Molecular Hydrogen Positively Affects Physical and Respiratory Function in Acute Post-COVID-19 Patients: A New Perspective in Rehabilitation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie, práce podpořená grantem
Grantová podpora
IGA_FTK_2021_009
Palacký University, Olomouc
PubMed
35206179
PubMed Central
PMC8872486
DOI
10.3390/ijerph19041992
PII: ijerph19041992
Knihovny.cz E-zdroje
- Klíčová slova
- 6-min walking test, COVID-19, fatigue, health, hydrogen inhalation, oxygen saturation, pulmonary function,
- MeSH
- COVID-19 * MeSH
- jednoduchá slepá metoda MeSH
- lidé MeSH
- respirační funkční testy MeSH
- SARS-CoV-2 MeSH
- usilovný výdechový objem MeSH
- vodík terapeutické užití MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- vodík MeSH
Molecular hydrogen (H2) is potentially a novel therapeutic gas for acute post-coronavirus disease 2019 (COVID-19) patients because it has antioxidative, anti-inflammatory, anti-apoptosis, and antifatigue properties. The aim of this study was to determine the effect of 14 days of H2 inhalation on the respiratory and physical fitness status of acute post-COVID-19 patients. This randomized, single-blind, placebo-controlled study included 26 males (44 ± 17 years) and 24 females (38 ± 12 years), who performed a 6-min walking test (6 MWT) and pulmonary function test, specifically forced vital capacity (FVC) and expiratory volume in the first second (FEV1). Symptomatic participants were recruited between 21 and 33 days after a positive polymerase chain reaction test. The experiment consisted of H2/placebo inhalation, 2 × 60 min/day for 14 days. Results showed that H2 therapy, compared with placebo, significantly increased 6 MWT distance by 64 ± 39 m, FVC by 0.19 ± 0.24 L, and, in FEV1, by 0.11 ± 0.28 L (all p ≤ 0.025). In conclusion, H2 inhalation had beneficial health effects in terms of improved physical and respiratory function in acute post-COVID-19 patients. Therefore, H2 inhalation may represent a safe, effective approach for accelerating early function restoration in post-COVID-19 patients.
Faculty of Health Sciences Palacký University Olomouc 775 15 Olomouc Czech Republic
Faculty of Physical Culture Palacký University Olomouc 771 11 Olomouc Czech Republic
Research Institute for Sport and Exercise University of Canberra Bruce ACT 2617 Australia
Zobrazit více v PubMed
Alimohamadi Y., Sepandi M., Taghdir M., Hosamirudsari H. Determine the most common clinical symptoms in COVID-19 patients: A systematic review and meta-analysis. J. Prev. Med. Hyg. 2020;61:E304–E312. doi: 10.15167/2421-4248/jpmh2020.61.3.1530. PubMed DOI PMC
Yang L., Jin J., Luo W., Gan Y., Chen B., Li W. Risk factors for predicting mortality of COVID-19 patients: A systematic review and meta-analysis. PLoS ONE. 2020;15:e0243124. doi: 10.1371/journal.pone.0243124. PubMed DOI PMC
Nasserie T., Hittle M., Goodman S.N. Assessment of the frequency and variety of persistent symptoms among patients with COVID-19: A systematic review. JAMA Netw. Open. 2021;4:e2111417. doi: 10.1001/jamanetworkopen.2021.11417. PubMed DOI PMC
Lopez-Leon S., Wegman-Ostrosky T., Perelman C., Sepulveda R., Rebolledo P.A., Cuapio A., Villapol S. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci. Rep. 2021;11:16144. doi: 10.1038/s41598-021-95565-8. PubMed DOI PMC
Nalbandian A., Sehgal K., Gupta A., Madhavan M.V., McGroder C., Stevens J.S., Cook J.R., Nordvig A.S., Shalev D., Sehrawat T.S., et al. Post-acute COVID-19 syndrome. Nat. Med. 2021;27:601–615. doi: 10.1038/s41591-021-01283-z. PubMed DOI PMC
Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–1034. doi: 10.1016/S0140-6736(20)30628-0. PubMed DOI PMC
