A Review on Environmental Contaminants-Related Fertility Threat in Male Fishes: Effects and Possible Mechanisms of Action Learned from Wildlife and Laboratory Studies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CENAKVA project No. LM2018099
Ministry of Education, Youth and Sports of the Czech Republic
Biodiversity project No. CZ.02.1.01./0.0/0.0/16_025/0007370
Ministry of Education, Youth and Sports of the Czech Republic
120/S/98
University of Tehran-Department of Environment
PubMed
34679838
PubMed Central
PMC8532744
DOI
10.3390/ani11102817
PII: ani11102817
Knihovny.cz E-zdroje
- Klíčová slova
- fertility endpoints, industrial pollutants, pesticides, pharmaceuticals, sperm quality,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Increasing global rates of diminished fertility in males has been suggested to be associated with exposure to environmental contaminants (ECs). The aquatic environments are the final repository of ECs. As the reproductive system is conserved in vertebrates, studies on the effects of ECs on fertility endpoints in fishes provide us with valuable information to establish biomarkers in risk assessment of ECs, and to understand the ECs-related fertility threat. The aim of the present review was to evaluate associations between ECs and fertility determinants to better understand ECs-related male fertility threat in male fishes. Wildlife studies show that the reproductive system has been affected in fishes sampled from the polluted aquatic environment. The laboratory studies show the potency of ECs including natural and synthetic hormones, alkylphenols, bisphenols, plasticizers, pesticides, pharmaceutical, alkylating, and organotin agents to affect fertility determinants, resulting in diminished fertility at environmentally relevant concentrations. Both wildlife and laboratory studies reveal that ECs adverse effects on male fertility are associated with a decrease in sperm production, damage to sperm morphology, alternations in sperm genome, and decrease in sperm motility kinetics. The efficiency of ECs to affect sperm quality and male fertility highly depends on the concentration of the contaminants and the duration of exposure. Our review highlights that the number of contaminants examined over fertility tests are much lower than the number of contaminants detected in our environment. The ECs effects on fertility are largely unknown when fishes are exposed to the contaminants at early developmental stages. The review suggests the urgent need to examine ECs effects on male fertility when a fish is exposed at different developmental stages in a single or combination protocol. The ECs effects on the sperm genome are largely unknown to understand ECs-related inheritance of reproductive disorders transmitted to the progeny. To elucidate modes of action of ECs on sperm motility, it is needed to study functional morphology of the motility apparatus and to investigate ECs-disrupted motility signaling.
School of Biology College of Science University of Tehran Tehran P O Box 14155 6655 Iran
Toxicology Centre University of Saskatchewan Saskatoon SK S7N 5B3 Canada
Zobrazit více v PubMed
Richiardi L., Bellocco R., Adami H.O., Torrang A., Barlow L., Hakulinen T., Rahu M., Stengrevics A., Storm H., Tretli S., et al. Testicular cancer incidence in eight Northern European countries: Secular and recent trends. Cancer Epidemiol. Prev. Biomark. 2004;13:2157–2166. PubMed
Andersson A.M., Jørgensen N., Main K.M., Toppari J., Meyts E.R.D., Leffers H., Juul A., Jensen T.K., Skakkebæk N.E. Adverse trends in male reproductive health: We may have reached a crucial ‘tipping point’. Int. J. Androl. 2008;31:74–80. doi: 10.1111/j.1365-2605.2007.00853.x. PubMed DOI PMC
Phillips K.P., Tanphaichitr N. Human exposure to endocrine disrupters and semen quality. J. Toxicol. Environ. Health B Crit. Rev. 2008;11:188–220. doi: 10.1080/10937400701873472. PubMed DOI
Lund L., Engebjerg M.C., Pedersen L., Ehrenstein V., Nørgaard M., Sørensen H.F. Prevalence of hypospadias in Danish boys: A longitudinal study, 1977–2005. Eur. Urol. 2009;55:1022–1026. doi: 10.1016/j.eururo.2009.01.005. PubMed DOI
Toppari J., Virtanen H.E., Main K.M., Skakkebaek N.E. Cryptorchidism and hypospadias as a sign of testicular dysgenesis syndrome (TDS): Environmental connection. Birth Defects Res. A Clin. Mol. Teratol. 2010;88:910–919. doi: 10.1002/bdra.20707. PubMed DOI
Mascarenhas M.N., Flaxman S.R., Boerma T., Vanderpoel S., Stevens G.A. National, regional, and global trends in infertility prevalence since 1990: A systematic analysis of 277 health surveys. PLoS Med. 2012;9:e1001356. doi: 10.1371/journal.pmed.1001356. PubMed DOI PMC
Agarwal A., Mulgund A., Hamada A., Chyatte M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 2015;13:37. doi: 10.1186/s12958-015-0032-1. PubMed DOI PMC
Inhorn M.C., Patrizio P. Infertility around the globe: New thinking on gender, reproductive technologies and global movements in the 21st century. Hum. Reprod. Update. 2015;21:411–426. doi: 10.1093/humupd/dmv016. PubMed DOI
Skakkebaek N.E., Rajpert-De Meyts E., Buck Louis G.M., Toppari J., Andersson A.M., Eisenberg M.L., Jensen T.K., Jørgensen N., Swan S.H., Sapra K.J., et al. Male reproductive disorders and fertility trends: Influences of environment and genetic susceptibility. Physiol. Rev. 2016;96:55–97. doi: 10.1152/physrev.00017.2015. PubMed DOI PMC
Landrigan P.J., Fuller R., Acosta N.J.R., Adeyi O., Arnold R., Basu N.N., Baldé A.B., Bertollini R., Bose-O’Reilly S., Boufford J.I., et al. Lancet Commission on pollution and health. Lancet. 2018;391:462–512. doi: 10.1016/S0140-6736(17)32345-0. PubMed DOI
EFSA Scientific Committee Scientific Opinion on the Hazard Assessment of Endocrine Disruptors: Scientific Criteria for Identification of Endocrine Disruptors and Appropriateness of Existing Test Methods for Assessing Effects Mediated by These Substances on Human Health and the Environment. [(accessed on 10 April 2021)];EFSA J. 2013 11:3132. doi: 10.2903/j.efsa.2013.3132. Available online: www.efsa.europa.eu/efsajournal. DOI
Bergman Å., Heindel J.J., Jobling S., Kidd K.A., Zoeller R.T. The State-of-the-Science of Endocrine Disrupting Chemicals. WHO; Geneva, Switzerland: 2013. [(accessed on 10 April 2021)]. World Health Organization and United Nations Environment Programme Report–2012. Available online: www.who.int/ceh/publications/endocrine/en/index.html.
Kime D.E. Endocrine Disruptors in Fish. Kluwer Academic Publishers; Boston, MA, USA: 1998.
Kah O. Endocrine targets of the hypothalamus and pituitary. In: Bernier N.J., Van Der Kraak G., Farrell A.P., Brauner C.J., editors. Fish Physiology: Fish Neuroendocrinology. Volume 28. Elsevier Inc.; Amsterdam, The Netherlands: 2009. pp. 75–112. DOI
Schulz R.W., de França L.R., Lareyre J.J., Le Gac F., Chiarini-Garcia H., Nobrega R.H., Miura T. Spermatogenesis in fish. Gen. Comp. Endocrinol. 2010;165:390–411. doi: 10.1016/j.ygcen.2009.02.013. PubMed DOI
Dufour S., Quérat B., Tostivint H., Pasqualini C., Vaudry H., Rousseau K. Origin and evolution of the neuroendocrine control of reproduction in vertebrates, with special focus on genome and gene duplications. Physiol. Rev. 2020;100:869–943. doi: 10.1152/physrev.00009.2019. PubMed DOI
Gregory M., Aravindakshan J., Nadzialek S., Cyr D.G. Effects of endocrine disrupting chemicals on testicular functions. In: Alavi S.M.H., Cosson J., Coward K., Rafiee G., editors. Fish Spermatology. Alpha Science Ltd.; Oxford, UK: 2008. pp. 161–214.
