Acute pre-exercise hydrogen rich water intake does not improve running performance at maximal aerobic speed in trained track and field runners: A randomized, double-blind, placebo-controlled crossover study
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu randomizované kontrolované studie, časopisecké články, práce podpořená grantem
PubMed
36538554
PubMed Central
PMC9767360
DOI
10.1371/journal.pone.0279307
PII: PONE-D-22-15394
Knihovny.cz E-zdroje
- MeSH
- dvojitá slepá metoda MeSH
- fyzická vytrvalost * MeSH
- klinické křížové studie MeSH
- kyselina mléčná MeSH
- kyslík farmakologie MeSH
- lehká atletika * MeSH
- lidé MeSH
- pití MeSH
- spotřeba kyslíku MeSH
- vodík farmakologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- kyselina mléčná MeSH
- kyslík MeSH
- vodík MeSH
PURPOSE: This study investigated the effects of acute, pre-exercise, hydrogen rich water (HRW) ingestion on running time to exhaustion at maximal aerobic speed in trained track and field runners. METHODS: Twenty-four, male runners aged 17.5 ± 1.8 years, with body mass index = 21.0 ± 1.3 kg⋅m-2, and maximal oxygen uptake = 55.0 ± 4.6 ml⋅kg-1⋅min-1 (mean ± standard deviation) participated in this randomized, double-blind, placebo-controlled crossover study. All runners ingested 1260 ml of HRW which was divided into four doses and taken at 120 min (420 ml), 60 min (420 ml), 30 min (210 ml), and 10 min (210 ml) prior to exercise. The running protocol consisted of three phases: warm-up performed at 10 km⋅h-1 for 3 min, followed by a transition phase performed at an individually determined speed (10 km⋅h-1 + maximal aerobic speed)/2 for 1 min, and finally the third phase performed at individual maximal aerobic speed until exhaustion. Time to exhaustion, cardiorespiratory variables, and post-exercise blood lactate concentration were measured. RESULTS: When running to exhaustion at maximal aerobic speed, compared with placebo, HRW had no significant effects on the following variables: time to exhaustion (217 ± 49 and 227 ± 53 s, p = 0.20), post-exercise blood lactate concentration (9.9 ± 2.2 and 10.1 ± 2.0 mmol⋅L-1, p = 0.42), maximal heart rate (186 ± 9 and 186 ± 9 beats⋅min-1, p = 0.80), and oxygen uptake (53.1 ± 4.5 and 52.2 ± 4.7 ml⋅kg-1⋅min-1, p = 0.33). No variable assessed as a candidate moderator was significantly correlated with time to exhaustion (Spearman's correlation coefficients ranged from -0.28 to 0.30, all p ≥ 0.16). CONCLUSIONS: Pre-exercise administration of 1260 ml of HRW showed no ergogenic effect on running performance to exhaustion at maximal aerobic speed in trained track and field runners.
Zobrazit více v PubMed
Dole M, Wilson FR, Fife WP. Hyperbaric hydrogen therapy: A possible treatment for cancer. Science. 1975;190(4210):152–4. doi: 10.1126/science.1166304 PubMed DOI
Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, et al.. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13(6):688–94. doi: 10.1038/nm1577 PubMed DOI
Ichihara M, Sobue S, Ito M, Ito M, Hirayama M, Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen—comprehensive review of 321 original articles. Med Gas Res. 2015;5(12):1–21. doi: 10.1186/s13618-015-0035-1 PubMed DOI PMC
Aoki K, Nakao A, Adachi T, Matsui Y, Miyakawa S. Pilot study: Effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes. Med Gas Res. 2012;2(12):1–6. doi: 10.1186/2045-9912-2-12 PubMed DOI PMC
Da Ponte A, Giovanelli N, Nigris D, Lazzer S. Effects of hydrogen rich water on prolonged intermittent exercise. J Sports Med Phys Fitness. 2018;58(5):612–21. doi: 10.23736/S0022-4707.17.06883-9 PubMed DOI
Botek M, Khanna D, Krejčí J, Valenta M, McKune A, Sládečková B, et al.. Molecular hydrogen mitigates performance decrement during repeated sprints in professional soccer players. Nutrients. 2022;14(508):1–10. doi: 10.3390/nu14030508 PubMed DOI PMC