Alwazeer D., Liu F.F.-C., Wu X.Y., LeBaron T.W. Combating oxidative stress and inflammation in COVID-19 by molecular hydrogen therapy: Mechanisms and perspectives. Oxid. Med. Cell. Longev. 2021;2021:5513868. doi: 10.1155/2021/5513868. PubMed DOI PMC
Cumpstey A.F., Clark A.D., Santolini J., Jackson A.A., Feelisch M. COVID-19: A redox disease—What a stress pandemic can teach us about resilience and what we may learn from the reactive species interactome about its treatment. Antioxid. Redox Signal. 2021;35:1226–1268. doi: 10.1089/ars.2021.0017. PubMed DOI
Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8:420–422. doi: 10.1016/S2213-2600(20)30076-X. PubMed DOI PMC
Rubini A. IL-6 increases airway resistance in the rat. Cytokine. 2010;51:266–273. doi: 10.1016/j.cyto.2010.06.015. PubMed DOI
Paul B.D., Lemle M.D., Komaroff A.L., Snyder S.H. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc. Natl. Acad. Sci. USA. 2021;118:e2024358118. doi: 10.1073/pnas.2024358118. PubMed DOI PMC
Demeco A., Marotta N., Barletta M., Pino I., Marinaro C., Petraroli A., Moggio L., Ammendolia A. Rehabilitation of patients post-COVID-19 infection: A literature review. J. Int. Med. Res. 2020;48:300060520948382. doi: 10.1177/0300060520948382. PubMed DOI PMC
Smith L.L. Cytokine hypothesis of overtraining: A physiological adaptation to excessive stress? Med. Sci. Sports Exerc. 2000;32:317–331. doi: 10.1097/00005768-200002000-00011. PubMed DOI
Rodriguez-Blanco C., Gonzalez-Gerez J.J., Bernal-Utrera C., Anarte-Lazo E., Perez-Ale M., Saavedra-Hernandez M. Short-term effects of a conditioning telerehabilitation program in confined patients affected by COVID-19 in the acute phase. A pilot randomized controlled trial. Medicina. 2021;57:684. doi: 10.3390/medicina57070684. PubMed DOI PMC
Curci C., Pisano F., Bonacci E., Camozzi D.M., Ceravolo C., Bergonzi R., De Franceschi S., Moro P., Guarnieri R., Ferrillo M., et al. Early rehabilitation in post-acute COVID-19 patients: Data from an Italian COVID-19 rehabilitation unit and proposal of a treatment protocol. Eur. J. Phys. Rehabil. Med. 2020;56:633–641. doi: 10.23736/S1973-9087.20.06339-X. PubMed DOI
Simonelli C., Paneroni M., Vitacca M., Ambrosino N. Measures of physical performance in COVID-19 patients: A mapping review. Pulmonology. 2021;27:518–528. doi: 10.1016/j.pulmoe.2021.06.005. PubMed DOI PMC
Townsend L., Dyer A.H., Jones K., Dunne J., Mooney A., Gaffney F., O’Connor L., Leavy D., O’Brien K., Dowds J., et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE. 2020;15:e0240784. doi: 10.1371/journal.pone.0240784. PubMed DOI PMC
Holland A.E., Spruit M.A., Troosters T., Puhan M.A., Pepin V., Saey D., McCormack M.C., Carlin B.W., Sciurba F.C., Pitta F., et al. An official European Respiratory Society/American Thoracic Society technical standard: Field walking tests in chronic respiratory disease. Eur. Respir. J. 2014;44:1428–1446. doi: 10.1183/09031936.00150314. PubMed DOI
Spielmanns M., Pekacka-Egli A.-M., Schoendorf S., Windisch W., Hermann M. Effects of a comprehensive pulmonary rehabilitation in severe post-COVID-19 patients. Int. J. Environ. Res. Public Health. 2021;18:2695. doi: 10.3390/ijerph18052695. PubMed DOI PMC
Ohta S. Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine. Pharmacol. Ther. 2014;144:1–11. doi: 10.1016/j.pharmthera.2014.04.006. PubMed DOI
Ohsawa I., Ishikawa M., Takahashi K., Watanabe M., Nishimaki K., Yamagata K., Katsura K.-I., Katayama Y., Asoh S., Ohta S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007;13:688–694. doi: 10.1038/nm1577. PubMed DOI
Ichihara M., Sobue S., Ito M., Ito M., Hirayama M., Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen—Comprehensive review of 321 original articles. Med. Gas Res. 2015;5:12. doi: 10.1186/s13618-015-0035-1. PubMed DOI PMC