Ankley G.T., Bencic D.C., Breen M.S., Collette T.W., Conolly R.B., Denslow N.D., Edwards S.W., Ekman D.R., Garcia-Reyero N., Jensen K.M., et al. Endocrine disrupting chemicals in fish: Developing exposure indicators and predictive models of effects based on mechanism of action. Aquat. Toxicol. 2009;92:168–178. doi: 10.1016/j.aquatox.2009.01.013. PubMed DOI
Scholz S., Klüver N. Effects of endocrine disrupters on sexual, gonadal development in fish. Sex. Dev. 2009;3:136–151. doi: 10.1159/000223078. PubMed DOI
Bosker T., Munkittrick K.R., MacLatchy D.L. Challenges and opportunities with the use of biomarkers to predict reproductive impairment in fishes exposed to endocrine disrupting substances. Aquat. Toxicol. 2011;100:9–16. doi: 10.1016/j.aquatox.2010.07.003. PubMed DOI
Leet J.K., Gall H.E., Sepúlveda M.S. A review of studies on androgen and estrogen exposure in fish early life stages: Effects on gene and hormonal control of sexual differentiation. J. Appl. Toxicol. 2011;31:379–398. doi: 10.1002/jat.1682. PubMed DOI
Mennigen J.A., Stroud P., Zamora J.M., Moon T.W., Trudeau V.L. Pharmaceuticals as neuroendocrine disruptors: Lessons learned from fish on prozac. J. Toxicol. Environ. Health. B Crit. Rev. 2011;14:387–412. doi: 10.1080/10937404.2011.578559. PubMed DOI
Hano T. Studies on the evaluation of the effects of endocrine disrupting chemicals using transgenic see-through medaka (Oryzias latipes), olvas-GFP/STII-YI strain. Bull. Fish. Res. Agency. 2012;36:1–56.
Abdel-Moneim A., Coulter D.P., Mahapatra C.T., Sepúlveda M.S. Intersex in fishes and amphibians: Population implications, prevalence, mechanisms and molecular biomarkers. J. Appl. Toxicol. 2015;35:1228–1240. doi: 10.1002/jat.3204. PubMed DOI
Golshan M., Alavi S.M.H. Androgen signaling in male fishes: Examples of anti-androgenic chemicals that cause reproductive disorders. Theriogenology. 2019;139:58–71. doi: 10.1016/j.theriogenology.2019.07.020. PubMed DOI
Hatef A., Alavi S.M.H., Golshan M., Linhart O. Toxicity of environmental contaminants to fish spermatozoa functions in vitro—A review. Aquat. Toxicol. 2013;140–141:134–144. doi: 10.1016/j.aquatox.2013.05.016. PubMed DOI
Carnevali O., Santangeli S., Forner-Piquer I., Basili D., Maradonna F. Endocrine disrupting chemicals in aquatic environment: What are the risks for fish gametes? Fish Physiol. Biochem. 2018;44:1561–1576. doi: 10.1007/s10695-018-0507-z. PubMed DOI
Alavi S.M.H., Linhart O., Coward K., Rodina M. Fish spermatology: Implication for aquaculture management. In: Alavi S.M.H., Cosson J., Coward K., Rafiee G., editors. Fish Spermatology. Alpha Science Ltd.; Oxford, UK: 2008. pp. 397–460.
Dzyuba V., Shelton W.L., Kholodnyy V., Boryshpolets S., Cosson J., Dzyuba B. Fish sperm biology in relation to urogenital system structure. Theriogenology. 2019;132:153–163. doi: 10.1016/j.theriogenology.2019.04.020. PubMed DOI
Grier H.J. Cellular organization of the testis and spermatogenesis in fishes. Am. Zool. 1981;21:345–357. doi: 10.1093/icb/21.2.345. DOI
Billard R. Spermatogenesis and spermatology of some teleost fish species. Reprod. Nutr. Dev. 1986;2:877–920. doi: 10.1051/rnd:19860601. DOI
Nagahama Y. The functional morphology of teleosts gonads. In: Hoar W.S., Randall D.J., Donaldson E.M., editors. Fish Physiology, Reproduction Part A. Volume IX. Academic Press Inc.; London, UK: 1983. pp. 223–275.
Parenti L.R., Grier H.J. Evolution and phylogeny of gonad morphology in bony fishes. Integr. Comp. Biol. 2004;44:333–348. doi: 10.1093/icb/44.5.333. PubMed DOI
Lahnsteiner F., Patzner R.A. The spermatic duct of blenniid fish (Teleostei, Blenniidae): Fine structure, histochemistry and function. Zoomorphology. 1990;110:63–73. doi: 10.1007/BF01632813. DOI
Lahnsteiner F., Patzner R.A., Weismann T. The spermatic ducts of salmonid fishes (Salmonidae, Teleostei). Morphology, histochemistry and composition of the secretion. J. Fish Biol. 1993;42:79–93. doi: 10.1111/j.1095-8649.1993.tb00307.x. DOI
Miura T., Yamauchi K., Takahashi H., Nagahama Y. The role of hormone in the acquisition of sperm motility in salmonid fish. J. Exp. Zool. 1992;261:359–363. doi: 10.1002/jez.1402610316. PubMed DOI
Morisawa S., Ishida K., Okuno M., Morisawa M. Roles of pH and cyclic adenosine monophosphate in the acquisition of potential for sperm motility during migration from the sea to the river in chum salmon. Mol. Reprod. Dev. 1993;34:420–426. doi: 10.1002/mrd.1080340411. PubMed DOI
Vizziano D., Fostier A., Loir M., Le Gac F. Testis development, its hormonal regulation and spermiation induction in teleost fish. In: Alavi S.M.H., Cosson J., Coward K., Rafiee G., editors. Fish Spermatology. Alpha Science Ltd.; Oxford, UK: 2008. pp. 103–140.
Watanabe A., Onitake K. The regulation of spermatogenesis in fish. In: Alavi S.M.H., Cosson J., Coward K., Rafiee G., editors. Fish Spermatology. Alpha Science Ltd.; Oxford, UK: 2008. pp. 141–160.
Jamieson B.G.M. Fish Evolution and Systematics: Evidence from Spermatozoa. Cambridge University Press; Cambridge, UK: 1991.
Hara M., Okiyama M. An ultrastructural review on the spermatozoa of Japanese fishes. Bull. Oce. Res. Inst. Univ. Tokyo. 1998;33:1–138.
Lahnsteiner F., Patzner R.A. Sperm morphology and ultrastructure in fish. In: Alavi S.M.H., Cosson J., Coward K., Rafiee G., editors. Fish Spermatology. Alpha Science Ltd.; Oxford, UK: 2008. pp. 1–61.
Ingermann R.L. Energy metabolism and respiration in fish spermatozoa. In: Alavi S.M.H., Cosson J., Coward K., Rafiee G., editors. Fish Spermatology. Alpha Science Ltd.; Oxford, UK: 2008. pp. 241–266.
