Molecular Hydrogen Mitigates Performance Decrement during Repeated Sprints in Professional Soccer Players
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie
Grantová podpora
0
Arkansas Tech University
IGA_FTK_2021_009
Palacký University, Olomouc
PubMed
35276867
PubMed Central
PMC8838970
DOI
10.3390/nu14030508
PII: nu14030508
Knihovny.cz E-zdroje
- Klíčová slova
- OXOPHOS, exercise, fatigue resistance, field testing, hydrogen-rich water,
- MeSH
- běh * fyziologie MeSH
- dospělí MeSH
- fotbal * fyziologie MeSH
- klinické křížové studie MeSH
- kyselina mléčná MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- sportovní výkon * fyziologie MeSH
- vodík MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- kyselina mléčná MeSH
- vodík MeSH
Hydrogen-rich water (HRW) supplementation has been shown to have an antifatigue effect across different modes of exercise. However, its effect on repeated sprint performance is unknown. The aim of this study was to assess the effect of pre-exercise HRW consumption on repeated sprint performance, lactate, and perceptual responses using a repeated sprint protocol. This randomized, double blinded, placebo controlled, crossover study included 16 professional, male soccer players aged 18.8 ± 1.2 years. Athletes performed two indoor tests, particularly 15 × 30 m track sprints interspersed by 20 s of recovery, separated by a 1-week washout period. Sprint time was measured at 15 m and 30 m. Ratings of perceived exertion were assessed immediately after each sprint, and post-exercise blood lactate concentration was measured after the last sprint. There were significantly faster sprint times after HRW consumption compared with placebo at 15 m for the 14th and 15th sprints, representing improvements in time of 3.4% and 2.7%, respectively. Sprint time at 30 m also significantly improved by 1.9% in the HRW group in the last sprint. However, neither lactate concentrations nor ratings of perceived exertion were significantly different between HRW and placebo. Pre-exercise HRW supplementation is associated with an increased ability to reduce fatigue, especially during the later stages of repeated sprint exercise.
Faculty of Physical Culture Palacký University Olomouc 77111 Olomouc Czech Republic
Research Institute for Sport and Exercise University of Canberra Bruce ACT 2617 Australia
Zobrazit více v PubMed
Vollmer J.C., Buchheit M. Middle-distance running. In: Laursen P., Buchheit M., editors. Science and Application of High-Intensity Interval Training: Solutions to the Programming Puzzle. Human Kinetics; Champaign, IL, USA: 2019. pp. 261–282.
Rampinini E., Bishop D., Marcora S.M., Ferrari Bravo D., Sassi R., Impellizzeri F.M. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int. J. Sports Med. 2007;28:228–235. doi: 10.1055/s-2006-924340. PubMed DOI
Bishop D., Girard O., Mendez-Villanueva A. Repeated-sprint ability—Part II: Recommendations for training. Sports Med. 2011;41:741–756. doi: 10.2165/11590560-000000000-00000. PubMed DOI
Spencer M., Bishop D., Dawson B., Goodman C. Physiological and metabolic responses of repeated-sprint activities: Specific to field-based team sports. Sports Med. 2005;35:1025–1144. doi: 10.2165/00007256-200535120-00003. PubMed DOI
Stølen T., Chamari K., Castagna C., Wisløff U. Physiology of soccer: An update. Sports Med. 2005;35:501–536. doi: 10.2165/00007256-200535060-00004. PubMed DOI
Bangsbo J., Nørregaard L., Thorsø F. Activity profile of competition soccer. Can. J. Sport Sci. 1991;16:110–116. PubMed
Mohr M., Krustrup P., Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sports Sci. 2003;21:519–528. doi: 10.1080/0264041031000071182. PubMed DOI
Girard O., Mendez-Villanueva A., Bishop D. Repeated-sprint ability—Part I: Factors contributing to fatigue. Sports Med. 2011;41:673–694. doi: 10.2165/11590550-000000000-00000. PubMed DOI