Li T.-T., Sun T., Wang Y.-Z., Wan Q., Li W.-Z., Yang W.-C. Molecular hydrogen alleviates lung injury after traumatic brain injury: Pyroptosis and apoptosis. Eur. J. Pharmacol. 2022;914:174664. doi: 10.1016/j.ejphar.2021.174664. PubMed DOI
Ara J., Fadriquela A., Ahmed F., Bajgai J., Sajo M.E.J., Lee S.P., Kim T.S., Jung J.Y., Kim C.S., Kim S.-K., et al. Hydrogen water drinking exerts antifatigue effects in chronic forced swimming mice via antioxidative and anti-inflammatory activities. BioMed Res. Int. 2018;2018:2571269. doi: 10.1155/2018/2571269. PubMed DOI PMC
Botek M., Krejčí J., McKune A.J., Sládečková B. Hydrogen-rich water supplementation and up-hill running performance: Effect of athlete performance level. Int. J. Sports Physiol. Perform. 2020;15:1193–1196. doi: 10.1123/ijspp.2019-0507. PubMed DOI
Botek M., Krejčí J., McKune A., Valenta M., Sládečková B. Hydrogen rich water consumption positively affects muscle performance, lactate response, and alleviates delayed onset of muscle soreness after resistance training. J. Strength Cond. Res. 2021:1–8. doi: 10.1519/JSC.0000000000003979. PubMed DOI
Javorac D., Stajer V., Ratgeber L., Betlehem J., Ostojic S. Short-term H2 inhalation improves running performance and torso strength in healthy adults. Biol. Sport. 2019;36:333–339. doi: 10.5114/biolsport.2019.88756. PubMed DOI PMC
Slezak J., Kura B., LeBaron T.W., Singal P.K., Buday J., Barancik M. Oxidative stress and pathways of molecular hydrogen effects in medicine. Curr. Pharm. Des. 2021;27:610–625. doi: 10.2174/1381612826666200821114016. PubMed DOI
Nicolson G.L., de Mattos G.F., Settineri R., Costa C., Ellithorpe R., Rosenblatt S., La Valle J., Jimenez A., Ohta S. Clinical effects of hydrogen administration: From animal and human diseases to exercise medicine. Int. J. Clin. Med. 2016;7:32–76. doi: 10.4236/ijcm.2016.71005. DOI
Chen K.-D., Lin W.-C., Kuo H.-C. Chemical and biochemical aspects of molecular hydrogen in treating kawasaki disease and COVID-19. Chem. Res. Toxicol. 2021;34:952–958. doi: 10.1021/acs.chemrestox.0c00456. PubMed DOI
Li Y., Wang Z., Lian N., Wang Y., Zheng W., Xie K. Molecular hydrogen: A promising adjunctive strategy for the treatment of the COVID-19. Front. Med. 2021;8:1830. doi: 10.3389/fmed.2021.671215. PubMed DOI PMC
Yang F., Yue R., Luo X., Liu R., Huang X. Hydrogen: A Potential new adjuvant therapy for COVID-19 patients. Front. Pharmacol. 2020;11:1420. doi: 10.3389/fphar.2020.543718. PubMed DOI PMC
Ostojic S.M. COVID-19 and molecular hydrogen inhalation. Ther. Adv. Respir. Dis. 2020;14:1. doi: 10.1177/1753466620951051. PubMed DOI PMC
Russell G., Rehman M., LeBaron T.W., Veal D., Adukwu E., Hancock J.T. An overview of SARS-CoV-2 (COVID-19) infection: The importance of molecular hydrogen as an adjunctive therapy. React. Oxyg. Species. 2020;10:150–165. doi: 10.20455/ros.2020.829. DOI
Singh R.B., Halabi G., Fatima G., Rai R.H., Tarnava A.T., LeBaron T.W. Molecular hydrogen as an adjuvant therapy may be associated with increased oxygen saturation and improved exercise tolerance in a COVID-19 patient. Clin. Case Rep. 2021;9:e05039. doi: 10.1002/ccr3.5039. PubMed DOI PMC
Guan W.-J., Wei C.-H., Chen A.-L., Sun X.-C., Guo G.-Y., Zou X., Shi J.-D., Lai P.-Z., Zheng Z.-G., Zhong N.-S. Hydrogen/oxygen mixed gas inhalation improves disease severity and dyspnea in patients with Coronavirus disease 2019 in a recent multicenter, open-label clinical trial. J. Thorac. Dis. 2020;12:3448–3452. doi: 10.21037/jtd-2020-057. PubMed DOI PMC
