Hydrogen-rich water supplementation promotes muscle recovery after two strenuous training sessions performed on the same day in elite fin swimmers: randomized, double-blind, placebo-controlled, crossover trial

. 2024 ; 15 () : 1321160. [epub] 20240412

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38681143

Purpose: Molecular hydrogen has been shown to possess antioxidant, anti-inflammatory, ergogenic, and recovery-enhancing effects. This study aimed to assess the effect of molecular hydrogen administration on muscle performance, damage, and perception of soreness up to 24 h of recovery after two strenuous training sessions performed on the same day in elite fin swimmers. Methods: Eight females (mean ± SD; age 21.5 ± 5.0 years, maximal oxygen consumption 45.0 ± 2.5 mL.kg-1.min-1) and four males (age 18.9 ± 1.3 years, maximal oxygen consumption 52.2 ± 1.7 mL.kg-1.min-1) performed 12 × 50 m sprints in the morning session and a 400 m competitive performance in the afternoon session. Participants consumed hydrogen-rich water (HRW) or placebo 3 days before the sessions (1,260 mL/day) and 2,520 mL on the experimental day. Muscle performance (countermovement jump), muscle damage (creatine kinase), and muscle soreness (100 mm visual analogue scale) were measured during the experimental day and at 12 and 24 h after the afternoon session. Results: HRW compared to placebo reduced blood activity of creatine kinase (156 ± 63 vs. 190 ± 64 U.L-1, p = 0.043), muscle soreness perception (34 ± 12 vs. 42 ± 12 mm, p = 0.045), and improved countermovement jump height (30.7 ± 5.5 cm vs. 29.8 ± 5.8 cm, p = 0.014) at 12 h after the afternoon session. Conclusion: Four days of HRW supplementation is a promising hydration strategy for promoting muscle recovery after two strenuous training sessions performed on the same day in elite fin swimmers. Clinical Trial Registration: clinicaltrials.gov, identifier NCT05799911.

Zobrazit více v PubMed

Aoki K., Nakao A., Adachi T., Matsui Y., Miyakawa S. (2012). Pilot study: effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes. Med. Gas. Res. 2, 12–16. 10.1186/2045-9912-2-12 PubMed DOI PMC

Ara J., Fadriquela A., Ahmed F., Bajgai J., Sajo M. E. J., Lee S. P., et al. (2018). Hydrogen water drinking exerts antifatigue effects in chronic forced swimming mice via antioxidative and anti-inflammatory activities. Biomed. Res. Int. 2018, 2571269–9. 10.1155/2018/2571269 PubMed DOI PMC

Armstrong R. B. (1984). Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Med. Sci. Sports Exerc. 16, 529–538. 10.1249/00005768-198412000-00002 PubMed DOI

Aspenes S. T., Karlsen T. (2012). Exercise-training intervention studies in competitive swimming. Sport. Med. 42, 527–543. 10.2165/11630760-000000000-00000 PubMed DOI

Baird M. F., Graham S. M., Baker J. S., Bickerstaff G. F. (2012). Creatine-kinase and exercise-related muscle damage implications for muscle performance and recovery. J. Nutr. Metab. 2012, 960363–960411. 10.1155/2012/960363 PubMed DOI PMC

Blake D. R., Allen R. E., Lunec J. (1987). Free radicals in biological systems-a review orientated to inflammatory processes. Br. Med. Bull. 43, 371–385. 10.1093/oxfordjournals.bmb.a072188 PubMed DOI

Boonstra A. M., Schiphorst Preuper H. R., Reneman M. F., Posthumus J. B., Stewart R. E. (2008). Reliability and validity of the visual analogue scale for disability in patients with chronic musculoskeletal pain. Int. J. Rehabil. Res. 31, 165–169. 10.1097/MRR.0b013e3282fc0f93 PubMed DOI

Botek M., Khanna D., Krejčí J., Valenta M., McKune A., Sládečková B., et al. (2022a). Molecular hydrogen mitigates performance decrement during repeated sprints in professional soccer players. Nutrients 14, 508–510. 10.3390/nu14030508 PubMed DOI PMC

Botek M., Krejčí J., McKune A., Valenta M., Sládečková B. (2021). Hydrogen rich water consumption positively affects muscle performance, lactate response, and alleviates delayed onset of muscle soreness after resistance rraining. J. strength Cond. Res., 1–8. 10.1519/JSC.0000000000003979 PubMed DOI

