for Through-Thickness “Flatwise” Tensile Strength and Elastic Modulus of a Fiber-Reinforced Polymer Matrix Composite Material. ASTM International; West Conshohocken, PA, USA: 2015.
Jackson W.C., Martin R.H. An interlaminar tensile strength specimen. Compos. Mater. Test. Des. 1993;11:333–354.
Armanios E., Ronald B., Dale W., O’Brien T., Chawan A., Demarco K., Paris I. Influence of specimen configuration and size on composite transverse tensile strength and scatter measured through flexure testing. J. Compos Technol. Res. 2003;25:3–21. doi: 10.1520/CTR11003J. DOI
O’Brien T.K., Chawan A.D., Krueger R., Paris I. Transverse tension fatigue life characterization through flexure testing of composite materials. Int. J. Fatigue. 2002;24:127–145. doi: 10.1016/S0142-1123(01)00104-9. DOI
Hao W., Ge W., Ma Y., Yao X., Shi Y. Experimental investigation on deformation and strength of carbon/epoxy laminated curved beams. Polym. Test. 2012;31:520–526. doi: 10.1016/j.polymertesting.2012.02.003. DOI
Tencate Advanced Composites, Introducing Tencate Cetex® TC1225. Toray Advanced Composites; Morgan Hill, CA, USA: 2016.
Tencate Advanced Composites, TenCate Cetex® TC1200 PEEK Resin System, Product Data Sheet. Toray Advanced Composites; Morgan Hill, CA, USA: 2017.
Tencate Advanced Composites, TenCate Cetex® TC1100 PPS Resin System, Product Data Sheet. Toray Advanced Composites; Morgan Hill, CA, USA: 2016.
Tencate Advanced Composites, TenCate Cetex® TC1225 PAEK Resin System, Product Data Sheet. Toray Advanced Composites; Morgan Hill, CA, USA: 2017.
Special Issue: Selected Papers from Experimental Stress Analysis 2020