Cole A.R., Raza A., Ahmed H., Polizzotti B.D., Padera R.F., Andrews N., Kheir J.N. Safety of inhaled hydrogen gas in healthy mice. Med. Gas Res. 2022;9:133–138. doi: 10.4103/2045-9912.266988. PubMed DOI PMC
Klok F.A., Boon G.J.A.M., Barco S., Endres M., Geelhoed J.J.M., Knauss S., Rezek S.A., Spruit M.A., Vehreschild J., Siegerink B. The Post-COVID-19 Functional Status scale: A tool to measure functional status over time after COVID-19. Eur. Respir. J. 2020;56:2001494. doi: 10.1183/13993003.01494-2020. PubMed DOI PMC
Graham B.L., Steenbruggen I., Miller M.R., Barjaktarevic I.Z., Cooper B.G., Hall G.L., Hallstrand T.S., Kaminsky D.A., McCarthy K., McCormack M.C., et al. Standardization of spirometry 2019 update. An official American Thoracic Society and European Respiratory Society technical statement. Am. J. Respir. Crit. Care Med. 2019;200:e70–e88. doi: 10.1164/rccm.201908-1590ST. PubMed DOI PMC
Dourado V.Z., Nishiaka R.K., Simões M.S.M.P., Lauria V.T., Tanni S.E., Godoy I., Gagliardi A.R.T., Romiti M., Arantes R.L. Classification of cardiorespiratory fitness using the six-minute walk test in adults: Comparison with cardiopulmonary exercise testing. Pulmonology. 2021;27:500–508. doi: 10.1016/j.pulmoe.2021.03.006. PubMed DOI
Borg G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982;14:377–581. doi: 10.1249/00005768-198205000-00012. PubMed DOI
Global Initiative for Chronic Obstructive Lung Disease . Diagnosis and Initial Assessment. In: Agusti A.G., Vogelmeier C., editors. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Global Initiative for Chronic Obstructive Lung Disease; Fontana, WI, USA: 2020. pp. 20–39. 2020 Report.
Sano M., Shirakawa K., Katsumata Y., Ichihara G., Kobayashi E. Low-flow nasal cannula hydrogen therapy. J. Clin. Med. Res. 2020;12:674–680. doi: 10.14740/jocmr4323. PubMed DOI PMC
Goodwin V.A., Allan L., Bethel A., Cowley A., Cross J.L., Day J., Drummond A., Hall A.J., Howard M., Morley N., et al. Rehabilitation to enable recovery from COVID-19: A rapid systematic review. Physiotherapy. 2021;111:4–22. doi: 10.1016/j.physio.2021.01.007. PubMed DOI PMC
Botek M., Khanna D., Krejčí J., Valenta M., McKune A., Sládečková B., Klimešová I. Molecular hydrogen mitigates performance decrement during repeated sprints in professional soccer players. Nutrients. 2022;14:508. doi: 10.3390/nu14030508. PubMed DOI PMC
Rooney S., Webster A., Paul L. Systematic review of changes and recovery in physical function and fitness after severe acute respiratory syndrome-related coronavirus infection: Implications for COVID-19 rehabilitation. Phys. Ther. 2020;100:1717–1729. doi: 10.1093/ptj/pzaa129. PubMed DOI PMC
Lavie C.J., Ozemek C., Carbone S., Katzmarzyk P.T., Blair S.N. Sedentary behavior, exercise, and cardiovascular health. Circ. Res. 2019;124:799–815. doi: 10.1161/CIRCRESAHA.118.312669. PubMed DOI
Caputo E.L., Reichert F.F. Studies of physical activity and COVID-19 during the pandemic: A scoping review. J. Phys. Act. Health. 2020;17:1275–1284. doi: 10.1123/jpah.2020-0406. PubMed DOI
Townsend L., Dowds J., O’Brien K., Sheill G., Dyer A.H., O’Kelly B., Hynes J.P., Mooney A., Dunne J., Cheallaigh C.N., et al. Persistent poor health after COVID-19 is not associated with respiratory complications or initial disease severity. Ann. Am. Thorac. Soc. 2021;18:997–1003. doi: 10.1513/AnnalsATS.202009-1175OC. PubMed DOI PMC
Casanova C., Celli B.R., Barria P., Casas A., Cote C., de Torres J.P., Jardim J., Lopez M.V., Marin J.M., de Oca M.M., et al. The 6-min walk distance in healthy subjects: Reference standards from seven countries. Eur. Respir. J. 2011;37:150–156. doi: 10.1183/09031936.00194909. PubMed DOI
