Changes in Brain Responses to Music and Non-music Sounds Following Creativity Training Within the "Different Hearing" Program
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34658759
PubMed Central
PMC8517178
DOI
10.3389/fnins.2021.703620
Knihovny.cz E-zdroje
- Klíčová slova
- auditory perception, brain plasticity, creativity, music composition, music education, music training, task-related fMRI,
- Publikační typ
- časopisecké články MeSH
The "Different Hearing" program (DHP) is an educational activity aimed at stimulating musical creativity of children and adults by group composing in the classroom, alternative to the mainstream model of music education in Czechia. Composing in the classroom in the DHP context does not use traditional musical instruments or notation, instead, the participants use their bodies, sounds originating from common objects as well as environmental sounds as the "elements" for music composition by the participants' team, with the teacher initiating and then participating and coordinating the creative process, which ends with writing down a graphical score and then performing the composition in front of an audience. The DHP methodology works with a wide definition of musical composition. We hypothesized that the DHP short-term (2 days) intense workshop would induce changes in subjective appreciation of different classes of music and sound (including typical samples of music composed in the DHP course), as well as plastic changes of the brain systems engaged in creative thinking and music perception, in their response to diverse auditory stimuli. In our study, 22 healthy university students participated in the workshop over 2 days and underwent fMRI examinations before and after the workshop, meanwhile 24 students were also scanned twice as a control group. During fMRI, each subject was listening to musical and non-musical sound samples, indicating their esthetic impression with a button press after each sample. As a result, participants' favorable feelings toward non-musical sound samples were significantly increased only in the active group. fMRI data analyzed using ANOVA with post hoc ROI analysis showed significant group-by-time interaction (opposing trends in the two groups) in the bilateral posterior cingulate cortex/precuneus, which are functional hubs of the default mode network (DMN) and in parts of the executive, motor, and auditory networks. The findings suggest that DHP training modified the behavioral and brain response to diverse sound samples, differentially changing the engagement of functional networks known to be related to creative thinking, namely, increasing DMN activation and decreasing activation of the executive network.
Department of Biomedical Engineering University Hospital Olomouc Olomouc Czechia
Department of Computer Science Faculty of Science Palacký University Olomouc Olomouc Czechia
Department of Music Education Faculty of Education Palacký University Olomouc Olomouc Czechia
Zobrazit více v PubMed
Andrews-Hanna J. R., Reidler J. S., Huang C., Buckner R. L. (2010). Evidence for the default network’s role in spontaneous cognition. J. Neurophysiol. 104 322–335. 10.1152/jn.00830.2009 PubMed DOI PMC
Angulo-Perkins A., Concha L. (2014). Music perception: information flow within the human auditory cortices. Adv. Exp. Med. Biol. 829 293–303. 10.1007/978-1-4939-1782-2_15 PubMed DOI
Bashwiner D. M., Wertz C. J., Flores R. A., Jung R. E. (2016). Musical creativity “revealed” in brain structure: interplay between motor, default mode, and limbic networks. Sci. Rep. 6:20482. 10.1038/srep20482 PubMed DOI PMC
Beaty R. E., Benedek M., Barry Kaufman S., Silvia P. J. (2015). Default and executive network coupling supports creative idea production. Sci. Rep. 5:10964. 10.1038/srep10964 PubMed DOI PMC
Beaty R. E., Christensen A. P., Benedek M., Silvia P. J., Schacter D. L. (2017). Creative constraints: brain activity and network dynamics underlying semantic interference during idea production. NeuroImage 148 189–196. 10.1016/j.neuroimage.2017.01.012 PubMed DOI PMC
Beaty R. E., Kenett Y. N., Christensen A. P., Rosenberg M. D., Benedek M., Chen Q., et al. (2018). Robust prediction of individual creative ability from brain functional connectivity. Proc. Natl. Acad. Sci. U.S.A. 115 1087–1092. 10.1073/pnas.1713532115 PubMed DOI PMC
Beckmann C. F., Jenkinson M., Smith S. M. (2003). General multilevel linear modeling for group analysis in FMRI. NeuroImage 20 1052–1063. 10.1016/S1053-8119(03)00435-X PubMed DOI
Bengtsson S. L., Csíkszentmihályi M., Ullén F. (2007). Cortical regions involved in the generation of musical structures during improvisation in pianists. J. Cogn. Neurosci. 19, 830–842. 10.1162/jocn.2007.19.5.830 PubMed DOI
Bengtsson S. L., Ullén F., Ehrsson H. H., Hashimoto T., Kito T., Naito E., et al. (2009). Listening to rhythms activates motor and premotor cortices. Cortex 45, 62–71. 10.1016/j.cortex.2008.07.002 PubMed DOI
Berkowitz A. L., Ansari D. (2008). Generation of novel motor sequences: the neural correlates of musical improvisation. NeuroImage 41 535–543. 10.1016/j.neuroimage.2008.02.028 PubMed DOI
Boccia M., Piccardi L., Palermo L., Nori R., Palmiero M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Front. Psychol. 6:1195. 10.3389/fpsyg.2015.01195 PubMed DOI PMC
Brown R. M., Chen J. L., Hollinger A., Penhune V. B., Palmer C., Zatorre R. J. (2013). Repetition suppression in auditory-motor regions to pitch and temporal structure in music. J. Cogn. Neurosci. 25 313–328. 10.1162/jocn_a_00322 PubMed DOI
Buckner R. L., Andrews-Hanna J. R., Schacter D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124 1–38. 10.1196/annals.1440.011 PubMed DOI
Burnard P. (2012). “Rethinking ‘musical creativity’ and the notion of multiple creativities in music,” in Musical Creativity: Insights from Music Education Research, ed. Odena O. (Farnham: Ashgate Publishing, Ltd; ), 5–27.