Botek M., Krejčí J., McKune A. J., Sládečková B. (2020). Hydrogen-rich water supplementation and up-hill running performance: effect of athlete performance level. Int. J. Sports Physiol. Perform. 15, 1193–1196. 10.1123/ijspp.2019-0507 PubMed DOI

Botek M., Krejčí J., Valenta M., McKune A., Sládečková B., Konečný P., et al. (2022b). Molecular hydrogen positively affects physical and respiratory function in acute post-COVID-19 patients: a new perspective in rehabilitation. Int. J. Environ. Res. Public Health 19, 1992–2014. 10.3390/ijerph19041992 PubMed DOI PMC

Brancaccio P., Lippi G., Maffulli N. (2010). Biochemical markers of muscular damage. Clin. Chem. Lab. Med. 48, 757–767. 10.1515/CCLM.2010.179 PubMed DOI

Brentano M. A., Martins Kruel L. F. (2011). A review on strength exercise-induced muscle damage: applications, adaptation mechanisms and limitations. J. Sports Med. Phys. Fit. 51, 1–10. PubMed

Buchheit M., Laursen P. B. (2013). High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sport. Med. 43, 313–338. 10.1007/s40279-013-0029-x PubMed DOI

Budnik-Przybylska D., Przybylski J., Przybylski S. (2018). Does higher effectiveness means better mood? Training effectiveness and mood alternations in the national finswimming team – an interdisciplinary study. Balt. J. Heal. Phys. Act. 10, 226–237. 10.29359/BJHPA.10.4.21 DOI

Calbet J. A. L., Martín-Rodríguez S., Martin-Rincon M., Morales-Alamo D. (2020). An integrative approach to the regulation of mitochondrial respiration during exercise: focus on high-intensity exercise. Redox Biol. 35, 101478–101510. 10.1016/j.redox.2020.101478 PubMed DOI PMC

Cheung K., Hume P., Maxwell L. (2003). Delayed onset muscle soreness: treatment strategies and performance factors. Sport. Med. 33, 145–164. 10.2165/00007256-200333020-00005 PubMed DOI

Cole A. R., Raza A., Ahmed H., Polizzotti B. D., Padera R. F., Andrews N., et al. (2022). Safety of inhaled hydrogen gas in healthy mice. Med. Gas. Res. 9, 133–138. 10.4103/2045-9912.266988 PubMed DOI PMC

Crichton N., Kelly D., Goldstone L., Gammon J. (2001). Examining the validity of pressure ulcer risk assessment scales: developing and using illustrated patient simulations to collect the data INFORMATION POINT: Visual Analogue Scale . J. Clin. Nurs. 10, 697–706. 10.1046/j.1365-2702.2001.00525.x PubMed DOI

Deminice R., Trindade C. S., Degiovanni G. C., Garlip M. R., Portari G. V., Teixeira M., et al. (2010). Oxidative stress biomarkers response to high intensity interval training and relation to performance in competitive swimmers. J. Sports Med. Phys. Fit. 50, 356–362. PubMed

de Sousa Neto I. V., da Cunha Nascimento D., Prestes J., da Fonseca E. F., Celes R. S., Rolnick N., et al. (2022). Initial muscle quality affects individual responsiveness of interleukin-6 and creatine kinase following acute eccentric exercise in sedentary obese older women. Biol. (Basel). 11, 537–616. 10.3390/biology11040537 PubMed DOI PMC

Faul F., Erdfelder E., Lang A. G., Buchner A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191. 10.3758/bf03193146 PubMed DOI

Gharib B., Hanna S., Abdallahi O. M., Lepidi H., Gardette B., De Reggi M. (2001). Anti-inflammatory properties of molecular hydrogen: Investigation on parasite-induced liver inflammation. C. R. Acad. Sci. III (324), 719–724. 10.1016/s0764-4469(01)01350-6 PubMed DOI

Hartmann U., Mester J. (2000). Training and overtraining markers in selected sport events. Med. Sci. Sports Exerc. 32, 209–215. 10.1097/00005768-200001000-00031 PubMed DOI

Heller G. Z., Manuguerra M., Chow R. (2016). How to analyze the visual analogue scale: myths, truths and clinical relevance. Scand. J. pain 13, 67–75. 10.1016/j.sjpain.2016.06.012 PubMed DOI

Holm S. (1979). A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70.

