Molecular Hydrogen Mitigates Performance Decrement during Repeated Sprints in Professional Soccer Players

. 2022 Jan 25 ; 14 (3) : . [epub] 20220125

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, randomizované kontrolované studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid35276867

Grantová podpora
0 Arkansas Tech University
IGA_FTK_2021_009 Palacký University, Olomouc

Hydrogen-rich water (HRW) supplementation has been shown to have an antifatigue effect across different modes of exercise. However, its effect on repeated sprint performance is unknown. The aim of this study was to assess the effect of pre-exercise HRW consumption on repeated sprint performance, lactate, and perceptual responses using a repeated sprint protocol. This randomized, double blinded, placebo controlled, crossover study included 16 professional, male soccer players aged 18.8 ± 1.2 years. Athletes performed two indoor tests, particularly 15 × 30 m track sprints interspersed by 20 s of recovery, separated by a 1-week washout period. Sprint time was measured at 15 m and 30 m. Ratings of perceived exertion were assessed immediately after each sprint, and post-exercise blood lactate concentration was measured after the last sprint. There were significantly faster sprint times after HRW consumption compared with placebo at 15 m for the 14th and 15th sprints, representing improvements in time of 3.4% and 2.7%, respectively. Sprint time at 30 m also significantly improved by 1.9% in the HRW group in the last sprint. However, neither lactate concentrations nor ratings of perceived exertion were significantly different between HRW and placebo. Pre-exercise HRW supplementation is associated with an increased ability to reduce fatigue, especially during the later stages of repeated sprint exercise.

Zobrazit více v PubMed

Vollmer J.C., Buchheit M. Middle-distance running. In: Laursen P., Buchheit M., editors. Science and Application of High-Intensity Interval Training: Solutions to the Programming Puzzle. Human Kinetics; Champaign, IL, USA: 2019. pp. 261–282.

Rampinini E., Bishop D., Marcora S.M., Ferrari Bravo D., Sassi R., Impellizzeri F.M. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int. J. Sports Med. 2007;28:228–235. doi: 10.1055/s-2006-924340. PubMed DOI

Bishop D., Girard O., Mendez-Villanueva A. Repeated-sprint ability—Part II: Recommendations for training. Sports Med. 2011;41:741–756. doi: 10.2165/11590560-000000000-00000. PubMed DOI

Spencer M., Bishop D., Dawson B., Goodman C. Physiological and metabolic responses of repeated-sprint activities: Specific to field-based team sports. Sports Med. 2005;35:1025–1144. doi: 10.2165/00007256-200535120-00003. PubMed DOI

Stølen T., Chamari K., Castagna C., Wisløff U. Physiology of soccer: An update. Sports Med. 2005;35:501–536. doi: 10.2165/00007256-200535060-00004. PubMed DOI

Bangsbo J., Nørregaard L., Thorsø F. Activity profile of competition soccer. Can. J. Sport Sci. 1991;16:110–116. PubMed

Mohr M., Krustrup P., Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sports Sci. 2003;21:519–528. doi: 10.1080/0264041031000071182. PubMed DOI

Girard O., Mendez-Villanueva A., Bishop D. Repeated-sprint ability—Part I: Factors contributing to fatigue. Sports Med. 2011;41:673–694. doi: 10.2165/11590550-000000000-00000. PubMed DOI

Dawson B., Goodman C., Lawrence S., Preen D., Polglaze T., Fitzsimons M., Fournier P. Muscle phosphocreatine repletion following single and repeated short sprint efforts. Scand. J. Med. Sci. Sports. 1997;7:206–213. doi: 10.1111/j.1600-0838.1997.tb00141.x. PubMed DOI

Gaitanos G.C., Williams C., Boobis L.H., Brooks S. Human muscle metabolism during intermittent maximal exercise. J. Appl. Physiol. 1993;75:712–719. doi: 10.1152/jappl.1993.75.2.712. PubMed DOI

Gastin P.B. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31:725–741. doi: 10.2165/00007256-200131100-00003. PubMed DOI

McGawley K., Bishop D.J. Oxygen uptake during repeated-sprint exercise. J. Sci. Med. Sport. 2015;18:214–218. doi: 10.1016/j.jsams.2014.02.002. PubMed DOI