Timón R, Olcina G, González-Custodio A, Camacho-Cardenosa M, Camacho-Cardenosa A, Martínez Guardado I. Effects of 7-day intake of hydrogen-rich water on physical performance of trained and untrained subjects. Biol Sport. 2021;38(2):269–75. doi: 10.5114/biolsport.2020.98625 PubMed DOI PMC
Botek M, Krejčí J, McKune A, Valenta M, Sládečková B. Hydrogen rich water consumption positively affects muscle performance, lactate response, and alleviates delayed onset of muscle soreness after resistance rraining. J strength Cond Res. 2021;1–8. PubMed
Botek M, Krejčí J, McKune AJ, Sládečková B. Hydrogen-rich water supplementation and up-hill running performance: Effect of athlete performance level. Int J Sports Physiol Perform. 2020;15(8):1193–6. doi: 10.1123/ijspp.2019-0507 PubMed DOI
Botek M, Krejčí J, McKune AJ, Sládečková B, Naumovski N. Hydrogen rich water improved ventilatory, perceptual and lactate responses to exercise. Int J Sports Med. 2019;40(14):879–85. doi: 10.1055/a-0991-0268 PubMed DOI
Hong Y, Dong G, Li Q, Wang V, Liu M, Jiang G, et al.. Effects of pre-exercise H2 inhalation on physical fatigue and related prefrontal cortex activation during and after high-intensity exercise. Front Physiol. 2022;13(988028):1–10. PubMed PMC
Ostojić SM, Stojanović MD, Calleja-Gonzalez J, Obrenović MD, Veljović D, Medjedović B, et al.. Drinks with alkaline negative oxidative reduction potential improve exercise performance in physically active men and women: Double-blind, randomized, placebo-controlled, corss-over trial of efficacy and safety. Serbian J Sport Sci. 2011;5(3):83–9.
Kawamura T, Muraoka I. Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants. 2018;7(9):1–19. doi: 10.3390/antiox7090119 PubMed DOI PMC
Ooi CH, Ng SK, Omar EA. Acute ingestion of hydrogen-rich water does not improve incremental treadmill running performance in endurance-trained athletes. Appl Physiol Nutr Metab. 2020;45(5):513–9. doi: 10.1139/apnm-2019-0553 PubMed DOI
Ito H, Kabayma S, Goto K. Effects of electrolyzed hydrogen water ingestion during endurance exercise in a heated environment on body fluid balance and exercise performance. Temperature. 2020;7(3):290–9. PubMed PMC
Murakami Y, Ito M, Ohsawa I. Molecular hydrogen protects against oxidative stress-induced SH-SY5Y neuroblastoma cell death through the process of mitohormesis. PLoS One. 2017;12(5):1–14. doi: 10.1371/journal.pone.0176992 PubMed DOI PMC
Gvozdjáková A, Kucharská J, Kura B, Vančová O, Rausová Z, Sumbalová Z, et al.. A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats. Can J Physiol Pharmacol. 2020;98(1):29–34. doi: 10.1139/cjpp-2019-0281 PubMed DOI
Lacour JR, Padilla-Magunacelaya S, Barthélémy JC, Dormois D. The energetics of middle-distance running. Eur J Appl Physiol Occup Physiol. 1990;60(1):38–43. doi: 10.1007/BF00572183 PubMed DOI
Kang M, Ragan BG, Park JH. Issues in outcomes research: An overview of randomization techniques for clinical trials. J Athl Train. 2008;43(2):215–21. doi: 10.4085/1062-6050-43.2.215 PubMed DOI PMC
Billat VL, Hill DW, Pinoteau J, Petit B, Koralsztein JP. Effect of protocol on determination of velocity at VO2max and on its time to exhaustion. Arch Physiol Biochem. 1996;104(3):313–21. doi: 10.1076/apab.104.3.313.12908 PubMed DOI
Howley ET, Bassett DR, Welch HG. Criteria for maximal oxygen uptake: Review and commentary. Med Sci Sports Exerc. 1995;27(9):1292–301. PubMed
Midgley AW, McNaughton LR, Polman R, Marchant D. Criteria for determination of maximal oxygen uptake: A brief critique and recommendations for future research. Sport Med. 2007;37(12):1019–28. doi: 10.2165/00007256-200737120-00002 PubMed DOI
Millet GP, Candau R, Fattori P, Bignet F, Varray A. VO2 responses to different intermittent runs at velocity associated with VO2max. Can J Appl Physiol. 2003;28(3):410–23. doi: 10.1139/h03-030 PubMed DOI
Nicolson GL, de Mattos GF, Settineri R, Costa C, Ellithorpe R, Rosenblatt S, et al.. Clinical effects of hydrogen administration: From animal and human diseases to exercise medicine. Int J Clin Med. 2016;7:32–76.