Hopkins W. G. (2000). Measures of reliability in sports medicine and science. Sport. Med. 30, 1–15. 10.2165/00007256-200030010-00001 PubMed DOI

Hopkins W. G. (2015). Spreadsheets for analysis of validity and reliability. Sportscience 19, 36–42.

Hopkins W. G., Marshall S. W., Batterham A. M., Hanin J. (2009). Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 41, 3–13. 10.1249/MSS.0b013e31818cb278 PubMed DOI

Hotfiel T., Freiwald J., Hoppe M. W., Lutter C., Forst R., Grim C., et al. (2018). Advances in delayed-onset muscle soreness (DOMS): Part I: pathogenesis and diagnostics. Sport. Sport. 32, 243–250. 10.1055/a-0753-1884 PubMed DOI

Ichihara M., Sobue S., Ito M., Ito M., Hirayama M., Ohno K. (2015). Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med. Gas. Res. 5, 12–21. 10.1186/s13618-015-0035-1 PubMed DOI PMC

Jakeman J. R., Byrne C., Eston R. G. (2010). Lower limb compression garment improves recovery from exercise-induced muscle damage in young, active females. Eur. J. Appl. Physiol. 109, 1137–1144. 10.1007/s00421-010-1464-0 PubMed DOI

Jebabli N., Ouerghi N., Abassi W., Yagin F. H., Khlifi M., Boujabli M., et al. (2023). Acute effect of hydrogen-rich water on physical, perceptual and cardiac responses during aerobic and anaerobic exercises: a randomized, placebo-controlled, double-blinded cross-over trial. Front. Physiol. 14, 1240871–1240878. 10.3389/fphys.2023.1240871 PubMed DOI PMC

Jin Z., Zhao P., Gong W., Ding W., He Q. (2023). Fe-porphyrin: a redox-related biosensor of hydrogen molecule. Nano Res. 16, 2020–2025. 10.1007/s12274-022-4860-y DOI

Johnsen H. M., Hiorth M., Klaveness J. (2023). Molecular hydrogen therapy-A review on clinical studies and outcomes. Molecules 28, 7785–7825. 10.3390/molecules28237785 PubMed DOI PMC

Kawamura T., Gando Y., Takahashi M., Hara R., Suzuki K., Muraoka I. (2016). Effects of hydrogen bathing on exercise-induced oxidative stress and delayed-onset muscle soreness. Jpn. J. Phys. Fit. Sport. Med. 65, 297–305. 10.7600/jspfsm.65.297 DOI

Kawamura T., Higashida K., Muraoka I. (2020). Application of molecular hydrogen as a novel antioxidant in sports science. Oxid. Med. Cell. Longev. 2020, 2328768–2328777. 10.1155/2020/2328768 PubMed DOI PMC

Kawamura T., Suzuki K., Takahashi M., Tomari M., Hara R., Gando Y., et al. (2018). Involvement of neutrophil dynamics and function in exercise-induced muscle damage and delayed-onset muscle soreness: effect of hydrogen bath. Antioxidants 7, 127–213. 10.3390/antiox7100127 PubMed DOI PMC

Lakens D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. 4, 863–912. 10.3389/fpsyg.2013.00863 PubMed DOI PMC

LeBaron T. W., Laher I., Kura B., Slezak J. (2019). Hydrogen gas: from clinical medicine to an emerging ergogenic molecule for sports athletes. Can. J. Physiol. Pharmacol. 97, 797–807. 10.1139/cjpp-2019-0067 PubMed DOI

Leite C. D. F. C., Zovico P. V. C., Rica R. L., Barros B. M., Machado A. F., Evangelista A. L., et al. (2023). Exercise-induced muscle damage after a high-intensity interval exercise session: systematic review. Int. J. Environ. Res. Public Health 20, 7082–7122. 10.3390/ijerph20227082 PubMed DOI PMC

Lombard W. P., Muir G. A., McKune A. J. (2012). Minimal changes in indirect markers of muscle damage after an acute bout of indoor pre-season fast bowling. South Afr. J. Res. Sport. Phys. Educ. Recreat. 34, 105–114.