Stojanovic M.D., Ostojic S.M., Calleja-González J., Milosevic Z., Mikic M. Correlation between explosive strength, aerobic power and repeated sprint ability in elite basketball players. J. Sports Med. Phys. Fit. 2012;52:375–381. PubMed

Thomas C., Sirvent P., Perrey S., Raynaud E., Mercier J. Relationships between maximal muscle oxidative capacity and blood lactate removal after supramaximal exercise and fatigue indexes in humans. J. Appl. Physiol. 2004;97:2132–2138. doi: 10.1152/japplphysiol.00387.2004. PubMed DOI

Nicolson G.L., de Mattos G.F., Settineri R., Costa C., Ellithorpe R., Rosenblatt S., La Valle J., Jimenez A., Ohta S. Clinical effects of hydrogen administration: From animal and human diseases to exercise medicine. Int. J. Clin. Med. 2016;7:32–76. doi: 10.4236/ijcm.2016.71005. DOI

Calbet J.A.L., Martín-Rodríguez S., Martin-Rincon M., Morales-Alamo D. An integrative approach to the regulation of mitochondrial respiration during exercise: Focus on high-intensity exercise. Redox Biol. 2020;35:101478. doi: 10.1016/j.redox.2020.101478. PubMed DOI PMC

Westerblad H., Allen D.G. Emerging roles of ROS/RNS in muscle function and fatigue. Antioxid. Redox Signal. 2011;15:2487–2499. doi: 10.1089/ars.2011.3909. PubMed DOI

Lumini J.A., Magalhães J., Oliveira P.J., Ascensão A. Beneficial effects of exercise on muscle mitochondrial function in diabetes mellitus. Sports Med. 2008;38:735–750. doi: 10.2165/00007256-200838090-00003. PubMed DOI

Powers S.K., Deminice R., Ozdemir M., Yoshihara T., Bomkamp M.P., Hyatt H. Exercise-induced oxidative stress: Friend or foe? J. Sport Health Sci. 2020;9:415–425. doi: 10.1016/j.jshs.2020.04.001. PubMed DOI PMC

Ohsawa I., Ishikawa M., Takahashi K., Watanabe M., Nishimaki K., Yamagata K., Katsura K.-I., Katayama Y., Asoh S., Ohta S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007;13:688–694. doi: 10.1038/nm1577. PubMed DOI

Sim M., Kim C.-S., Shon W.-J., Lee Y.-K., Choi E.Y., Shin D.-M. Hydrogen-rich water reduces inflammatory responses and prevents apoptosis of peripheral blood cells in healthy adults: A randomized, double-blind, controlled trial. Sci. Rep. 2020;10:12130. doi: 10.1038/s41598-020-68930-2. PubMed DOI PMC

Ohta S. Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine. Pharmacol. Ther. 2014;144:1–11. doi: 10.1016/j.pharmthera.2014.04.006. PubMed DOI

Slezak J., Kura B., LeBaron T.W., Singal P.K., Buday J., Barancik M. Oxidative stress and pathways of molecular hydrogen effects in medicine. Curr. Pharm. Des. 2021;27:610–625. doi: 10.2174/1381612826666200821114016. PubMed DOI

Botek M., Krejčí J., McKune A.J., Sládečková B., Naumovski N. Hydrogen rich water improved ventilatory, perceptual and lactate responses to exercise. Int. J. Sports Med. 2019;40:879–885. doi: 10.1055/a-0991-0268. PubMed DOI

Gvozdjáková A., Kucharská J., Kura B., Vančová O., Rausová Z., Sumbalová Z., Uličná O., Slezák J. A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats. Can. J. Physiol. Pharmacol. 2020;98:29–34. doi: 10.1139/cjpp-2019-0281. PubMed DOI

Murakami Y., Ito M., Ohsawa I. Molecular hydrogen protects against oxidative stress-induced SH-SY5Y neuroblastoma cell death through the process of mitohormesis. PLoS ONE. 2017;12:e0176992. doi: 10.1371/journal.pone.0176992. PubMed DOI PMC

Ara J., Fadriquela A., Ahmed F., Bajgai J., Sajo M.E.J., Lee S.P., Kim T.S., Jung J.Y., Kim C.S., Kim S.-K., et al. Hydrogen water drinking exerts antifatigue effects in chronic forced swimming mice via antioxidative and anti-inflammatory activities. Biomed. Res. Int. 2018;2018:2571269. doi: 10.1155/2018/2571269. PubMed DOI PMC