Blanco J.-R., Cobos-Ceballos M.-J., Navarro F., Sanjoaquin I., de Las Revillas F.A., Bernal E., Buzon-Martin L., Viribay M., Romero L., Espejo-Perez S., et al. Pulmonary long-term consequences of COVID-19 infections after hospital discharge. Clin. Microbiol. Infect. 2021;27:892–896. doi: 10.1016/j.cmi.2021.02.019. PubMed DOI PMC
Baranauskas M.N., Carter S.J. Evidence for impaired chronotropic responses to and recovery from 6-minute walk test in women with post-acute COVID-19 syndrome. Exp. Physiol. 2021:1–11. doi: 10.1113/EP089965. PubMed DOI PMC
Suhail S., Zajac J., Fossum C., Lowater H., McCracken C., Severson N., Laatsch B., Narkiewicz-Jodko A., Johnson B., Liebau J., et al. Role of oxidative stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) infection: A Review. Protein J. 2020;39:644–656. doi: 10.1007/s10930-020-09935-8. PubMed DOI PMC
Filler K., Lyon D., Bennett J., McCain N., Elswick R., Lukkahatai N., Saligan L.N. Association of mitochondrial dysfunction and fatigue: A review of the literature. BBA Clin. 2014;1:12–23. doi: 10.1016/j.bbacli.2014.04.001. PubMed DOI PMC
Calbet J.A.L., Martín-Rodríguez S., Martin-Rincon M., Morales-Alamo D. An integrative approach to the regulation of mitochondrial respiration during exercise: Focus on high-intensity exercise. Redox Biol. 2020;35:101478. doi: 10.1016/j.redox.2020.101478. PubMed DOI PMC
Gvozdjáková A., Kucharská J., Kura B., Vančová O., Rausová Z., Sumbalová Z., Uličná O., Slezák J. A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats. Can. J. Physiol. Pharmacol. 2020;98:29–34. doi: 10.1139/cjpp-2019-0281. PubMed DOI
Murakami Y., Ito M., Ohsawa I. Molecular hydrogen protects against oxidative stress-induced SH-SY5Y neuroblastoma cell death through the process of mitohormesis. PLoS ONE. 2017;12:e0176992. doi: 10.1371/journal.pone.0176992. PubMed DOI PMC
Lucas K., Rosch M., Langguth P. Molecular hydrogen (H2) as a potential treatment for acute and chronic fatigue. Arch. Pharm. 2021;354:2000378. doi: 10.1002/ardp.202000378. PubMed DOI
Timón R., Olcina G., González-Custodio A., Camacho-Cardenosa M., Camacho-Cardenosa A., Martínez Guardado I. Effects of 7-day intake of hydrogen-rich water on physical performance of trained and untrained subjects. Biol. Sport. 2021;38:269–275. doi: 10.5114/biolsport.2020.98625. PubMed DOI PMC
Borg G., Ljunggren G., Ceci R. The increase of perceived exertion, aches and pain in the legs, heart rate and blood lactate during exercise on a bicycle ergometer. Eur. J. Appl. Physiol. Occup. Physiol. 1985;54:343–349. doi: 10.1007/BF02337176. PubMed DOI
Botek M., Krejčí J., McKune A.J., Sládečková B., Naumovski N. Hydrogen rich water improved ventilatory, perceptual and lactate responses to exercise. Int. J. Sports Med. 2019;40:879–885. doi: 10.1055/a-0991-0268. PubMed DOI
Zhou Z.-Q., Zhong C.-H., Su Z.-Q., Li X.-Y., Chen Y., Chen X.-B., Tang C.-L., Zhou L.-Q., Li S.-Y. Breathing hydrogen-oxygen mixture decreases inspiratory effort in patients with tracheal stenosis. Respiration. 2019;97:42–51. doi: 10.1159/000492031. PubMed DOI
Lau H.M.-C., Ng G.Y.-F., Jones A.Y.-M., Lee E.W.-C., Siu E.H.-K., Hui D.S.-C. A randomised controlled trial of the effectiveness of an exercise training program in patients recovering from severe acute respiratory syndrome. Aust. J. Physiother. 2005;51:213–219. doi: 10.1016/S0004-9514(05)70002-7. PubMed DOI PMC
Cui W., Ouyang T., Qiu Y., Cui D. Literature review of the implications of exercise rehabilitation strategies for SARS patients on the recovery of COVID-19 patients. Healthcare. 2021;9:590. doi: 10.3390/healthcare9050590. PubMed DOI PMC
Ostojic S.M. Molecular hydrogen in sports medicine: New therapeutic perspectives. Int. J. Sports Med. 2015;36:273–279. doi: 10.1055/s-0034-1395509. PubMed DOI