Machado M., Willardson J. M. (2010). Short recovery augments magnitude of muscle damage in high responders. Med. Sci. Sports Exerc. 42, 1370–1374. 10.1249/MSS.0b013e3181ca7e16 PubMed DOI

Markovic G., Dizdar D., Jukic I., Cardinale M. (2004). Reliability and factorial validity of squat and countermovement jump tests. J. strength Cond. Res. 18, 551–555. 10.1519/1533-4287(2004)18<551:RAFVOS>2.0.CO;2 PubMed DOI

Mougios V. (2007). Reference intervals for serum creatine kinase in athletes. Br. J. Sports Med. 41, 674–678. 10.1136/bjsm.2006.034041 PubMed DOI PMC

Nicolson G. L., de Mattos G. F., Settineri R., Costa C., Ellithorpe R., Rosenblatt S., et al. (2016). Clinical effects of hydrogen administration: from animal and human diseases to exercise medicine. Int. J. Clin. Med. 7, 32–76. 10.4236/ijcm.2016.71005 DOI

Nogueira J. E., Branco L. G. S. (2021). Recent advances in molecular hydrogen research reducing exercise-induced oxidative stress and inflammation. Curr. Pharm. Des. 27, 731–736. 10.2174/1381612826666201113100245 PubMed DOI

Nogueira J. E., Passaglia P., Mota C. M. D., Santos B. M., Batalhão M. E., Carnio E. C., et al. (2018). Molecular hydrogen reduces acute exercise-induced inflammatory and oxidative stress status. Free Radic. Biol. Med. 129, 186–193. 10.1016/j.freeradbiomed.2018.09.028 PubMed DOI

Ohsawa I., Ishikawa M., Takahashi K., Watanabe M., Nishimaki K., Yamagata K., et al. (2007). Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 13, 688–694. 10.1038/nm1577 PubMed DOI

Ohta S. (2014). Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. Pharmacol. Ther. 144, 1–11. 10.1016/j.pharmthera.2014.04.006 PubMed DOI

Olsen M. F., Bjerre E., Hansen M. D., Hilden J., Landler N. E., Tendal B., et al. (2017). Pain relief that matters to patients: systematic review of empirical studies assessing the minimum clinically important difference in acute pain. BMC Med. 15, 35–18. 10.1186/s12916-016-0775-3 PubMed DOI PMC

Peake J. M., Neubauer O., Della Gatta P. A., Nosaka K. (2017). Muscle damage and inflammation during recovery from exercise. J. Appl. Physiol. 122, 559–570. 10.1152/japplphysiol.00971.2016 PubMed DOI

Price D. D., McGrath P. A., Rafii A., Buckingham B. (1983). The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain 17, 45–56. 10.1016/0304-3959(83)90126-4 PubMed DOI

Pyne D. B. (1994). Exercise-induced muscle damage and inflammation: a review. Aust. J. Sci. Med. Sport 26, 49–58. PubMed

Rahmanian K., Hooshmand F., Shakeri M., Rahmanian V., Jahromi F., Sotoodeh Jahromi A. (2022). Creatine kinase and lactate dehydrogenase enzymes response to lactate tolerance exercise test. Exerc. Sci. 31, 168–172. 10.15857/ksep.2021.00661 DOI

Rhea M. R. (2004). Determining the magnitude of treatment effects in strength training research through the use of the effect size. J. strength Cond. Res. 18, 918–920. 10.1519/14403.1 PubMed DOI

Salomez-Ihl C., Tanguy S., Alcaraz J. P., Davin C., Pascal-Moussellard V., Jabeur M., et al. (2024). Hydrogen inhalation: in vivo rat genotoxicity tests. Mutat. Res. Toxicol. Environ. Mutagen 894, 503736. 10.1016/j.mrgentox.2024.503736 PubMed DOI

Shibayama Y., Dobashi S., Arisawa T., Fukuoka T., Koyama K. (2020). Impact of hydrogen-rich gas mixture inhalation through nasal cannula during post-exercise recovery period on subsequent oxidative stress, muscle damage, and exercise performances in men. Med. Gas. Res. 10, 155–162. 10.4103/2045-9912.304222 PubMed DOI PMC

Slezak J., Kura B., LeBaron T. W., Singal P. K., Buday J., Barancik M. (2021). Oxidative stress and pathways of molecular hydrogen effects in medicine. Curr. Pharm. Des. 27, 610–625. 10.2174/1381612826666200821114016 PubMed DOI