Dawson B., Goodman C., Lawrence S., Preen D., Polglaze T., Fitzsimons M., Fournier P. Muscle phosphocreatine repletion following single and repeated short sprint efforts. Scand. J. Med. Sci. Sports. 1997;7:206–213. doi: 10.1111/j.1600-0838.1997.tb00141.x. PubMed DOI
Gaitanos G.C., Williams C., Boobis L.H., Brooks S. Human muscle metabolism during intermittent maximal exercise. J. Appl. Physiol. 1993;75:712–719. doi: 10.1152/jappl.1993.75.2.712. PubMed DOI
Gastin P.B. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31:725–741. doi: 10.2165/00007256-200131100-00003. PubMed DOI
McGawley K., Bishop D.J. Oxygen uptake during repeated-sprint exercise. J. Sci. Med. Sport. 2015;18:214–218. doi: 10.1016/j.jsams.2014.02.002. PubMed DOI
Stojanovic M.D., Ostojic S.M., Calleja-González J., Milosevic Z., Mikic M. Correlation between explosive strength, aerobic power and repeated sprint ability in elite basketball players. J. Sports Med. Phys. Fit. 2012;52:375–381. PubMed
Thomas C., Sirvent P., Perrey S., Raynaud E., Mercier J. Relationships between maximal muscle oxidative capacity and blood lactate removal after supramaximal exercise and fatigue indexes in humans. J. Appl. Physiol. 2004;97:2132–2138. doi: 10.1152/japplphysiol.00387.2004. PubMed DOI
Nicolson G.L., de Mattos G.F., Settineri R., Costa C., Ellithorpe R., Rosenblatt S., La Valle J., Jimenez A., Ohta S. Clinical effects of hydrogen administration: From animal and human diseases to exercise medicine. Int. J. Clin. Med. 2016;7:32–76. doi: 10.4236/ijcm.2016.71005. DOI
Calbet J.A.L., Martín-Rodríguez S., Martin-Rincon M., Morales-Alamo D. An integrative approach to the regulation of mitochondrial respiration during exercise: Focus on high-intensity exercise. Redox Biol. 2020;35:101478. doi: 10.1016/j.redox.2020.101478. PubMed DOI PMC
Westerblad H., Allen D.G. Emerging roles of ROS/RNS in muscle function and fatigue. Antioxid. Redox Signal. 2011;15:2487–2499. doi: 10.1089/ars.2011.3909. PubMed DOI
Lumini J.A., Magalhães J., Oliveira P.J., Ascensão A. Beneficial effects of exercise on muscle mitochondrial function in diabetes mellitus. Sports Med. 2008;38:735–750. doi: 10.2165/00007256-200838090-00003. PubMed DOI
Powers S.K., Deminice R., Ozdemir M., Yoshihara T., Bomkamp M.P., Hyatt H. Exercise-induced oxidative stress: Friend or foe? J. Sport Health Sci. 2020;9:415–425. doi: 10.1016/j.jshs.2020.04.001. PubMed DOI PMC
Ohsawa I., Ishikawa M., Takahashi K., Watanabe M., Nishimaki K., Yamagata K., Katsura K.-I., Katayama Y., Asoh S., Ohta S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007;13:688–694. doi: 10.1038/nm1577. PubMed DOI
Sim M., Kim C.-S., Shon W.-J., Lee Y.-K., Choi E.Y., Shin D.-M. Hydrogen-rich water reduces inflammatory responses and prevents apoptosis of peripheral blood cells in healthy adults: A randomized, double-blind, controlled trial. Sci. Rep. 2020;10:12130. doi: 10.1038/s41598-020-68930-2. PubMed DOI PMC
Ohta S. Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine. Pharmacol. Ther. 2014;144:1–11. doi: 10.1016/j.pharmthera.2014.04.006. PubMed DOI
Slezak J., Kura B., LeBaron T.W., Singal P.K., Buday J., Barancik M. Oxidative stress and pathways of molecular hydrogen effects in medicine. Curr. Pharm. Des. 2021;27:610–625. doi: 10.2174/1381612826666200821114016. PubMed DOI
Botek M., Krejčí J., McKune A.J., Sládečková B., Naumovski N. Hydrogen rich water improved ventilatory, perceptual and lactate responses to exercise. Int. J. Sports Med. 2019;40:879–885. doi: 10.1055/a-0991-0268. PubMed DOI
Gvozdjáková A., Kucharská J., Kura B., Vančová O., Rausová Z., Sumbalová Z., Uličná O., Slezák J. A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats. Can. J. Physiol. Pharmacol. 2020;98:29–34. doi: 10.1139/cjpp-2019-0281. PubMed DOI
Murakami Y., Ito M., Ohsawa I. Molecular hydrogen protects against oxidative stress-induced SH-SY5Y neuroblastoma cell death through the process of mitohormesis. PLoS ONE. 2017;12:e0176992. doi: 10.1371/journal.pone.0176992. PubMed DOI PMC