Cage J. (1973). Silence: Lectures and Writings. Middletown, CT: Wesleyan University Press.
Casey M. A. (2017). Music of the 7Ts: predicting and decoding multivoxel fMRI responses with acoustic, schematic, and categorical music features. Front. Psychol. 8:1179. 10.3389/fpsyg.2017.01179 PubMed DOI PMC
Chen J. L., Penhune V. B., Zatorre R. J. (2007). Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. J. Cogn. Neurosci. 20 226–239. 10.1162/jocn.2008.20018 PubMed DOI
Cook N. (2011). “Afterword: beyond creativity?,” in Musical Imaginations: Multidisciplinary Perspectives on Creativity, Performance and Perception, eds Hargreaves D., Miell D., MacDonald R. (Oxford: Oxford University Press; ), 451–459.
Coufalová G., Synek J. (2014). “Composing in the classroom “Different Hearing” program: experiences in czech music education,” in Proceedings of the SGEM2014 Conference Proceedings, (Sofia: ), 169–176. 10.5593/sgemsocial2014/B13/S3.023 DOI
de Manzano Ö, Ullén F. (2012). Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms. NeuroImage 63 272–280. 10.1016/j.neuroimage.2012.06.024 PubMed DOI
Desikan R. S., Ségonne F., Fischl B., Quinn B. T., Dickerson B. C., Blacker D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31 968–980. 10.1016/j.neuroimage.2006.01.021 PubMed DOI
Diedrichsen J., Balsters J. H., Flavell J., Cussans E., Ramnani N. (2009). A probabilistic MR atlas of the human cerebellum. NeuroImage 46 39–46. 10.1016/j.neuroimage.2009.01.045 PubMed DOI
Donnay G. F., Rankin S. K., Lopez-Gonzalez M., Jiradejvong P., Limb C. J. (2014). Neural substrates of interactive musical improvisation: an FMRI study of “trading fours” in jazz. PLoS One 9:e88665. 10.1371/journal.pone.0088665 PubMed DOI PMC
Drevdahl J. E. (1956). Factors of importance for creativity. J. Clin. Psychol. 12 21–26. 10.1002/1097-4679(195601)12:1<21::AID-JCLP2270120104<3.0.CO;2-S PubMed DOI
Fink A., Benedek M., Koschutnig K., Papousek I., Weiss E. M., Bagga D., et al. (2018). Modulation of resting-state network connectivity by verbal divergent thinking training. Brain Cogn. 128 1–6. 10.1016/j.bandc.2018.10.008 PubMed DOI
Fink A., Benedek M., Koschutnig K., Pirker E., Berger E., Meister S., et al. (2015). Training of verbal creativity modulates brain activity in regions associated with language- and memory-related demands. Hum. Brain Mapp. 36 4104–4115. 10.1002/hbm.22901 PubMed DOI PMC
Glover G. H., Li T. Q., Ress D. (2000). Image-based method for retrospective correction of physiological motion effects in fMRI: retroicor. Magn. Reson. Med. 44 162–167. PubMed
Grabner G., Janke A. L., Budge M. M., Smith D., Pruessner J., Collins D. L. (2006). Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Med. Image Comput. Comput.Assist. Interv. 9 58–66. PubMed
Grahn J. A., Brett M. (2007). Rhythm and beat perception in motor areas of the brain. J. Cogn. Neurosci. 19 893–906. 10.1162/jocn.2007.19.5.893 PubMed DOI
Guilford J. P. (1950). Creativity. Am. Psychol. 5 444–454. 10.1037/h0063487 PubMed DOI
Guilford J. P. (1967). The Nature of Human Intelligence. New York, NY: McGraw-Hill.