Stavrou V., Vavougios G. D., Bardaka F., Karetsi E., Daniil Z., Gourgoulianis K. I. (2019). The effect of exercise training on the quality of sleep in national-level adolescent finswimmers. Sport. Med. - open 5, 34–4. 10.1186/s40798-019-0207-y PubMed DOI PMC

Tauler P., Ferrer M. D., Romaguera D., Sureda A., Aguilo A., Tur J., et al. (2008). Antioxidant response and oxidative damage induced by a swimming session: influence of gender. J. Sports Sci. 26, 1303–1311. 10.1080/02640410801974992 PubMed DOI

Tee J. C., Bosch A. N., Lambert M. I. (2007). Metabolic consequences of exercise-induced muscle damage. Sport. Med. 37, 827–836. 10.2165/00007256-200737100-00001 PubMed DOI

Timón R., Olcina G., González-Custodio A., Camacho-Cardenosa M., Camacho-Cardenosa A., Martínez Guardado I. (2021). Effects of 7-day intake of hydrogen-rich water on physical performance of trained and untrained subjects. Biol. Sport 38, 269–275. 10.5114/biolsport.2020.98625 PubMed DOI PMC

Todorovic N., Javorac D., Stajer V., Ostojic S. M. (2020). The effects of supersaturated hydrogen-rich water bathing on biomarkers of muscular damage and soreness perception in young men subjected to high-intensity eccentric exercise. J. Sports Med. 2020, 8836070–8836075. 10.1155/2020/8836070 PubMed DOI PMC

Turner A., Brazier J., Bishop C., Chavda S., Cree J., Read P. (2015). Data analysis for strength and conditioning coaches: using Excel to analyze reliability, differences, and relationships. Strength Cond. J. 37, 76–83. 10.1519/SSC.0000000000000113 DOI

Twist C., Eston R. (2005). The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. Eur. J. Appl. Physiol. 94, 652–658. 10.1007/s00421-005-1357-9 PubMed DOI

Valenta M., Botek M., Krejčí J., McKune A., Sládečková B., Neuls F., et al. (2022). Acute pre-exercise hydrogen rich water intake does not improve running performance at maximal aerobic speed in trained track and field runners: a randomized, double-blind, placebo-controlled crossover study. PLoS One 17, e0279307–e0279314. 10.1371/journal.pone.0279307 PubMed DOI PMC

Vaverka F., Jakubsova Z., Jandacka D., Zahradnik D., Farana R., Uchytil J., et al. (2013). The influence of an additional load on time and force changes in the ground reaction force during the countermovement vertical jump. J. Hum. Kinet. 38, 191–200. 10.2478/hukin-2013-0059 PubMed DOI PMC

Wang B., Tian Q., Zhang Z., Gong H. (2012). Comparisons of local and systemic aerobic fitness parameters between finswimmers with different athlete grade levels. Eur. J. Appl. Physiol. 112, 567–578. 10.1007/s00421-011-2007-z PubMed DOI

Warr D. M., Pablos C., Sánchez-Alarcos J. V., Torres V., Izquierdo J. M., Carlos Redondo J. (2020). Reliability of measurements during countermovement jump assessments: analysis of performance across subphases. Cogent Soc. Sci. 6, 1–19. 10.1080/23311886.2020.1843835 DOI

World Anti-Doping Agency (2024). The 2024 prohibited list world anti-doping code. Montreal, Quebec, Canada: Montreal.

Yoshimura M., Nakamura M., Kasahara K., Yoshida R., Murakami Y., Hojo T., et al. (2023). Effect of CO2 and H2 gas mixture in cold water immersion on recovery after eccentric loading. Heliyon 9, 202888–e20310. 10.1016/j.heliyon.2023.e20288 PubMed DOI PMC

Zhou K., Liu M., Wang Y., Liu H., Manor B., Bao D., et al. (2023). Effects of molecular hydrogen supplementation on fatigue and aerobic capacity in healthy adults: a systematic review and meta-analysis. Front. Nutr. 10, 1094767–1094818. 10.3389/fnut.2023.1094767 PubMed DOI PMC

Zobrazit více v PubMed

ClinicalTrials.gov
NCT05799911

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace