Kinomics platform using GBM tissue identifies BTK as being associated with higher patient survival
Language English Country United States Media electronic-print
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
BB/C511599/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/J00751X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
34645618
PubMed Central
PMC8548209
DOI
10.26508/lsa.202101054
PII: 4/12/e202101054
Knihovny.cz E-resources
- MeSH
- Glioblastoma enzymology mortality pathology MeSH
- Coculture Techniques methods MeSH
- Humans MeSH
- Survival Rate MeSH
- Cell Line, Tumor MeSH
- Neoplastic Stem Cells enzymology MeSH
- Brain Neoplasms enzymology mortality pathology MeSH
- Agammaglobulinaemia Tyrosine Kinase metabolism MeSH
- Proteome metabolism MeSH
- Proteomics methods MeSH
- Signal Transduction * MeSH
- SOXB1 Transcription Factors metabolism MeSH
- Cell Survival MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- BTK protein, human MeSH Browser
- Agammaglobulinaemia Tyrosine Kinase MeSH
- Proteome MeSH
- SOX2 protein, human MeSH Browser
- SOXB1 Transcription Factors MeSH
Better understanding of GBM signalling networks in-vivo would help develop more physiologically relevant ex vivo models to support therapeutic discovery. A "functional proteomics" screen was undertaken to measure the specific activity of a set of protein kinases in a two-step cell-free biochemical assay to define dominant kinase activities to identify potentially novel drug targets that may have been overlooked in studies interrogating GBM-derived cell lines. A dominant kinase activity derived from the tumour tissue, but not patient-derived GBM stem-like cell lines, was Bruton tyrosine kinase (BTK). We demonstrate that BTK is expressed in more than one cell type within GBM tissue; SOX2-positive cells, CD163-positive cells, CD68-positive cells, and an unidentified cell population which is SOX2-negative CD163-negative and/or CD68-negative. The data provide a strategy to better mimic GBM tissue ex vivo by reconstituting more physiologically heterogeneous cell co-culture models including BTK-positive/negative cancer and immune cells. These data also have implications for the design and/or interpretation of emerging clinical trials using BTK inhibitors because BTK expression within GBM tissue was linked to longer patient survival.
Cardiff University Hospital Cellular Pathology Cardiff UK
Department of Basic Medical Sciences Faculty of Medicine The Hashemite University Zarqa Jordan
Department of Neuropathology Western General Hospital Edinburgh UK
Institute of Genetics and Cancer University of Edinburgh Edinburgh UK
International Centre for Cancer Vaccine Science University of Gdansk Gdansk Poland
Pamgene International BV 's Hertogenbosch Netherlands
Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
Translational Neurosurgery Centre for Clinical Brain Sciences University of Edinburgh Edinburgh UK
See more in PubMed
Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2015) CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro Oncol 17: iv1-iv62. 10.1093/neuonc/nov189 PubMed DOI PMC
Brodbelt A, Greenberg D, Winters T, Williams M, Vernon S, Collins VP (2015) Glioblastoma in England: 2007-2011. Eur J Cancer 51: 533–542. 10.1016/j.ejca.2014.12.014 PubMed DOI
Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, et al. (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10: 459–466. 10.1016/S1470-2045(09)70025-7 PubMed DOI
Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996. 10.1056/NEJMoa043330 PubMed DOI
Urbanska K, Sokołowska J, Szmidt M, Sysa P (2014) Glioblastoma multiforme: An overview. Contemp Oncol (Pozn) 18: 307–312. 10.5114/wo.2014.40559 PubMed DOI PMC
Razavi SM, Lee KE, Jin BE, Aujla PS, Gholamin S, Li G (2016) Immune evasion strategies of glioblastoma. Front Surg 3: 11. 10.3389/fsurg.2016.00011 PubMed DOI PMC
Jackson CM, Choi J, Lim M (2019) Mechanisms of immunotherapy resistance: Lessons from glioblastoma. Nat Immunol 20: 1100–1109. 10.1038/s41590-019-0433-y PubMed DOI
Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8: 3274–3284. 10.4161/cc.8.20.9701 PubMed DOI PMC
Vaupel P (2010) Metabolic microenvironment of tumor cells: A key factor in malignant progression. Exp Oncol 32: 125–127. PubMed
Alifieris C, Trafalis DT (2015) Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther 152: 63–82. 10.1016/j.pharmthera.2015.05.005 PubMed DOI
Cai X, Sughrue ME (2018) Glioblastoma: New therapeutic strategies to address cellular and genomic complexity. Oncotarget 9: 9540–9554. 10.18632/oncotarget.23476 PubMed DOI PMC
Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati N (2018) Current challenges and opportunities in treating glioblastoma. Pharmacol Rev 70: 412–445. 10.1124/pr.117.014944 PubMed DOI PMC
Alphandéry E (2018) Glioblastoma treatments: An account of recent industrial developments. Front Pharmacol 9: 879. 10.3389/fphar.2018.00879 PubMed DOI PMC
Lauro S, Onesti CE, Righini R, Marchetti P (2014) The use of bevacizumab in non-small cell lung cancer: An update. Anticancer Res 34: 1537–1545. PubMed
Rosen LS, Jacobs IA, Burkes RL (2017) Bevacizumab in colorectal cancer: Current role in treatment and the potential of biosimilars. Target Oncol 12: 599–610. 10.1007/s11523-017-0518-1 PubMed DOI PMC
Wick W, Gorlia T, Bendszus M, Taphoorn M, Sahm F, Harting I, Brandes AA, Taal W, Domont J, Idbaih A, et al. (2017) Lomustine and bevacizumab in progressive glioblastoma. N Engl J Med 377: 1954–1963. 10.1056/NEJMoa1707358 PubMed DOI
Lai A, Tran A, Nghiemphu PL, Pope WB, Solis OE, Selch M, Filka E, Yong WH, Mischel PS, Liau LM, et al. (2011) Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 29: 142–148. 10.1200/JCO.2010.30.2729 PubMed DOI PMC
Fabbro D, Cowan-Jacob SW, Moebitz H (2015) Ten things you should know about protein kinases: IUPHAR review 14. Br J Pharmacol 172: 2675–2700. 10.1111/bph.13096 PubMed DOI PMC
Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, et al. (2013) The somatic genomic landscape of glioblastoma. Cell 155: 462–477. 10.1016/j.cell.2013.09.034 PubMed DOI PMC
Ozawa T, Brennan CW, Wang L, Squatrito M, Sasayama T, Nakada M, Huse JT, Pedraza A, Utsuki S, Yasui Y, et al. (2010) PDGFRA gene rearrangements are frequent genetic events in PDGFRA-amplified glioblastomas. Genes Dev 24: 2205–2218. 10.1101/gad.1972310 PubMed DOI PMC
Joensuu H, Puputti M, Sihto H, Tynninen O, Nupponen NN (2005) Amplification of genes encoding KIT, PDGFRalpha and VEGFR2 receptor tyrosine kinases is frequent in glioblastoma multiforme. J Pathol 207: 224–231. 10.1002/path.1823 PubMed DOI