Hanke M., Baumgartner F. J., Ibe P., Kaule F. R., Pollmann S., Speck O., et al. (2014). A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie. Sci. Data 1:140003. 10.1038/sdata.2014.3 PubMed DOI PMC
Hargreaves D. J. (2012). Musical imagination: perception and production, beauty and creativity. Psychol. Music 40 539–557. 10.1177/0305735612444893 DOI
Herholz S. C., Coffey E. B. J., Pantev C., Zatorre R. J. (2016). Dissociation of neural networks for predisposition and for training-related plasticity in auditory-motor learning. Cereb. Cortex 26 3125–3134. 10.1093/cercor/bhv138 PubMed DOI PMC
Hickey M. (2002). “Creativity research in music, visual art, theater, and dance,” in The New Handbook of Research on Music Teaching and Learning, eds Colwell R., Richardson C. (Oxford: Oxford University Press; ), 398–415.
Hong K.-S., Santosa H. (2016). Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy. Hear. Res. 333 157–166. 10.1016/j.heares.2016.01.009 PubMed DOI
Janata P. (2015). Neural basis of music perception. Handb. Clin. Neurol. 129 187–205. 10.1016/B978-0-444-62630-1.00011-1 PubMed DOI
Janata P., Grafton S. T. (2003). Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nat. Neurosci. 6 682–687. 10.1038/nn1081 PubMed DOI
Jenkinson M., Smith S. (2001). A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5 143–156. PubMed
Jenkinson M., Bannister P., Brady M., Smith S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17 825–841. 10.1006/nimg.2002.1132 PubMed DOI
Jenkinson M., Beckmann C. F., Behrens T. E. J., Woolrich M. W., Smith S. M. (2012). FSL. NeuroImage 62 782–790. 10.1016/j.neuroimage.2011.09.015 PubMed DOI
Jung R. E., Segall J. M., Bockholt H. J., Flores R. A., Smith S. M., Chavez R. S., et al. (2010). Neuroanatomy of creativity. Hum. Brain Mapp. 31 398–409. 10.1002/hbm.20874 PubMed DOI PMC
Lapidaki E. (2007). Learning from masters of music creativity: shaping compositional experiences in music education. Philos. Music Educ. Rev. 15 93–117.
Laycock J. (2005). A Changing Role for the Composer in Society. Bern: Peter Lang.
Limb C. J., Braun A. R. (2008). Neural substrates of spontaneous musical performance: an fMRI study of jazz improvisation. PLoS One 3:e1679. 10.1371/journal.pone.0001679 PubMed DOI PMC
Liu S., Erkkinen M. G., Healey M. L., Xu Y., Swett K. E., Chow H. M., et al. (2015). Brain activity and connectivity during poetry composition: toward a multidimensional model of the creative process. Hum. Brain Mapp. 36 3351–3372. 10.1002/hbm.22849 PubMed DOI PMC
Marron T. R., Lerner Y., Berant E., Kinreich S., Shapira-Lichter I., Hendler T., et al. (2018). Chain free association, creativity, and the default mode network. Neuropsychologia 118 40–58. 10.1016/j.neuropsychologia.2018.03.018 PubMed DOI
McDermott J. H. (2012). “Chapter 10 - auditory preferences and aesthetics: music, voices, and everyday sounds,” in Neuroscience of Preference and Choice, eds Dolan R., Sharot T. (San Diego, CA: Academic Press; ), 227–256.
Medek I., Synek J., Zouhar V. (2014). Composing in the Classroom. Different Hearing: Experiences in Czech Music Education. Brno: Janáček Academy of Music and Performing Arts in Brno.
Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9 97–113. 10.1016/0028-3932(71)90067-4 PubMed DOI
Olszewska A. M., Gaca M., Herman A. M., Jednoróg K., Marchewka A. (2021). How musical training shapes the adult brain: predispositions and neuroplasticity. Front. Neurosci. 15:630829. 10.3389/fnins.2021.630829 PubMed DOI PMC
Pastor M. A., Macaluso E., Day B. L., Frackowiak R. S. J. (2006). The neural basis of temporal auditory discrimination. NeuroImage 30 512–520. 10.1016/j.neuroimage.2005.09.053 PubMed DOI
Paynter J., Aston P. (1970). Sound and Silence: Classroom Projects in Creative Music. London: Cambridge University Press.