Hopkins WG. Spreadsheets for analysis of validity and reliability. Sportscience. 2015;19:36–42.
Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. doi: 10.1249/MSS.0b013e31818cb278 PubMed DOI
Malcata RM, Hopkins WG. Variability of competitive performance of elite athletes: A systematic review. Sport Med. 2014;44(12):1763–74. doi: 10.1007/s40279-014-0239-x PubMed DOI
Hinckson EA, Hopkins WG. Reliability of time to exhaustion analyzed with critical-power and log-log modeling. Med Sci Sports Exerc. 2005;37(4):696–701. doi: 10.1249/01.mss.0000159023.06934.53 PubMed DOI
Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91. doi: 10.3758/bf03193146 PubMed DOI
Billat V, Beillot J, Jan J, Rochcongar P, Carre F. Gender effect on the relationship of time limit at 100% VO2max with other bioenergetic characteristics. Med Sci Sports Exerc. 1996;28(8):1049–55. doi: 10.1097/00005768-199608000-00016 PubMed DOI
Laursen P, Buchheit M. Science and application of high-intensity interval training: Solutions to the programming puzzle. Champaign, IL, USA: Human Kinetics; 2019. PubMed
Billat V, Renoux JC, Pinoteau J, Petit B, Koralsztein JP. Times to exhaustion at 100% of velocity at VO2max and modelling of the time-limit/velocity relationship in elite long-distance runners. Eur J Appl Physiol Occup Physiol. 1994;69(3):271–3. doi: 10.1007/BF01094801 PubMed DOI
Renoux JC, Petit B, Billat V, Koralsztein JP. Oxygen deficit is related to the exercise time to exhaustion at maximal aerobic speed in middle distance runners. Arch Physiol Biochem. 1999;107(4):280–5. doi: 10.1076/13813455199908107041qft280 PubMed DOI
Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol. 2004;287(3):R502–R516. doi: 10.1152/ajpregu.00114.2004 PubMed DOI
Brooks GA. The science and translation of lactate shuttle theory. Cell Metab. 2018;27(4):757–85. doi: 10.1016/j.cmet.2018.03.008 PubMed DOI
Radak Z, Marton O, Nagy E, Koltai E, Goto S. The complex role of physical exercise and reactive oxygen species on brain. J Sport Heal Sci. 2013;2(2):87–93.
He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox mechanism of reactive oxygen species in exercise. Front Physiol. 2016;7(486):1–10. doi: 10.3389/fphys.2016.00486 PubMed DOI PMC
Çakır-Atabek H, Özdemir F, Çolak R. Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males. Biol Sport. 2015;32(4):321–8. doi: 10.5604/20831862.1176302 PubMed DOI PMC
Nogueira JE, Amorim MR, Pinto AP, da Rocha AL, da Silva ASR, Branco LGS. Molecular hydrogen downregulates acute exhaustive exercise-induced skeletal muscle damage. Can J Physiol Pharmacol. 2021;99(8):812–20. doi: 10.1139/cjpp-2020-0297 PubMed DOI
Laursen PB, Francis GT, Abbiss CR, Newton MJ, Nosaka K. Reliability of time-to-exhaustion versus time-trial running tests in runners. Med Sci Sports Exerc. 2007;39(8):1374–9. doi: 10.1249/mss.0b013e31806010f5 PubMed DOI
Hopkins WG, Schabort EJ, Hawley JA. Reliability of power in physical performance tests. Sport Med. 2001;31(3):211–34. doi: 10.2165/00007256-200131030-00005 PubMed DOI