• This record comes from PubMed

Kappa but not delta or mu opioid receptors form homodimers at low membrane densities

. 2021 Dec ; 78 (23) : 7557-7568. [epub] 20211017

Language English Country Switzerland Media print-electronic

Document type Journal Article

Grant support
UL 312/6-1 deutsche forschungsgemeinschaft
RTG 2202 deutsche forschungsgemeinschaft
EXC 294 deutsche forschungsgemeinschaft
CRC 992 deutsche forschungsgemeinschaft
EXC-2189-Project ID: 390939984 deutsche forschungsgemeinschaft
GA17-05903S grantová agentura české republiky
SVV260427/2020 univerzita karlova v praze
FM/a/2017-2-072 univerzita karlova v praze
SVV260427/2018 univerzita karlova v praze

Links

PubMed 34657173
PubMed Central PMC8629795
DOI 10.1007/s00018-021-03963-y
PII: 10.1007/s00018-021-03963-y
Knihovny.cz E-resources

Opioid receptors (ORs) have been observed as homo- and heterodimers, but it is unclear if the dimers are stable under physiological conditions, and whether monomers or dimers comprise the predominant fraction in a cell. Here, we use three live-cell imaging approaches to assess dimerization of ORs at expression levels that are 10-100 × smaller than in classical biochemical assays. At membrane densities around 25/µm2, a split-GFP assay reveals that κOR dimerizes, while µOR and δOR stay monomeric. At receptor densities < 5/µm2, single-molecule imaging showed no κOR dimers, supporting the concept that dimer formation depends on receptor membrane density. To directly observe the transition from monomers to dimers, we used a single-molecule assay to assess membrane protein interactions at densities up to 100 × higher than conventional single-molecule imaging. We observe that κOR is monomeric at densities < 10/µm2 and forms dimers at densities that are considered physiological. In contrast, µOR and δOR stay monomeric even at the highest densities covered by our approach. The observation of long-lasting co-localization of red and green κOR spots suggests that it is a specific effect based on OR dimerization and not an artefact of coincidental encounters.

See more in PubMed

Milligan G, Ward JW, Marsango S. GPCR homo-oligomerization. Curr Opin Cell Biol. 2019;57:40–47. doi: 10.1016/j.ceb.2018.10.007. PubMed DOI PMC

Cvejic S, Devi LA. Dimerization of the delta opioid receptor: implication for a role in receptor internalization. J Biol Chem. 1997;272:26959–26964. doi: 10.1074/jbc.272.43.26959. PubMed DOI

Jordan BA, Devi LA. G-protein-coupled receptor heterodimerization modulates receptor function. Nature. 1999;399:697–700. doi: 10.1038/21441. PubMed DOI PMC

George SR et al (2000) Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem 275:26128–26135 PubMed

Ramsay D, Kellett E, McVey M, Rees S, Milligan G. Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. Biochem J. 2002;365:429–440. doi: 10.1042/bj20020251. PubMed DOI PMC

Wang D, Sun X, Bohn LM, Sadée W. Opioid receptor homo- and heterodimerization in living cells by quantitative bioluminescence resonance energy transfer. Mol Pharmacol. 2005;67:2173–2184. doi: 10.1124/mol.104.010272. PubMed DOI

Hern J, et al. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci USA. 2010;107:2693–2698. doi: 10.1073/pnas.0907915107. PubMed DOI PMC

Madl J, et al. Resting state Orai1 diffuses as homotetramer in the plasma membrane of live mammalian cells. J Biol Chem. 2010;285:41135–41142. doi: 10.1074/jbc.M110.177881. PubMed DOI PMC

Kasai RS, et al. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol. 2011;192:463–480. doi: 10.1083/jcb.201009128. PubMed DOI PMC

Calebiro D, et al. Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci USA. 2013;110:743–748. doi: 10.1073/pnas.1205798110. PubMed DOI PMC

Gentzsch C, et al. Selective and wash-resistant fluorescent dihydrocodeinone derivatives allow single-molecule imaging of μ-opioid receptor dimerization. Angew Chem Int Ed. 2020;59:5958–5964. doi: 10.1002/anie.201912683. PubMed DOI PMC

Möller J, et al. Single-molecule analysis reveals agonist-specific dimer formation of μ-opioid receptors. Nat Chem Biol. 2020;16:946–954. doi: 10.1038/s41589-020-0566-1. PubMed DOI

Drakopoulos A, et al. Investigation of inactive-state κ opioid receptor homodimerization via single-molecule microscopy using new antagonistic fluorescent probes. J Med Chem. 2020;63:3596–3609. doi: 10.1021/acs.jmedchem.9b02011. PubMed DOI

Asher WB, et al. Single-molecule FRET imaging of GPCR dimers in living cells. Nat Methods. 2021;18:397–405. doi: 10.1038/s41592-021-01081-y. PubMed DOI PMC

Wehr MC, et al. Monitoring regulated protein-protein interactions using split TEV. Nat Methods. 2006;3:985–993. doi: 10.1038/nmeth967. PubMed DOI

Bishayee S et al (1989) Ligand-induced dimerization of the platelet-derived growth factor receptor. Monomer-dimer interconversion occurs independent of receptor phosphorylation. J Biol Chem 264:11699–11705 PubMed

Choi S, et al. Transmembrane domain-induced oligomerization Is crucial for the functions of syndecan-2 and syndecan-4. J Biol Chem. 2005;280:42573–42579. doi: 10.1074/jbc.M509238200. PubMed DOI

Belyy V, et al. PhotoGate microscopy to track single molecules in crowded environments. Nat Commun. 2017;8:13978. doi: 10.1038/ncomms13978. PubMed DOI PMC

Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell. 2002;9:789–798. doi: 10.1016/S1097-2765(02)00496-3. PubMed DOI

Kodama Y, Hu CD. Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. Biotechniques. 2012;53:285–298. doi: 10.2144/000113943. PubMed DOI

Cabantous S, Terwilliger TC, Waldo GS. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol. 2005;23:102–107. doi: 10.1038/nbt1044. PubMed DOI

Zacharias DA, Violin JD, Newton AC, Tsien RY. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science. 2002;296:913–916. doi: 10.1126/science.1068539. PubMed DOI

Sbalzarini IF, Koumoutsakos P. Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol. 2005;151:182–195. doi: 10.1016/j.jsb.2005.06.002. PubMed DOI

Beutel O, et al. Two-dimensional trap for ultrasensitive quantification of transient protein interactions. ACS Nano. 2015;9:9783–9791. doi: 10.1021/acsnano.5b02696. PubMed DOI

Sarabipour S, Hristova K. Mechanism of FGF receptor dimerization and activation. Nat Commun. 2016;7:10262. doi: 10.1038/ncomms10262. PubMed DOI PMC

Stoneman MR, et al. A general method to quantify ligand-driven oligomerization from fluorescence-based images. Nat Methods. 2019;16:493–496. doi: 10.1038/s41592-019-0408-9. PubMed DOI PMC

Uhlén M, et al. Tissue-based map of the human proteome. Science. 2015;347:1260419. doi: 10.1126/science.1260419. PubMed DOI

Danke C, et al. Adjusting transgene expression levels in lymphocytes with a set of inducible promoters. J Gene Med. 2010;2:501–515. doi: 10.1002/jgm.1461. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...