Pinho A. L., de Manzano O., Fransson P., Eriksson H., Ullen F. (2014). Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. J. Neurosci. 34 6156–6163. 10.1523/JNEUROSCI.4769-13.2014 PubMed DOI PMC
Popescu M., Otsuka A., Ioannides A. A. (2004). Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study. NeuroImage 21 1622–1638. 10.1016/j.neuroimage.2003.11.002 PubMed DOI
Pruim R. H. R., Mennes M., van Rooij D., Llera A., Buitelaar J. K., Beckmann C. F. (2015). ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage 112 267–277. 10.1016/j.neuroimage.2015.02.064 PubMed DOI
Raichle M. E., MacLeod A. M., Snyder A. Z., Powers W. J., Gusnard D. A., Shulman G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. 98 676–682. 10.1073/pnas.98.2.676 PubMed DOI PMC
Runco M. A., Jaeger G. J. (2012). The standard definition of creativity. Creat. Res. J. 24 92–96. 10.1080/10400419.2012.650092 DOI
Running D. J. (2008). Creativity research in music education: a review (1980–2005). Update Appl. Res. Music Educ. 27 41–48. 10.1177/8755123308322280 DOI
Sachs M., Kaplan J., Der Sarkissian A., Habibi A. (2017). Increased engagement of the cognitive control network associated with music training in children during an fMRI Stroop task. PLoS One 12:e0187254. 10.1371/journal.pone.0187254 PubMed DOI PMC
Schafer R. M. (1986). The Thinking Ear. Tronto: Arcana Editions.
Schlegel A., Alexander P., Fogelson S. V., Li X., Lu Z., Kohler P. J., et al. (2015). The artist emerges: visual art learning alters neural structure and function. NeuroImage 105 440–451. 10.1016/j.neuroimage.2014.11.014 PubMed DOI
Schneider H., Bösze C., Stangl B. (2000). Klangnetze: Ein Versuch, die Wirklichkeit mit den Ohren zu erfi nden. Saarbrücken: PFAU Verlag.
Seeley W. W., Menon V., Schatzberg A. F., Keller J., Glover G. H., Kenna H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27 2349–2356. 10.1523/JNEUROSCI.5587-06.2007 PubMed DOI PMC
Sun J., Chen Q., Zhang Q., Li Y., Li H., Wei D., et al. (2016). Training your brain to be more creative: brain functional and structural changes induced by divergent thinking training: the neural plasticity of creativity. Hum. Brain Mapp. 37 3375–3387. 10.1002/hbm.23246 PubMed DOI PMC
Synek J. (2008). Elementární Komponování a jeho Význam v Edukaci [Elementary Composing and Its Significance in Education]. PhD Thesis. Olomouc: Palacký University.
Takeuchi H., Taki Y., Hashizume H., Sassa Y., Nagase T., Nouchi R., et al. (2011). Failing to deactivate: the association between brain activity during a working memory task and creativity. NeuroImage 55 681–687. 10.1016/j.neuroimage.2010.11.052 PubMed DOI
Takeuchi H., Taki Y., Hashizume H., Sassa Y., Nagase T., Nouchi R., et al. (2012). The association between resting functional connectivity and creativity. Cereb. Cortex 22 2921–2929. 10.1093/cercor/bhr371 PubMed DOI
Tierney A. T., Krizman J., Kraus N. (2015). Music training alters the course of adolescent auditory development. Proc. Natl. Acad. Sci. U.S.A. 112 10062–10067. 10.1073/pnas.1505114112 PubMed DOI PMC
Webster P. R. (2016). Creative thinking in music, twenty-five years on. Music Educ. J. 102 26–32. 10.1177/0027432115623841 DOI
Wei D., Yang J., Li W., Wang K., Zhang Q., Qiu J. (2014). Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation. Cortex 51 92–102. 10.1016/j.cortex.2013.09.004 PubMed DOI
Woolrich M. W., Behrens T. E. J., Beckmann C. F., Jenkinson M., Smith S. M. (2004). Multilevel linear modelling for FMRI group analysis using Bayesian inference. NeuroImage 21 1732–1747. 10.1016/j.neuroimage.2003.12.023 PubMed DOI
Woolrich M. W., Ripley B. D., Brady M., Smith S. M. (2001). Temporal autocorrelation in univariate linear modeling of FMRI data. NeuroImage 14 1370–1386. 10.1006/nimg.2001.0931 PubMed DOI
Worsley K. J. (2001). “Statistical analysis of activation images,” in Functional MRI: An Introduction to Methods, eds Jezzard P., Matthews P. M., Smith S. M. (Oxford: Oxford University Press; ).
Zatorre R. J., Chen J. L., Penhune V. B. (2007). When the brain plays music: auditory-motor interactions in music perception and production. Nat. Rev. Neurosci. 8 547–558. 10.1038/nrn2152 PubMed DOI
Zouhar V., Medek I. (2010). “Music making in the classroom: possibilities for Czech music education,” in Proceeding of the 2nd World Conference on Arts Education, 25–28 May 2010 (Seoul), 1–3, (Paris: UNESCO; ).