Ara J., Fadriquela A., Ahmed F., Bajgai J., Sajo M.E.J., Lee S.P., Kim T.S., Jung J.Y., Kim C.S., Kim S.-K., et al. Hydrogen water drinking exerts antifatigue effects in chronic forced swimming mice via antioxidative and anti-inflammatory activities. Biomed. Res. Int. 2018;2018:2571269. doi: 10.1155/2018/2571269. PubMed DOI PMC
Botek M., Krejčí J., McKune A.J., Sládečková B. Hydrogen-rich water supplementation and up-hill running performance: Effect of athlete performance level. Int. J. Sports Physiol. Perform. 2020;15:1193–1196. doi: 10.1123/ijspp.2019-0507. PubMed DOI
Javorac D., Stajer V., Ratgeber L., Betlehem J., Ostojic S. Short-term H2 inhalation improves running performance and torso strength in healthy adults. Biol. Sport. 2019;36:333–339. doi: 10.5114/biolsport.2019.88756. PubMed DOI PMC
Botek M., Krejčí J., McKune A., Valenta M., Sládečková B. Hydrogen rich water consumption positively affects muscle performance, lactate response, and alleviates delayed onset of muscle soreness after resistance training. J. Strength Cond. Res. 2021:1–8. doi: 10.1519/JSC.0000000000003979. PubMed DOI
Timón R., Olcina G., González-Custodio A., Camacho-Cardenosa M., Camacho-Cardenosa A., Martínez Guardado I. Effects of 7-day intake of hydrogen-rich water on physical performance of trained and untrained subjects. Biol. Sport. 2021;38:269–275. doi: 10.5114/biolsport.2020.98625. PubMed DOI PMC
Aoki K., Nakao A., Adachi T., Matsui Y., Miyakawa S. Pilot study: Effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes. Med. Gas Res. 2012;2:12. doi: 10.1186/2045-9912-2-12. PubMed DOI PMC
Da Ponte A., Giovanelli N., Nigris D., Lazzer S. Effects of hydrogen rich water on prolonged intermittent exercise. J. Sports Med. Phys. Fit. 2018;58:612–621. doi: 10.23736/S0022-4707.17.06883-9. PubMed DOI
Barbero-Alvarez J.C., Coutts A., Granda J., Barbero-Alvarez V., Castagna C. The validity and reliability of a global positioning satellite system device to assess speed and repeated sprint ability (RSA) in athletes. J. Sci. Med. Sport. 2010;13:232–235. doi: 10.1016/j.jsams.2009.02.005. PubMed DOI
Borg G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982;14:377–581. doi: 10.1249/00005768-198205000-00012. PubMed DOI
Kajiyama S., Hasegawa G., Asano M., Hosoda H., Fukui M., Nakamura N., Kitawaki J., Imai S., Nakano K., Ohta M., et al. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr. Res. 2008;28:137–143. doi: 10.1016/j.nutres.2008.01.008. PubMed DOI
Shimouchi A., Nose K., Yamaguchi M., Ishiguro H., Kondo T. Breath hydrogen produced by ingestion of commercial hydrogen water and milk. Biomark. Insights. 2009;4:27–32. doi: 10.4137/BMI.S2209. PubMed DOI PMC
Holm S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979;6:65–70.
Bessman S.P., Geiger P.J. Transport of energy in muscle: The phosphorylcreatine shuttle. Science. 1981;211:448–452. doi: 10.1126/science.6450446. PubMed DOI
Powers S.K., Jackson M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008;88:1243–1276. doi: 10.1152/physrev.00031.2007. PubMed DOI PMC
Çakir-Atabek H., Dokumaci B., Aygün C. Strength loss after eccentric exercise is related to oxidative stress but not muscle damage biomarkers. Res. Q. Exerc. Sport. 2019;90:385–394. doi: 10.1080/02701367.2019.1603990. PubMed DOI
Calbet J.A.L., Losa-Reyna J., Torres-Peralta R., Rasmussen P., Ponce-González J.G., Sheel A.W., de la Calle-Herrero J., Guadalupe-Grau A., Morales-Alamo D., Fuentes T., et al. Limitations to oxygen transport and utilization during sprint exercise in humans: Evidence for a functional reserve in muscle O2 diffusing capacity. J. Physiol. 2015;593:4649–4664. doi: 10.1113/JP270408. PubMed DOI PMC
Robergs R.A., Ghiasvand F., Parker D. Biochemistry of exercise-induced metabolic acidosis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004;287:R502–R516. doi: 10.1152/ajpregu.00114.2004. PubMed DOI
Sahlin K., Harris R.C., Hultman E. Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen. Scand. J. Clin. Lab. Investig. 1979;39:551–558. doi: 10.3109/00365517909108833. PubMed DOI