Pearson JRD, Regad T (2017) Targeting cellular pathways in glioblastoma multiforme. Signal Transduct Target Ther 2: 17040. 10.1038/sigtrans.2017.40 PubMed DOI PMC
Lee EQ, Kaley TJ, Duda DG, Schiff D, Lassman AB, Wong ET, Mikkelsen T, Purow BW, Muzikansky A, Ancukiewicz M, et al. (2015) A multicenter, phase II, randomized, noncomparative clinical trial of radiation and temozolomide with or without Vandetanib in newly diagnosed glioblastoma patients. Clin Cancer Res 21: 3610–3618. 10.1158/1078-0432.CCR-14-3220 PubMed DOI PMC
Thiessen B, Stewart C, Tsao M, Kamel-Reid S, Schaiquevich P, Mason W, Easaw J, Belanger K, Forsyth P, McIntosh L, et al. (2010) A phase I/II trial of GW572016 (lapatinib) in recurrent glioblastoma multiforme: Clinical outcomes, pharmacokinetics and molecular correlation. Cancer Chemother Pharmacol 65: 353–361. 10.1007/s00280-009-1041-6 PubMed DOI
Neyns B, Sadones J, Chaskis C, Dujardin M, Everaert H, Lv S, Duerinck J, Tynninen O, Nupponen N, Michotte A, et al. (2011) Phase II study of sunitinib malate in patients with recurrent high-grade glioma. J Neurooncol 103: 491–501. 10.1007/s11060-010-0402-7 PubMed DOI
Balaña C, Gil MJ, Perez P, Reynes G, Gallego O, Ribalta T, Capellades J, Gonzalez S, Verger E (2014) Sunitinib administered prior to radiotherapy in patients with non-resectable glioblastoma: Results of a phase II study. Target Oncol 9: 321–329. 10.1007/s11523-014-0305-1 PubMed DOI
Batchelor TT, Mulholland P, Neyns B, Nabors LB, Campone M, Wick A, Mason W, Mikkelsen T, Phuphanich S, Ashby LS, et al. (2013) Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J Clin Oncol 31: 3212–3218. 10.1200/JCO.2012.47.2464 PubMed DOI PMC
Wick W, Puduvalli VK, Chamberlain MC, van den Bent MJ, Carpentier AF, Cher LM, Mason W, Weller M, Hong S, Musib L, et al. (2010) Phase III study of enzastaurin compared with lomustine in the treatment of recurrent intracranial glioblastoma. J Clin Oncol 28: 1168–1174. 10.1200/JCO.2009.23.2595 PubMed DOI PMC
Aum DJ, Kim DH, Beaumont TL, Leuthardt EC, Dunn GP, Kim AH (2014) Molecular and cellular heterogeneity: The hallmark of glioblastoma. Neurosurg Focus 37: E11. 10.3171/2014.9.FOCUS14521 PubMed DOI
Soeda A, Hara A, Kunisada T, Yoshimura S, Iwama T, Park DM (2015) The evidence of glioblastoma heterogeneity. Sci Rep 5: 7979. 10.1038/srep07979 PubMed DOI PMC
Szerlip NJ, Pedraza A, Chakravarty D, Azim M, McGuire J, Fang Y, Ozawa T, Holland EC, Huse JT, Jhanwar S, et al. (2012) Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A 109: 3041–3046. 10.1073/pnas.1114033109 PubMed DOI PMC
Vogel TW, Zhuang Z, Li J, Okamoto H, Furuta M, Lee YS, Zeng W, Oldfield EH, Vortmeyer AO, Weil RJ (2005) Proteins and protein pattern differences between glioma cell lines and glioblastoma multiforme. Clin Cancer Res 11: 3624–3632. 10.1158/1078-0432.CCR-04-2115 PubMed DOI
Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, et al. (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9: 391–403. 10.1016/j.ccr.2006.03.030 PubMed DOI
Weber ANR, Bittner Z, Liu X, Dang TM, Radsak MP, Brunner C (2017) Bruton[R8S2Q1M7]s tyrosine kinase: An emerging key player in innate immunity. Front Immunol 8: 1454. 10.3389/fimmu.2017.01454 PubMed DOI PMC
Campbell R, Chong G, Hawkes EA (2018) Novel indications for Bruton[R8S2Q1M7]s tyrosine kinase inhibitors, beyond hematological malignancies. J Clin Med 7: 62. 10.3390/jcm7040062 PubMed DOI PMC