Botek M., Krejčí J., McKune A.J., Sládečková B. Hydrogen-rich water supplementation and up-hill running performance: Effect of athlete performance level. Int. J. Sports Physiol. Perform. 2020;15:1193–1196. doi: 10.1123/ijspp.2019-0507. PubMed DOI

Javorac D., Stajer V., Ratgeber L., Betlehem J., Ostojic S. Short-term H2 inhalation improves running performance and torso strength in healthy adults. Biol. Sport. 2019;36:333–339. doi: 10.5114/biolsport.2019.88756. PubMed DOI PMC

Botek M., Krejčí J., McKune A., Valenta M., Sládečková B. Hydrogen rich water consumption positively affects muscle performance, lactate response, and alleviates delayed onset of muscle soreness after resistance training. J. Strength Cond. Res. 2021:1–8. doi: 10.1519/JSC.0000000000003979. PubMed DOI

Timón R., Olcina G., González-Custodio A., Camacho-Cardenosa M., Camacho-Cardenosa A., Martínez Guardado I. Effects of 7-day intake of hydrogen-rich water on physical performance of trained and untrained subjects. Biol. Sport. 2021;38:269–275. doi: 10.5114/biolsport.2020.98625. PubMed DOI PMC

Aoki K., Nakao A., Adachi T., Matsui Y., Miyakawa S. Pilot study: Effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes. Med. Gas Res. 2012;2:12. doi: 10.1186/2045-9912-2-12. PubMed DOI PMC

Da Ponte A., Giovanelli N., Nigris D., Lazzer S. Effects of hydrogen rich water on prolonged intermittent exercise. J. Sports Med. Phys. Fit. 2018;58:612–621. doi: 10.23736/S0022-4707.17.06883-9. PubMed DOI

Barbero-Alvarez J.C., Coutts A., Granda J., Barbero-Alvarez V., Castagna C. The validity and reliability of a global positioning satellite system device to assess speed and repeated sprint ability (RSA) in athletes. J. Sci. Med. Sport. 2010;13:232–235. doi: 10.1016/j.jsams.2009.02.005. PubMed DOI

Borg G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982;14:377–581. doi: 10.1249/00005768-198205000-00012. PubMed DOI

Kajiyama S., Hasegawa G., Asano M., Hosoda H., Fukui M., Nakamura N., Kitawaki J., Imai S., Nakano K., Ohta M., et al. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr. Res. 2008;28:137–143. doi: 10.1016/j.nutres.2008.01.008. PubMed DOI

Shimouchi A., Nose K., Yamaguchi M., Ishiguro H., Kondo T. Breath hydrogen produced by ingestion of commercial hydrogen water and milk. Biomark. Insights. 2009;4:27–32. doi: 10.4137/BMI.S2209. PubMed DOI PMC

Holm S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979;6:65–70.

Bessman S.P., Geiger P.J. Transport of energy in muscle: The phosphorylcreatine shuttle. Science. 1981;211:448–452. doi: 10.1126/science.6450446. PubMed DOI

Powers S.K., Jackson M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008;88:1243–1276. doi: 10.1152/physrev.00031.2007. PubMed DOI PMC

Çakir-Atabek H., Dokumaci B., Aygün C. Strength loss after eccentric exercise is related to oxidative stress but not muscle damage biomarkers. Res. Q. Exerc. Sport. 2019;90:385–394. doi: 10.1080/02701367.2019.1603990. PubMed DOI

Calbet J.A.L., Losa-Reyna J., Torres-Peralta R., Rasmussen P., Ponce-González J.G., Sheel A.W., de la Calle-Herrero J., Guadalupe-Grau A., Morales-Alamo D., Fuentes T., et al. Limitations to oxygen transport and utilization during sprint exercise in humans: Evidence for a functional reserve in muscle O2 diffusing capacity. J. Physiol. 2015;593:4649–4664. doi: 10.1113/JP270408. PubMed DOI PMC

Robergs R.A., Ghiasvand F., Parker D. Biochemistry of exercise-induced metabolic acidosis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004;287:R502–R516. doi: 10.1152/ajpregu.00114.2004. PubMed DOI

Sahlin K., Harris R.C., Hultman E. Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen. Scand. J. Clin. Lab. Investig. 1979;39:551–558. doi: 10.3109/00365517909108833. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...