Tai PA, Liu YL, Wen YT, Lin CM, Huynh TT, Hsiao M, Wu ATH, Wei L (2019) The development and applications of a dual optical imaging system for studying glioma stem cells. Mol Imaging 18: 1536012119870899. 10.1177/1536012119870899 PubMed DOI PMC
Yue C, Niu M, Shan QQ, Zhou T, Tu Y, Xie P, Hua L, Yu R, Liu X (2017) High expression of Bruton[R8S2Q1M7]s tyrosine kinase (BTK) is required for EGFR-induced NF-κB activation and predicts poor prognosis in human glioma. J Exp Clin Cancer Res 36: 132. 10.1186/s13046-017-0600-7 PubMed DOI PMC
Chylek LA, Holowka DA, Baird BA, Hlavacek WS (2014) An interaction library for the FcεRI signaling network. Front Immunol 5: 172. 10.3389/fimmu.2014.00172 PubMed DOI PMC
Kim E, Hurtz C, Koehrer S, Wang Z, Balasubramanian S, Chang BY, Müschen M, Davis RE, Burger JA (2017) Ibrutinib inhibits pre-BCR+ B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK. Blood 129: 1155–1165. 10.1182/blood-2016-06-722900 PubMed DOI PMC
Umezawa Y, Akiyama H, Okada K, Ishida S, Nogami A, Oshikawa G, Kurosu T, Miura O (2017) Molecular mechanisms for enhancement of stromal cell-derived factor 1-induced chemotaxis by platelet endothelial cell adhesion molecule 1 (PECAM-1). J Biol Chem 292: 19639–19655. 10.1074/jbc.M117.779603 PubMed DOI PMC
Watanabe D, Hashimoto S, Ishiai M, Matsushita M, Baba Y, Kishimoto T, Kurosaki T, Tsukada S (2001) Four tyrosine residues in phospholipase C-gamma 2, identified as Btk-dependent phosphorylation sites, are required for B cell antigen receptor-coupled calcium signaling. J Biol Chem 276: 38595–38601. 10.1074/jbc.M103675200 PubMed DOI
Seda V, Mraz M (2015) B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol 94: 193–205. 10.1111/ejh.12427 PubMed DOI
Qiu Y, Kung HJ (2000) Signaling network of the Btk family kinases. Oncogene 19: 5651–5661. 10.1038/sj.onc.1203958 PubMed DOI
Wang J, Liu X, Hong Y, Wang S, Chen P, Gu A, Guo X, Zhao P (2017) Ibrutinib, a Bruton[R8S2Q1M7]s tyrosine kinase inhibitor, exhibits antitumoral activity and induces autophagy in glioblastoma. J Exp Clin Cancer Res 36: 96. 10.1186/s13046-017-0549-6 PubMed DOI PMC
Wei L, Su YK, Lin CM, Chao TY, Huang SP, Huynh TT, Jan HJ, Whang-Peng J, Chiou JF, Wu AT, et al. (2016) Preclinical investigation of ibrutinib, a Bruton[R8S2Q1M7]s kinase tyrosine (Btk) inhibitor, in suppressing glioma tumorigenesis and stem cell phenotypes. Oncotarget 7: 69961–69975. 10.18632/oncotarget.11572 PubMed DOI PMC
Mohamed AJ, Yu L, Bäckesjö CM, Vargas L, Faryal R, Aints A, Christensson B, Berglöf A, Vihinen M, Nore BF, et al. (2009) Bruton[R8S2Q1M7]s tyrosine kinase (Btk): Function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 228: 58–73. 10.1111/j.1600-065X.2008.00741.x PubMed DOI
Benner B, Scarberry L, Stiff A, Duggan MC, Good L, Lapurga G, Butchar JP, Tridandapani S, Carson WE (2019) Evidence for interaction of the NLRP3 inflammasome and Bruton[R8S2Q1M7]s tyrosine kinase in tumor-associated macrophages: Implications for myeloid cell production of interleukin-1beta. Oncoimmunology 8: 1659704. 10.1080/2162402X.2019.1659704 PubMed DOI PMC
Orrego E, Castaneda CA, Castillo M, Bernabe LA, Casavilca S, Chakravarti A, Meng W, Garcia-Corrochano P, Villa-Robles MR, Zevallos R, et al. (2018) Distribution of tumor-infiltrating immune cells in glioblastoma. CNS Oncol 7: CNS21. 10.2217/cns-2017-0037 PubMed DOI PMC
Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, et al. (2017) QuPath: Open source software for digital pathology image analysis. Sci Rep 7: 16878. 10.1038/s41598-017-17204-5 PubMed DOI PMC
Jurga AM, Paleczna M, Kuter KZ (2020) Overview of general and discriminating markers of differential microglia phenotypes. Front Cell Neurosci 14: 198. 10.3389/fncel.2020.00198 PubMed DOI PMC
Martinez-Lage M, Lynch TM, Bi Y, Cocito C, Way GP, Pal S, Haller J, Yan RE, Ziober A, Nguyen A, et al. (2019) Immune landscapes associated with different glioblastoma molecular subtypes. Acta Neuropathol Commun 7: 203. 10.1186/s40478-019-0803-6 PubMed DOI PMC
Bhullar KS, Lagarón NO, McGowan EM, Parmar I, Jha A, Hubbard BP, Rupasinghe HPV (2018) Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol Cancer 17: 48. 10.1186/s12943-018-0804-2 PubMed DOI PMC
Scherer WF, Syverton JT, Gey GO (1953) Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 97: 695–710. 10.1084/jem.97.5.695 PubMed DOI PMC
Gillet JP, Varma S, Gottesman MM (2013) The clinical relevance of cancer cell lines. J Natl Cancer Inst 105: 452–458. 10.1093/jnci/djt007 PubMed DOI PMC
Gazdar AF, Gao B, Minna JD (2010) Lung cancer cell lines: Useless artifacts or invaluable tools for medical science? Lung Cancer 68: 309–318. 10.1016/j.lungcan.2009.12.005 PubMed DOI PMC
Masters JR (2000) Human cancer cell lines: Fact and fantasy. Nat Rev Mol Cell Biol 1: 233–236. 10.1038/35043102 PubMed DOI
van Staveren WC, Solís DW, Delys L, Duprez L, Andry G, Franc B, Thomas G, Libert F, Dumont JE, Detours V, et al. (2007) Human thyroid tumor cell lines derived from different tumor types present a common dedifferentiated phenotype. Cancer Res 67: 8113–8120. 10.1158/0008-5472.CAN-06-4026 PubMed DOI
van Staveren WC, Solís DY, Hébrant A, Detours V, Dumont JE, Maenhaut C (2009) Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells? Biochim Biophys Acta 1795: 92–103. 10.1016/j.bbcan.2008.12.004 PubMed DOI
Sandberg R, Ernberg I (2005) Assessment of tumor characteristic gene expression in cell lines using a tissue similarity index (TSI). Proc Natl Acad Sci U S A 102: 2052–2057. 10.1073/pnas.0408105102 PubMed DOI PMC
Borrell B (2010) How accurate are cancer cell lines? Nature 463: 858. 10.1038/463858a PubMed DOI
Wilding JL, Bodmer WF (2014) Cancer cell lines for drug discovery and development. Cancer Res 74: 2377–2384. 10.1158/0008-5472.CAN-13-2971 PubMed DOI
Sandberg R, Ernberg I (2005) The molecular portrait of in vitro growth by meta-analysis of gene-expression profiles. Genome Biol 6: R65. 10.1186/gb-2005-6-8-r65 PubMed DOI PMC
Ertel A, Verghese A, Byers SW, Ochs M, Tozeren A (2006) Pathway-specific differences between tumor cell lines and normal and tumor tissue cells. Mol Cancer 5: 55. 10.1186/1476-4598-5-55 PubMed DOI PMC
Lukk M, Kapushesky M, Nikkilä J, Parkinson H, Goncalves A, Huber W, Ukkonen E, Brazma A (2010) A global map of human gene expression. Nat Biotechnol 28: 322–324. 10.1038/nbt0410-322 PubMed DOI PMC
Gillet JP, Calcagno AM, Varma S, Marino M, Green LJ, Vora MI, Patel C, Orina JN, Eliseeva TA, Singal V, et al. (2011) Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci U S A 108: 18708–18713. 10.1073/pnas.1111840108 PubMed DOI PMC
McKeown SR (2014) Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br J Radiol 87: 20130676. 10.1259/bjr.20130676 PubMed DOI PMC
Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, Sparkes RS, Kubagawa H, Mohandas T, Quan S (1993) Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72: 279–290. 10.1016/0092-8674(93)90667-f PubMed DOI
Hendriks RW, Yuvaraj S, Kil LP (2014) Targeting Bruton[R8S2Q1M7]s tyrosine kinase in B cell malignancies. Nat Rev Cancer 14: 219–232. 10.1038/nrc3702 PubMed DOI
Ibrahim AN, Yamashita D, Anderson JC, Abdelrashid M, Alwakeal A, Estevez-Ordonez D, Komarova S, Markert JM, Goidts V, Willey CD, et al. (2019) Intratumoral spatial heterogeneity of BTK kinomic activity dictates distinct therapeutic response within a single glioblastoma tumor. J Neurosurg 133: 1–12. 10.3171/2019.7.JNS191376 PubMed DOI PMC
Darmanis S, Sloan SA, Croote D, Mignardi M, Chernikova S, Samghababi P, Zhang Y, Neff N, Kowarsky M, Caneda C, et al. (2017) Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep 21: 1399–1410. 10.1016/j.celrep.2017.10.030 PubMed DOI PMC
Gustafsson MO, Hussain A, Mohammad DK, Mohamed AJ, Nguyen V, Metalnikov P, Colwill K, Pawson T, Smith CI, Nore BF (2012) Regulation of nucleocytoplasmic shuttling of Bruton[R8S2Q1M7]s tyrosine kinase (Btk) through a novel SH3-dependent interaction with ankyrin repeat domain 54 (ANKRD54). Mol Cell Biol 32: 2440–2453. 10.1128/MCB.06620-11 PubMed DOI PMC
Middendorp S, Zijlstra AJ, Kersseboom R, Dingjan GM, Jumaa H, Hendriks RW (2005) Tumor suppressor function of Bruton tyrosine kinase is independent of its catalytic activity. Blood 105: 259–265. 10.1182/blood-2004-07-2708 PubMed DOI
Kersseboom R, Middendorp S, Dingjan GM, Dahlenborg K, Reth M, Jumaa H, Hendriks RW (2003) Bruton[R8S2Q1M7]s tyrosine kinase cooperates with the B cell linker protein SLP-65 as a tumor suppressor in pre-B cells. J Exp Med 198: 91–98. 10.1084/jem.20030615 PubMed DOI PMC
Islam TC, Brandén LJ, Kohn DB, Islam KB, Smith CI (2000) BTK mediated apoptosis, a possible mechanism for failure to generate high titer retroviral producer clones. J Gene Med 2: 204–209. 10.1002/(SICI)1521-2254(200005/06)2:3<204::AID-JGM104>3.0.CO;2-5 PubMed DOI
Kawakami Y, Miura T, Bissonnette R, Hata D, Khan WN, Kitamura T, Maeda-Yamamoto M, Hartman SE, Yao L, Alt FW, et al. (1997) Bruton[R8S2Q1M7]s tyrosine kinase regulates apoptosis and JNK/SAPK kinase activity. Proc Natl Acad Sci U S A 94: 3938–3942. 10.1073/pnas.94.8.3938 PubMed DOI PMC
Althubiti M, Rada M, Samuel J, Escorsa JM, Najeeb H, Lee KG, Lam KP, Jones GD, Barlev NA, Macip S (2016) BTK modulates p53 activity to enhance apoptotic and senescent responses. Cancer Res 76: 5405–5414. 10.1158/0008-5472.CAN-16-0690 PubMed DOI
Rada M, Althubiti M, Ekpenyong-Akiba AE, Lee KG, Lam KP, Fedorova O, Barlev NA, Macip S (2017) BTK blocks the inhibitory effects of MDM2 on p53 activity. Oncotarget 8: 106639–106647. 10.18632/oncotarget.22543 PubMed DOI PMC
Rada M, Barlev N, Macip S (2018) BTK modulates p73 activity to induce apoptosis independently of p53. Cell Death Discov 4: 30. 10.1038/s41420-018-0097-7 PubMed DOI PMC
Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, Bayani J, Head R, Lee M, Bernstein M, et al. (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4: 568–580. 10.1016/j.stem.2009.03.014 PubMed DOI
Brennan PM, Frame M, Chandran S (2014) Using novel models of glioma for cancer discovery science. University of Edinburgh.
Sikkema AH, Diks SH, den Dunnen WF, ter Elst A, Scherpen FJ, Hoving EW, Ruijtenbeek R, Boender PJ, de Wijn R, Kamps WA, et al. (2009) Kinome profiling in pediatric brain tumors as a new approach for target discovery. Cancer Res 69: 5987–5995. 10.1158/0008-5472.CAN-08-3660 PubMed DOI
Jarboe JS, Jaboin JJ, Anderson JC, Nowsheen S, Stanley JA, Naji F, Ruijtenbeek R, Tu T, Hallahan DE, Yang ES, et al. (2012) Kinomic profiling approach identifies Trk as a novel radiation modulator. Radiother Oncol 103: 380–387. 10.1016/j.radonc.2012.03.014 PubMed DOI PMC
Baroncelli M, Fuhler GM, van de Peppel J, Zambuzzi WF, van Leeuwen JP, van der Eerden BCJ, Peppelenbosch MP (2019) Human mesenchymal stromal cells in adhesion to cell-derived extracellular matrix and titanium: Comparative kinome profile analysis. J Cell Physiol 234: 2984–2996. 10.1002/jcp.27116 PubMed DOI PMC
Kruger NJ (1994) The Bradford method for protein quantitation. Methods Mol Biol 32: 9–15. 10.1385/0-89603-268-X:9 PubMed DOI
Versele M, Talloen W, Rockx C, Geerts T, Janssen B, Lavrijssen T, King P, Göhlmann HW, Page M, Perera T (2009) Response prediction to a multitargeted kinase inhibitor in cancer cell lines and xenograft tumors using high-content tyrosine peptide arrays with a kinetic readout. Mol Cancer Ther 8: 1846–1855. 10.1158/1535-7163.MCT-08-1029 PubMed DOI
Huber W, von Heydebreck A, Sültmann H, Poustka A, Vingron M (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18: S96–S104. 10.1093/bioinformatics/18.suppl_1.s96 PubMed DOI
Curran OE, Qiu Z, Smith C, Grant SGN (2020) A single-synapse resolution survey of PSD95-positive synapses in twenty human brain regions. Eur J Neurosci 1–18. 10.1111/ejn.14846 PubMed DOI PMC
Kononen J, Bubendorf L, Kallioniemi A, Bärlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4: 844–847. 10.1038/nm0798-844 PubMed DOI
Armbruster DA, Pry T (2008) Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 29: S49–S52. PubMed PMC
Berben L, Wildiers H, Marcelis L, Antoranz A, Bosisio F, Hatse S, Floris G (2020) Computerised scoring protocol for identification and quantification of different immune cell populations in breast tumour regions by the use of QuPath software. Histopathology 77: 79–91. 10.1111/his.14108 PubMed DOI