Inaba K., Shiba K. Microscopic analysis of sperm movement: Links to mechanisms and protein components. Microscopy. 2018;67:144–155. doi: 10.1093/jmicro/dfy021. PubMed DOI
Morisawa S., Cherr G.N. Acrosome reaction in spermatozoa from hagfish (Agnatha) Eptatretus burgeri and Eptatretus stouti: Acrosomal exocytosis and identification of filamentous actin. Dev. Growth Differ. 2002;44:337–344. doi: 10.1046/j.1440-169X.2002.00643.x. PubMed DOI
Alavi S.M.H., Hatef A., Pšenička M., Kašpar V., Boryshpolets S., Dzyuba B., Cosson J., Bondarenko V., Rodina M., Gela D., et al. Sperm biology and control of reproduction in sturgeon: (II) Sperm morphology, acrosome reaction, motility and cryopreservation. Rev. Fish Biol. Fish. 2012;22:861–886. doi: 10.1007/s11160-012-9270-x. DOI
Hatef A., Alavi S.M.H., Rodina M., Linhart O. Morphology and fine structure of the Russian sturgeon, Acipenser gueldenstaedtii (Acipenseridae, Chondrostei) spermatozoa. J. Appl. Ichthyol. 2012;28:978–983. doi: 10.1111/jai.12056. DOI
Alavi S.M.H., Butts I.A.E., Hatef A., Mommens M., Trippel E.A., Litvak M.K., Babiak I. Sperm morphology, ATP content and analysis of motility in Atlantic halibut (Hippoglossus hippoglossus L.) Can. J. Zool. 2011;89:219–228. doi: 10.1139/Z10-113. DOI
Inaba K. Molecular architecture of sperm flagella: Molecules for motility and signaling. Zool. Sci. 2003;20:1043–1056. doi: 10.2108/zsj.20.1043. PubMed DOI
Ciereszko A. Chemical composition of seminal plasma and its physiological relationship with sperm motility, fertilizing capacity and cryopreservation success in fish. In: Alavi S.M.H., Cosson J., Coward K., Rafiee G., editors. Fish Spermatology. Alpha Science Ltd.; Oxford, UK: 2008. pp. 215–240.
Kowalski R.K., Cejko B.I. Sperm quality in fish: Determinants and affecting factors. Theriogenology. 2019;135:94–108. doi: 10.1016/j.theriogenology.2019.06.009. PubMed DOI
Morisawa M., Suzuki K. Osmolality and potassium ions: Their roles in initiation of sperm motility in teleosts. Science. 1980;210:1145–1147. doi: 10.1126/science.7444445. PubMed DOI
Morisawa M., Suzuki K., Morisawa S. Effects of potassium and osmolality on spermatozoan motility of salmonid fishes. J. Exp. Biol. 1983;107:105–113. doi: 10.1242/jeb.107.1.105. PubMed DOI
Billard R. Reproduction in rainbow trout: Sex differentiation, dynamics of gametogenesis, biology and preservation of gametes. Aquaculture. 1992;100:263–298. doi: 10.1016/0044-8486(92)90385-X. DOI
Alavi S.M.H., Cosson J., Karami M., Amiri B.M., Akhoundzadeh M.A. Spermatozoa motility in the Persian sturgeon, Acipenser persicus: Effects of pH, dilution rate, ions and osmolality. Reproduction. 2004;128:819–828. doi: 10.1530/rep.1.00244. PubMed DOI
Morisawa M., Oda S., Yoshida M., Takai H. Transmembrane signal transduction for the regulation of sperm motility in fishes and ascidians. In: Gagnon C., editor. The Male Gamete: From Basic to Clinical Applications. Cache River Press; Vienna, IL, USA: 1999. pp. 149–160.
Alavi S.M.H., Cosson J. Sperm motility in fishes: (II) Effects of ions and osmotic pressure. Cell Biol. Int. 2006;30:1–14. doi: 10.1016/j.cellbi.2005.06.004. PubMed DOI
Morisawa M. Adaptation and strategy for fertilization in the sperm of teleosts fish. J. Appl. Ichthyol. 2008;24:362–370. doi: 10.1111/j.1439-0426.2008.01126.x. DOI
Alavi S.M.H., Cosson J., Bondarenko O., Linhart O. Sperm motility in fishes: (III) diversity of regulatory signals from membrane to the axoneme. Theriogenology. 2019;136:143–165. doi: 10.1016/j.theriogenology.2019.06.038. PubMed DOI
Morisawa M., Okuno M. Cyclic AMP induces maturation of trout sperm axoneme to initiate motility. Nature. 1982;295:703–704. doi: 10.1038/295703a0. PubMed DOI
Cosson M.P., Cosson J., Andre F., Billard R. cAMP/ATPrelationshipinthe activation of trout sperm motility: Their interaction in membrane-deprived models and in live spermatozoa. Cell Motil. Cytoskelet. 1995;31:159–176. doi: 10.1002/cm.970310208. PubMed DOI
Linhart O., Cosson J., Mims S.D., Shelton W.L., Rodina M. Effects of ions on the motility of fresh and demembranated paddlefish (Polyodon spathula) spermatozoa. Reproduction. 2002;124:713–719. doi: 10.1530/rep.0.1240713. PubMed DOI
Tubbs C., Thomas P. Progestin signaling through an olfactory G protein and membrane progestin receptor-a in Atlantic croaker sperm: Potential role in induction of sperm hypermotility. Endocrinology. 2009;150:473–484. doi: 10.1210/en.2008-0512. PubMed DOI
Tan W., Aizen J., Thomas P. Membrane progestin receptor-alpha mediates progestin-induced sperm hypermotility and increased fertilization success in southern flounder (Paralichthys lethostigma) Gen. Comp. Endocrinol. 2014;200:18–26. doi: 10.1016/j.ygcen.2014.02.003. PubMed DOI
Alavi S.M.H., Cosson J. Sperm motility in fishes: (I) Effects of pH and temperature. Cell Biol. Int. 2005;29:101–110. doi: 10.1016/j.cellbi.2004.11.021. PubMed DOI
Cosson J. Frenetic activation of fish spermatozoa flagella entails short-term motility, portending their precocious decadence. J. Fish Biol. 2010;76:240–279. doi: 10.1111/j.1095-8649.2009.02504.x. PubMed DOI
Ziętara M.S., Biegniewska A., Rurangwa E., Swierczynski J., Ollevier F., Skorkowski E.F. Bioenergetics of fish spermatozoa during semen storage. Fish Physiol. Biochem. 2009;35:607–614. doi: 10.1007/s10695-009-9308-8. PubMed DOI
Dzyuba B., Bondarenko O., Fedorov P., Gazo I., Prokopchuk G., Cosson J. Energetics of fish spermatozoa: The proven and the possible. Aquaculture. 2017;472:60–72. doi: 10.1016/j.aquaculture.2016.05.038. DOI
Lahnsteiner F., Patzner R.A., Weismann T. Energy resources of spermatozoa of the rainbow trout Oncorhynchus mykiss (Pisces, Teleostei) Reprod. Nut. Dev. 1993;33:349–360. doi: 10.1051/rnd:19930404. PubMed DOI
Saudrais C., Fierville F., Loir M., Le Remeur E., Cibert C., Cosson J. The use of phosphocreatine plus ADP as energy source for motility of membrane-derived trout spermatozoa. Cell Motil. Cytoskel. 1998;41:91–106. doi: 10.1002/(SICI)1097-0169(1998)41:2<91::AID-CM1>3.0.CO;2-I. PubMed DOI
Woolsey J., Ingermann R.L. Acquisition of the potential for sperm motility in steelhead (Oncorhynchus mykiss): Effect of pH on dynein ATPase. Fish Physiol. Biochem. 2003;29:47–56. doi: 10.1023/B:FISH.0000035896.84954.f6. DOI
Kinsey W.H., Sharma D., Kinsey S.C. Fertilization and egg activation in fishes. In: Babin P.J., Cerdà J., Lubzens E., editors. The Fish Oocyte: From Basic Studies to Biotechnological Applications. Springer; Dordrecht, The Netherlands: 2007. pp. 397–409. DOI
Kudo S. Fertilization, cortical reaction, polyspermy preventing and anti-microbial mechanisms in fish eggs. Bull. Inst. Zool. Acad. Sinica. 1991;16:313–340.
Ginzburg A.S. Fertilization in Fishes and Problem of Polyspermy. National Technical Information Service US Department of Commerce; Springfield, VA, USA: 1972. Israel Program for Scientific Translations.
Iwamatsu T. Stages of normal development in the medaka Oryzias latipes. Mech. Dev. 2004;121:605–618. doi: 10.1016/j.mod.2004.03.012. PubMed DOI
Tvedt H.B., Benfey T.J., Martin-Robichaud D.J., Power J. The relationship between sperm density, spermatocrit, sperm motility and fertilization success in Atlantic halibut, Hippoglossus hippoglossus. Aquaculture. 2001;194:191–200. doi: 10.1016/S0044-8486(00)00516-0. DOI
Rideout R.M., Trippel E.A., Litvak M.K. Relationship between sperm density, spermatocrit, sperm motility and spawning date in wild and cultured haddock. J. Fish Biol. 2004;65:319–332. doi: 10.1111/j.0022-1112.2004.00451.x. DOI
Kaspar V., Kohlmann K., Vandeputte M., Rodina M., Gela D., Kocour M., Alavi S.M.H., Hulak M., Linhart O. Equalizing sperm concentrations in a common carp (Cyprinus carpio) sperm pool does not affect variance in proportions of larvae sired in competition. Aquaculture. 2007;272((Suppl. S1)):S204–S209. doi: 10.1016/j.aquaculture.2007.08.019. DOI
Hatef A., Niksirat H., Alavi S.M.H. Composition of ovarian fluid in endangered Caspian brown trout, Salmo trutta caspius, and its effects on spermatozoa motility and fertilizing ability compared to freshwater and a saline medium. Fish Physiol. Biochem. 2009;35:695–700. doi: 10.1007/s10695-008-9302-6. PubMed DOI
Butts I.A.E., Trippel E.A., Litvak M.K. The effect of sperm to egg ratio and gamete contact time on fertilization success in Atlantic cod Gadus morhua. Aquaculture. 2009;286:89–94. doi: 10.1016/j.aquaculture.2008.09.005. DOI
Butts I.A.E., Roustaian P., Litvak M.K. Fertilization strategies for winter flounder: Effects of spermatozoa density and the duration of gamete receptivity. Aquac. Biol. 2012;16:115–124. doi: 10.3354/ab00439. DOI
Linhart O., Cheng Y., Xin M.M., Rodina M., Tučková V., Shelton W.L., Kašpar V. Standardization of egg activation and fertilization in sterlet (Acipenser ruthenus) Aquac. Rep. 2020;17:100381. doi: 10.1016/j.aqrep.2020.100381. PubMed DOI
Cheng Y., Franek R., Rodina M., Xin M., Cosson J., Zhang S., Linhart O. Optimization of Sperm Management and Fertilization in Zebrafish (Danio rerio (Hamilton)) Animals. 2021;11:1558. doi: 10.3390/ani11061558. PubMed DOI PMC
Linhart O., Rodina M., Flajšhans M., Mavrodiev N., Nebesárová J., Gela D., Kocour M. Studies on sperm of diploid and triploid tench, Tinca tinca (L.) Aquac. Int. 2006;14:9–25. doi: 10.1007/s10499-005-9010-5. DOI
Piferrer F., Beaumont A., Falguière J.C., Flajšhans M., Haffray P., Colombo L. Polyploid fish and shellfish: Production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture. 2009;293:125–156. doi: 10.1016/j.aquaculture.2009.04.036. DOI
Alavi S.M.H., Drozd B., Hatef A., Flajšhans M. Sperm morphology, motility and velocity in naturally polyploid European weatherfish (Misgurnus fossilis L.) Theriogenology. 2013;80:153–160. doi: 10.1016/j.theriogenology.2013.04.009. PubMed DOI
Pšenička M., Flajšhans M., Hulák M., Kašpar V., Rodina M., Borishpolets S., Linhart O. The influence of ploidy level on ultrastructure and motility of tench Tinca tinca (L.) spermatozoa. Rev. Fish Biol. Fish. 2010;20:331–338. doi: 10.1007/s11160-009-9135-0. DOI
Pšenička M., Kašpar V., Rodina M., Gela D., Hulák M., Flajšhans M. Comparative study on ultrastructure and motility parameters of spermatozoa of tetraploid and hexaploid Siberian sturgeon Acipenser baerii. J. Appl. Ichthyol. 2011;27:683–686. doi: 10.1111/j.1439-0426.2011.01685.x. DOI
Gage M.J.G., MacFarlane C., Yeates S., Shackleton R., Parker G.A. Relationships between sperm morphometry and sperm motility in the Atlantic salmon. J. Fish Biol. 2002;60:1528–1539. doi: 10.1111/j.1095-8649.2002.tb02495.x. DOI
Alavi S.M.H., Psenicka M., Rodina M., Policar T., Linhart O. Changes of sperm morphology, volume, density and motility and seminal plasma composition in Barbus barbus (Cyprinidae: Teleostei) during the reproductive season. Aquat. Living Resour. 2008;21:75–80. doi: 10.1051/alr:2008011. DOI
Alavi S.M.H., Rodina M., Viveiros A.T.M., Cosson J., Gela D., Boryshpolets S., Linhart O. Effects of osmolality on sperm morphology, motility and flagellar wave parameters in Northern pike (Esox lucius L.) Theriogenology. 2009;72:32–43. doi: 10.1016/j.theriogenology.2009.01.015. PubMed DOI
Ishijima S., Hara M., Okiyama M. Comparative studies on spermatozoan motility of Japanese fishes. Bull. Oce. Res. Inst. Univ. Tokyo. 1998;33:139–152.
Beirão J., Boulais M., Gallego V., O’Brien J.K., Peixoto S., Robeck T.R., Cabrita E. Sperm handling in aquatic animals for artificial reproduction. Theriogenology. 2019;133:161–178. doi: 10.1016/j.theriogenology.2019.05.004. PubMed DOI
Figueroa E., Lee-Estévez M., Valdebenito I., Farías J.G., Romero J. Potential biomarkers of DNA quality in cryopreserved fish sperm: Impact on gene expression and embryonic development. Rev. Aquac. 2020;12:382–391. doi: 10.1111/raq.12323. DOI
Kim D.S., Jo J.Y., Lee T.Y. Induction of triploidy in mud loach (Misgurnus mizolepis) and its effect on gonad development and growth. Aquaculture. 1994;120:263–270. doi: 10.1016/0044-8486(94)90083-3. DOI
Chourrout D., Chevassus B., Krieg F., Happe A., Burger G., Renard P. Production of second generation triploid and tetraploid rainbow trout by mating tetraploid males and diploid females-potential of tetraploid fish. Theor. Appl. Genet. 1986;72:193–206. doi: 10.1007/BF00266992. PubMed DOI
Oshima K., Morishima K., Yamaha E., Arai K. Reproductive capacity of triploid loaches obtained from Hokkaido Island, Japan. Ichthyol. Res. 2005;52:1–8. doi: 10.1007/s10228-004-0245-3. DOI
Fujimoto T., Yasui G.S., Yoshikawa H., Yamaha E., Arai K. Genetic and reproductive potential of spermatozoa of diploid and triploid males obtained from interspecific hybridization of Misgurnus anguillicaudatus female with M. mizolepis male. J. Appl. Ichthyol. 2008;24:430–437. doi: 10.1111/j.1439-0426.2008.01131.x. DOI
Kawamura K., Ueda T., Aoki K., Hosoya K. Spermatozoa in triploids of the rosy bitterling, Rhodeus ocellatus ocellatus. J. Fish Biol. 1999;55:420–432. doi: 10.1111/j.1095-8649.1999.tb00688.x. DOI
Cabrita E., Robles V., Rebordinos L., Sarasquete C., Herraez M.P. Evaluation of DNA damage in rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata) cryopreserved sperm. Cryobiology. 2005;50:144–153. doi: 10.1016/j.cryobiol.2004.12.003. PubMed DOI
Shaliutina A., Hulak M., Gazo I., Linhartova P., Linhart O. Effect of short-term storage on quality parameters, DNA integrity, and oxidative stress in Russian (Acipenser gueldenstaedtii) and Siberian (Acipenser baerii) sturgeon sperm. Anim. Reprod. Sci. 2013;139:127–135. doi: 10.1016/j.anireprosci.2013.03.006. PubMed DOI
Linhart O., Rodina M., Gela D., Kocour M., Vandeputte M. Spermatozoal competition in common carp (Cyprinus carpio): What is the primary determinant of competition success? Reproduction. 2005;130:705–711. doi: 10.1530/rep.1.00541. PubMed DOI
Gage M.J.G., MacFarlane C.P., Yeates S., Ward R.G., Searle J.B., Parker G.A. Spermatozoal traits and sperm competition in Atlantic salmon: Relative sperm velocity is the primary determinant of fertilization success. Curr. Biol. 2004;14:44–47. doi: 10.1016/S0960-9822(03)00939-4. PubMed DOI
Linhart O., Alavi S.M.H., Rodina M., Gela D., Cosson J. Comparison of sperm velocity, motility and fertilizing ability between firstly and secondly activated spermatozoa of common carp (Cyprinus carpio) J. Appl. Ichthyol. 2008;24:386–392. doi: 10.1111/j.1439-0426.2008.01138.x. DOI
Wilson-Leedy J.G., Ingermann R.L. Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters. Theriogenology. 2007;67:661–672. doi: 10.1016/j.theriogenology.2006.10.003. PubMed DOI
Cosson J. Methods to analyse the movements of the spermatozoa and their flagella. In: Alavi S.M.H., Cosson J., Coward K., Rafiee G., editors. Fish Spermatology. Alpha Science Ltd.; Oxford, UK: 2008. pp. 63–102.
Amann R.P., Waberski D. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology. 2014;81:5–17. doi: 10.1016/j.theriogenology.2013.09.004. PubMed DOI
McMaster M.E., Van Der Kraak G.J., Portt C.B., Munkittrick K.R., Sibley P.K., Smith I.R., Dixon D.G. Changes in hepatic mixed function oxygenase (MFO) activity, plasma steroid levels, and age at maturity of a white sucker (Catostomus commersoni) population exposed to bleached kraft pulp mill effluent. Aquat. Toxicol. 1991;21:199–217. doi: 10.1016/0166-445X(91)90073-I. DOI
Munkittrick K.R., Portt C.B., Van Der Kraak G.J., Smith I.R., Rokosh D. Impact of bleached kraft mill effluent on population characteristics, liver MFO activity and serum steroid levels of a Lake Superior white sucker (Catostomus commersoni) population. Can. J. Fish. Aquat. Sci. 1991;48:1371–1380. doi: 10.1139/f91-164. DOI
Munkittrick K.R., McMaster M.E., Portt C.B., Van Der Kraak G.J., Smith I.R., Dixon D.G. Changes in maturity, plasma sex steroid levels, hepatic mixed-function oxygenase activity and the presence of external lesions in lake whitefish (Coregonus clupeaformis) exposed to bleached kraft mill effluent. Can. J. Fish. Aquat. Sci. 1992;49:1560–1569. doi: 10.1139/f92-173. DOI
Allen Y., Scott A.P., Matthiessen P., Haworth S., Thain J.E., Feist S. Survey of estrogenic activity in United Kingdom estuarine and coastal waters and its effects on gonadal development of the flounder Platichthys flesus. Environ. Toxicol. Chem. 1999;18:1791–1800. doi: 10.1002/etc.5620180827. DOI
Harshbarger J.C., Coffey M.J., Young M.Y. Inter-sexes in Mississippi River shovelnose sturgeon sampled below Saint Louis, Missouri, USA. Mar. Environ. Res. 2000;50:247–250. doi: 10.1016/S0141-1136(00)00055-6. PubMed DOI
Hashimoto S., Bessho H., Hara A., Nakamura M., Iguchi T., Fujita K. Elevated serum vitellogenin levels and gonadal abnormalities in wild male flounder (Pleuronectes yokohamae) from Tokyo Bay, Japan. Mar. Environ. Res. 2000;49:37–53. doi: 10.1016/S0141-1136(99)00047-1. PubMed DOI
Viganò L., Arillo A., Bottero S., Massari A., Mandich A. First observation of intersex cyprinids in the Po River (Italy) Sci. Total Environ. 2001;269:189–194. doi: 10.1016/S0048-9697(00)00821-4. PubMed DOI
Jobling S., Beresford N., Nolan M., Rodgers-Gray T., Brighty G.C., Sumpter J.P., Tyler C.R. Altered sexual maturation and gamete production in wild roach (Rutilus rutilus) living in rivers that receive treated sewage effluents. Biol. Reprod. 2002;66:272–281. doi: 10.1095/biolreprod66.2.272. PubMed DOI
Sepúlveda M.S., Johnson W.E., Higman J.C., Denslow N.D., Schoeb T.R., Gross T.S. An evaluation of biomarkers of reproductive function and potential contaminant effects in Florida largemouth bass (Micropterus salmoides floridanus) sampled from the St. Johns River. Sci. Total Environ. 2002;289:133–144. doi: 10.1016/S0048-9697(01)01029-4. PubMed DOI
Aravindakshan J., Paquet V., Gregory M., Dufresne J., Fournier M., Marcogliese D.J., Cyr D.J. Consequences of xenoestrogen exposure on male reproductive function in Spottail Shiners (Notropis hudsonius) Toxicol. Sci. 2004;78:156–165. doi: 10.1093/toxsci/kfh042. PubMed DOI
Kavanagh R.J., Balch G.C., Kiparissis Y., Niimi A.J., Sherry J., Tinson C., Metcalfe C.D. Endocrine disruption and altered gonadal development in white perch (Morone americana) from the lower Great Lakes region. Environ. Health Perspect. 2004;112:898–902. doi: 10.1289/ehp.6514. PubMed DOI PMC
Bjerregaard L.B., Korsgaard B., Bjerregaard P. Intersex in wild roach (Rutilus rutilus) from Danish sewage effluent-receiving streams. Ecotoxicol. Environ. Saf. 2006;64:321–328. doi: 10.1016/j.ecoenv.2005.05.018. PubMed DOI
Woodling J.D., Lopez E.M., Maldonado T.A., Norris D.O., Vajda A.M. Intersex and other reproductive disruption of fish in wastewater effluent dominated Colorado streams. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006;144:10–15. doi: 10.1016/j.cbpc.2006.04.019. PubMed DOI
Marchand M.J., Pieterse G.M., Barnhoorn I.E.J. Preliminary results on sperm motility and testicular histology of two feral fish species, Oreochromis mossambicus and Clarias gariepinus, from a currently DDT-sprayed area, South Africa. J. Appl. Ichthyol. 2008;24:423–429. doi: 10.1111/j.1439-0426.2008.01141.x. DOI
Marchand M.J., Pieterse G.M., Barnhoorn I.E.J. Sperm motility and testicular histology as reproductive indicators of fish health of two feral fish species from a currently DDT sprayed area, South Africa. J. Appl. Ichthyol. 2010;26:707–714. doi: 10.1111/j.1439-0426.2010.01558.x. DOI
Jeffries K.M., Nelson E.R., Jackson L.J., Habibi H.R. Basin-wide impacts of compounds with estrogen-like activity on longnose dace (Rhinichthys cataractae) in two Prairie Rivers of Alberta, Canada. Environ. Toxicol. Chem. 2008;27:2042–2052. doi: 10.1897/07-529.1. PubMed DOI
Jeffries K.M., Jackson L.J., Ikonomou M.G., Habibi H.R. Presence of natural and anthropogenic organic contaminants and potential fish health impacts along two river gradients in Alberta, Canada. Environ. Toxicol. Chem. 2010;29:2379–2387. doi: 10.1002/etc.265. PubMed DOI
Barnhoorn I.E.J., van Dyk J.C., Pieterse G.M., Bornman M.S. Intersex in feral indigenous freshwater Oreochromis mossambicus, from various parts in the Luvuvhu River, Limpopo Province, South Africa. Ecotoxicol. Environ. Saf. 2010;73:1537–1542. doi: 10.1016/j.ecoenv.2010.07.026. PubMed DOI
Solé M., Raldúa D., Piferrer F., Barceló D., Porte C. Feminization of wild carp, Cyprinus carpio, in a polluted environment: Plasma steroid hormones, gonadal morphology and xenobiotic metabolizing system. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2003;136:145–156. doi: 10.1016/S1532-0456(03)00192-3. PubMed DOI
Vajda A.M., Barber L.B., Gray J.L., Lopez E.M., Woodling J.D., Norris D.O. Reproductive disruption in fish downstream from an estrogenic wastewater effluent. Environ. Sci. Technol. 2008;42:3407–3414. doi: 10.1021/es0720661. PubMed DOI
Gilroy E.A.M., McMaster M.E., Parrott J.L., Hewitt L.M., Park B.J., Brown S.B., Sherry J.P. Assessment of the health status of wild fish from the Wheatley Harbour Area of Concern, Ontario, Canada. Environ. Toxicol. Chem. 2012;31:2798–2811. doi: 10.1002/etc.2021. PubMed DOI
Bahamonde P.A., Tetreault G.R., McMaster M.E., Servos M.R., Martyniuk C.J., Munkittrick K.R. Molecular signatures in rainbow darter (Etheostoma caeruleum) inhabiting an urbanized river reach receiving wastewater effluents. Aquat. Toxicol. 2014;148:211–220. doi: 10.1016/j.aquatox.2014.01.010. PubMed DOI
Bahamonde P.A., Fuzzen M.L., Bennett C.J., Tetreault G.R., McMaster M.E., Servos M.R., Martyniuk C.J., Munkittrick K.R. Whole organism responses and intersex severity in rainbow darter (Etheostoma caeruleum) following exposures to municipal wastewater in the Grand River basin, ON, Canada. Part A. Aquat. Toxicol. 2015;159:290–301. doi: 10.1016/j.aquatox.2014.11.023. PubMed DOI
McMaster M.E., Portt C.B., Munkittrick K.R., Dixon D.G. Milt characteristics, reproductive performance, and larval survival and development of white sucker exposed to bleached kraft mill effluent. Ecotoxicol. Environ. Saf. 1992;23:103–117. doi: 10.1016/0147-6513(92)90025-X. PubMed DOI
Jobling S., Coey S., Whitmore J.G., Kime D.E., Van Look K.J.W., McAllister B.G., Beresford N., Henshaw A.C., Brighty G., Tyler C.R., et al. Wild intersex roach (Rutilus rutilus) have reduced fertility. Biol. Reprod. 2002;67:515–524. doi: 10.1095/biolreprod67.2.515. PubMed DOI
Wagenaar G., Botha T., Barnhoorn I. Sperm motility and testicular histology as reproductive indicators in Clarias gariepinus from an eutrophic impoundment, South Africa. J. Appl. Ichthyol. 2012;28:990–997. doi: 10.1111/jai.12065. DOI
Fuzzen M.L.M., Bennett C.J., Tetreault G.R., McMaster M.E., Servos M.R. Severe intersex is predictive of poor fertilization success in populations of rainbow darter (Etheostoma caeruleum) Aquat. Toxicol. 2015;160:106–116. doi: 10.1016/j.aquatox.2015.01.009. PubMed DOI
Jenkins J.A., Olivier H.M., Draugelis-Dale R.O., Eilts B.E., Torres L., Patiño R., Nilsen E., Goodbred S.L. Assessing reproductive and endocrine parameters in male largescale suckers (Catostomus macrocheilus) along a contaminant gradient in the lower Columbia River, USA. Sci. Total Environ. 2014;484:365–378. doi: 10.1016/j.scitotenv.2013.09.097. PubMed DOI
Agbohessi P.T., Toko I.I., Ouédraogo A., Jauniaux T., Mandiki S.N.M., Kestemont P. Assessment of the health status of wild fish inhabiting a cotton basin heavily impacted by pesticides in Benin (West Africa) Sci. Total Environ. 2015;506-507:567–584. doi: 10.1016/j.scitotenv.2014.11.047. PubMed DOI
Jenkins J.A., Rosen M.R., Draugelis-Dale R.O., Echols K.R., Torres L., Wieser C.M., Kersten C.A., Goodbred S.L. Sperm quality biomarkers complement reproductive and endocrine parameters in investigating environmental contaminants in common carp (Cyprinus carpio) from the Lake Mead National Recreation Area. Environ. Res. 2018;163:149–164. doi: 10.1016/j.envres.2018.01.041. PubMed DOI
Van der Kraak G.J., Munkittrick K.R., McMaster M.E., Portt C.B., Chang J.P. Exposure to bleached kraft pulp mill effluent disrupts the pituitary-gonadal axis of white sucker at multiple sites. Toxicol. Appl. Pharmacol. 1992;115:224–233. doi: 10.1016/0041-008X(92)90327-O. PubMed DOI
Flammarion P., Brion F., Babut M., Garric J., Migeon B., Noury P., Thybaud E., Palazzi X., Tyler C.R. Induction of fish vitellogenin and alterations in testicular structure: Preliminary results of estrogenic effects in Chub (Leuciscus cephalus) Ecotoxicology. 2000;9:127–135. doi: 10.1023/A:1008984616206. DOI
Randák T., Žlábek V., Pulkrabová J., Kolářová J., Kroupová H., Široká Z., Velíšek J., Svobodová Z., Hajšlová J. Effects of pollution on chub in the River Elbe, Czech Republic. Ecotoxicol. Environ. Saf. 2009;72:737–746. doi: 10.1016/j.ecoenv.2008.09.020. PubMed DOI
Celander M.C. Cocktail effects on biomarker responses in fish. Aquat. Toxicol. 2011;105:72–77. doi: 10.1016/j.aquatox.2011.06.002. PubMed DOI
Hamid N., Junaid M., Pei D.S. Combined toxicity of endocrine-disrupting chemicals: A review. Ecotoxicol. Environ. Saf. 2021;215:112136. doi: 10.1016/j.ecoenv.2021.112136. PubMed DOI
Pawlowski S., Sauer A., Shears J.A., Tyler C.R., Braunbeck T. Androgenic and estrogenic effects of the synthetic androgen 17α-methyltestosterone on sexual development and reproductive performance in the fathead minnow (Pimephales promelas) determined using the gonadal recrudescence assay. Aquat. Toxicol. 2004;68:277–291. doi: 10.1016/j.aquatox.2004.03.018. PubMed DOI
Pawlowski S., van Aerle R., Tyler C.R., Braunbeck T. Effects of 17α-ethinylestradiol in a fathead minnow (Pimephales promelas) gonadal recrudescence assay. Ecotoxicol. Environ. Saf. 2004;57:330–345. doi: 10.1016/j.ecoenv.2003.07.019. PubMed DOI
Kang I.J., Yokota H., Oshima Y., Tsuruda Y., Shimasaki Y., Honjo T. The effects of methyltestosterone on the sexual development and reproduction of adult medaka (Oryzias latipes) Aquat. Toxicol. 2008;87:37–46. doi: 10.1016/j.aquatox.2008.01.010. PubMed DOI
Lahnsteiner F., Berger B., Grubinger F., Weismann T. The effect of 4-nonylphenol on semen quality, viability of gametes, fertilization success, and embryo and larvae survival in rainbow trout (Oncorhynchus mykiss) Aquat. Toxicol. 2005;71:297–306. doi: 10.1016/j.aquatox.2004.11.007. PubMed DOI
Kang I.J., Yokota H., Oshima Y., Tsuruda Y., Oe T., Imada N., Tadokoro H., Honjo T. Effects of bisphenol a on the reproduction of Japanese medaka (Oryzias latipes) Environ. Toxicol. Chem. 2002;21:2394–2400. doi: 10.1002/etc.5620211119. PubMed DOI
Martinović D., Blake L.S., Durhan E.J., Greene K.J., Kahl M.D., Jensen K.M., Makynen E.A., Villeneuve D.L., Ankley G.T. Reproductive toxicity of vinclozolin in the fathead minnow: Confirming an anti-androgenic mode of action. Environ. Toxicol. Chem. 2008;27:478–488. doi: 10.1897/07-206R.1. PubMed DOI
Seki M., Yokota H., Matsubara H., Tsuruda Y., Maeda M., Tadokoro H., Kobayashi K. Effect of ethinylestradiol on the reproduction and induction of vitellogenin and testis-ova in medaka (Oryzias latipes) Environ. Toxicol. Chem. 2002;21:1692–1698. doi: 10.1002/etc.5620210822. PubMed DOI
Hashimoto S., Watanabe E., Ikeda M., Terao Y., Strüssmann C.A., Inoue M., Hara A. Effects of ethinylestradiol on medaka (Oryzias latipes) as measured by sperm motility and fertilization success. Arch. Environ. Contam. Toxicol. 2009;56:253–259. doi: 10.1007/s00244-008-9183-9. PubMed DOI
Devaux A., Fiat L., Gillet C., Bony S. Reproduction impairment following paternal genotoxin exposure in brown trout (Salmo trutta) and Arctic charr (Salvelinus alpinus) Aquat. Toxicol. 2011;101:405–411. doi: 10.1016/j.aquatox.2010.11.017. PubMed DOI
Kang I.J., Yokota H., Oshima Y., Tsuruda Y., Hano T., Maeda M., Imada N., Tadokoro H., Honjo T. Effects of 4-nonylphenol on reproduction of Japanese medaka, Oryzias latipes. Environ. Toxicol. Chem. 2003;22:2438–2445. doi: 10.1897/02-225. PubMed DOI
Uren-Webster T.M., Lewis C., Filby A.L., Paull G.C., Santos E.M. Mechanisms of toxicity of di (2-ethylhexyl) phthalate on the reproductive health of male zebrafish. Aquat. Toxicol. 2010;99:360–369. doi: 10.1016/j.aquatox.2010.05.015. PubMed DOI
Kang I.J., Yokota H., Oshima Y., Tsuruda Y., Yamaguchi T., Maeda M., Imada N., Tadokoro H., Honjo T. Effect of 17β-estradiol on the reproduction of Japanese medaka (Oryzias latipes) Chemosphere. 2002;47:71–80. doi: 10.1016/S0045-6535(01)00205-3. PubMed DOI
Schultz I.R., Skillman A., Nicolas J.M., Cyr D.G., Nagler J.J. Short-term exposure to 17α-ethynylestradiol decreases the fertility of sexually maturing male rainbow trout (Oncorhynchus mykiss) Environ. Toxicol. Chem. 2003;22:1272–1280. doi: 10.1002/etc.5620220613. PubMed DOI
Lahnsteiner F., Berger B., Kletzl M., Weismann T. Effect of 17β-estradiol on gamete quality and maturation in two salmonid species. Aquat. Toxicol. 2006;79:124–131. doi: 10.1016/j.aquatox.2006.05.011. PubMed DOI
Lahnsteiner F., Berger B., Kletzl M., Weismann T. Effect of bisphenol A on maturation and quality of semen and eggs in the brown trout, Salmo trutta f. fario. Aquat.Toxicol. 2005;75:213–224. doi: 10.1016/j.aquatox.2005.08.004. PubMed DOI
Tian H., Li Y., Wang W., Wu P., Ru S. Exposure to monocrotophos pesticide during sexual development causes the feminization/demasculinization of the reproductive traits and a reduction in the reproductive success of male guppies (Poecilia reticulata) Toxicol. Appl. Pharmacol. 2012;263:163–170. doi: 10.1016/j.taap.2012.06.006. PubMed DOI
Ji K., Hong S., Kho Y., Choi K. Effects of bisphenol S exposure on endocrine functions and reproduction of zebrafish. Environ. Sci. Technol. 2013;47:8793–8800. doi: 10.1021/es400329t. PubMed DOI
Shi J., Jiao Z., Zheng S., Li M., Zhang J., Feng Y., Yin J., Shao B. Long-term effects of bisphenol AF (BPAF) on hormonal balance and genes of hypothalamus-pituitary-gonad axis and liver of zebrafish (Danio rerio), and the impact on offspring. Chemosphere. 2015;128:252–257. doi: 10.1016/j.chemosphere.2015.01.060. PubMed DOI
Montgomery T.M., Brown A.C., Gendelman H.K., Ota M., Clotfelter E.D. Exposure to 17α-ethinylestradiol decreases motility and ATP in sperm of male fighting fish Betta splendens. Environ. Toxicol. 2014;29:243–252. doi: 10.1002/tox.21752. PubMed DOI
Naderi M., Wong M.Y.L., Gholami F. Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults. Aquat. Toxicol. 2014;148:195–203. doi: 10.1016/j.aquatox.2014.01.009. PubMed DOI
Chen J., Xiao Y., Gai Z., Li R., Zhu Z., Bai C., Tanguay R.L., Xu X., Huang C., Dong Q. Reproductive toxicity of low level bisphenol A exposures in a two-generation zebrafish assay: Evidence of male-specific effects. Aquat. Toxicol. 2015;169:204–214. doi: 10.1016/j.aquatox.2015.10.020. PubMed DOI PMC
Chen J., Saili K.S., Liu Y., Li L., Zhao Y., Jia Y., Bai C., Tanguay R.L., Dong Q., Huang C. Developmental bisphenol A exposure impairs sperm function and reproduction in zebrafish. Chemosphere. 2017;169:262–270. doi: 10.1016/j.chemosphere.2016.11.089. PubMed DOI
Zhu Y., Hua R., Zhou Y., Li H., Quan S., Yu Y. Chronic exposure to mono-(2-ethylhexyl)-phthalate causes endocrine disruption and reproductive dysfunction in zebrafish. Environ. Toxicol. Chem. 2016;35:2117–2124. doi: 10.1002/etc.3369. PubMed DOI
Corradetti B., Stronati A., Tosti L., Manicardi G., Carnevali O., Bizzaro D. Bis-(2-ethylexhyl) phthalate impairs spermatogenesis in zebrafish (Danio rerio) Reprod. Biol. 2013;13:195–202. doi: 10.1016/j.repbio.2013.07.003. PubMed DOI
Watanabe H., Horie Y., Takanobu H., Koshio M., Flynn K., Iguchi T., Tatarazako N. Medaka extended one-generation reproduction test evaluating 4-nonylphenol. Environ. Toxicol. Chem. 2017;36:3254–3266. doi: 10.1002/etc.3895. PubMed DOI
Zhang Y., Guan Y., Zhang T., Yuan C., Liu Y., Wang Z. Adult exposure to bisphenol A in rare minnow Gobiocypris rarus reduces sperm quality with disruption of testicular aquaporins. Chemosphere. 2018;193:365–375. doi: 10.1016/j.chemosphere.2017.11.034. PubMed DOI
Kang I.J., Hano T., Oshima Y., Yokota H., Tsuruda Y., Shimasaki Y., Honjo T. Anti-androgen flutamide affects gonadal development and reproduction in medaka (Oryzias latipes) Mar. Environ. Res. 2006;62:S253–S257. doi: 10.1016/j.marenvres.2006.04.065. PubMed DOI
Schoenfuss H.L., Levitt J.T., Van Der Kraak G., Sorensen P.W. Ten-week exposure to treated sewage discharge has relatively minor, variable effects on reproductive behavior and sperm production in goldfish. Environ. Toxicol. Chem. 2002;21:2185–2190. doi: 10.1002/etc.5620211023. PubMed DOI
McAllister B.G., Kime D.E. Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio) Aquat. Toxicol. 2003;65:309–316. doi: 10.1016/S0166-445X(03)00154-1. PubMed DOI
Haubruge E., Petit F., Gage M.J.G. Reduced sperm counts in guppies (Poecilia reticulata) following exposure to low levels of tributyltin and bisphenol A. Proc. Biol. Sci. 2000;267:2333–2337. doi: 10.1098/rspb.2000.1288. PubMed DOI PMC
Hatef A., Alavi S.M.H., Abdulfatah A., Fontaine P., Rodina M., Linhart O. Adverse effects of bisphenol A on reproductive physiology in male goldfish at environmentally relevant concentrations. Ecotoxicol. Environ. Saf. 2012;76:56–62. doi: 10.1016/j.ecoenv.2011.09.021. PubMed DOI
Hatef A., Zare A., Alavi S.M.H., Habibi H.R., Linhart O. Modulations of androgen and estrogen mediating genes and testicular response in male goldfish exposed to bisphenol A. Environ. Toxicol. Chem. 2012;31:2069–2077. doi: 10.1002/etc.1919. PubMed DOI
Golshan M., Hatef A., Socha M., Milla S., Butts I.A.E., Carnevali O., Rodina M., Sokołowska-Mikołajczyk M., Fontaine P., Linhart O., et al. Di-(2-ethylhexyl)-phthalate disrupts pituitary and testicular hormonal functions to reduce sperm quality in mature goldfish. Aquat. Toxicol. 2015;163:16–26. doi: 10.1016/j.aquatox.2015.03.017. PubMed DOI
Baatrup E., Junge M. Antiandrogenic pesticides disrupt sexual characteristics in the adult male guppy (Poecilia reticulata) Environ. Health Perspect. 2001;109:1063–1070. doi: 10.1289/ehp.011091063. PubMed DOI PMC
Bayley M., Foged Larsen P., Bækgaard H., Baatrup E. The effects of vinclozolin, an anti-androgenic fungicide, on male guppy secondary sex characters and reproductive success. Biol. Reprod. 2003;69:1951–1956. doi: 10.1095/biolreprod.103.017780. PubMed DOI
Hatef A., Alavi S.M.H., Milla S., Křišťan J., Golshan M., Fontaine P., Linhart O. Anti-androgen vinclozolin impairs sperm quality and steroidogenesis in goldfish. Aquat. Toxicol. 2012;122–123:181–187. doi: 10.1016/j.aquatox.2012.06.009. PubMed DOI
Yin P., Li Y.W., Chen Q.L., Liu Z.H. Diethylstilbestrol, flutamide and their combination impaired the spermatogenesis of male adult zebrafish through disrupting HPG axis, meiosis and apoptosis. Aquat. Toxicol. 2017;185:129–137. doi: 10.1016/j.aquatox.2017.02.013. PubMed DOI
Runnalls T., Hala D.N., Sumpter J.P. Preliminary studies into the effects of the human pharamecutical Clofibtric acid on sperm parameters in adult fathead minnows. Aquat. Toxicol. 2007;84:111–118. doi: 10.1016/j.aquatox.2007.06.005. PubMed DOI
Mennigen J.A., Lado W.E., Zamora J.M., Duarte-Guterman P., Langlois V.S., Metcalfe C.D., Chang J.P., Moon T.W., Trudeau V.L. Waterborne fluoxetine disrupts the reproductive axis in sexually mature male goldfish, Carassius auratus. Aquat. Toxicol. 2010;100:354–364. doi: 10.1016/j.aquatox.2010.08.016. PubMed DOI
Roggio M.A., Guyon N.F., Hued A.C., Ame M.V., Valdes M.E., Giojalas L.C., Wunderlin D.A., Bistoni M.A. Effects of the synthetic estrogen 17α-ethinylestradiol on aromatase expression, reproductive behavior and sperm quality in the fish Jenynsia multidentata. Bull. Environ. Contam. Toxicol. 2014;92:579–584. doi: 10.1007/s00128-013-1185-2. PubMed DOI
Bertram M.G., Ecker T.E., Wong B.B.M., O’Bryan M.K., Baumgartner J.B., Martin J.M., Saaristo M. The antidepressant fluoxetine alters mechanisms of pre- and post-copulatory sexual selection in the eastern mosquitofish (Gambusia holbrooki) Environ. Pollut. 2018;238:238–247. doi: 10.1016/j.envpol.2018.03.006. PubMed DOI
Sayed A.E.D.H., Mahmoud U.M., Mekkawy I.A. Reproductive biomarkers to identify endocrine disruption in Clarias gariepinus exposed to 4-nonylphenol. Ecotoxicol. Environ. Saf. 2012;78:310–319. doi: 10.1016/j.ecoenv.2011.11.041. PubMed DOI
Franco J.G., Jr., Baruffi R.L., Mauri A.L., Petersen C.G., Oliveira J.B., Vagnini L. Significance of large nuclear vacuoles in human spermatozoa: Implications for ICSI. Reprod. Biomed. Online. 2008;17:42–45. doi: 10.1016/S1472-6483(10)60291-X. PubMed DOI
Yoshikawa H., Morishima K., Fujimoto T., Arias-Rodriguez L., Yamaha E., Arai K. Ploidy manipulation using diploid sperm in the loach, Misgurnus anguillicaudatus: A review. J. Appl. Ichthyol. 2008;24:410–414. doi: 10.1111/j.1439-0426.2008.01129.x. DOI
Na-Nakorn U., Rangsin W., Boonngam J. Allotriploidy increases sterility in the hybrid between Clarias macrocephalus and Clarias gariepinus. Aquaculture. 2004;237:73–88. doi: 10.1016/j.aquaculture.2004.02.032. DOI
Brown K.H., Schultz I.R., Cloud J.G., Nagler J.J. Aneuploid sperm formation in rainbow trout exposed to the environmental estrogen 17α-ethynylestradiol. Proc. Natl. Acad. Sci. USA. 2008;105:19786–19791. doi: 10.1073/pnas.0808333105. PubMed DOI PMC
Liu Y., Yuan C., Chen S., Zheng Y., Zhang Y., Gao J., Wang Z. Global and cyp19a1a gene specific DNA methylation in gonads of adult rare minnow Gobiocypris rarus under Bisphenol A exposure. Aquat. Toxicol. 2014;156:10–16. doi: 10.1016/j.aquatox.2014.07.017. PubMed DOI
Yuan C., Zhang Y., Liu Y., Zhang T., Wang Z. Enhanced GSH synthesis by Bisphenol A exposure promoted DNA methylation process in the testes of adult rare minnow Gobiocypris rarus. Aquat. Toxicol. 2016;178:99–105. doi: 10.1016/j.aquatox.2016.07.015. PubMed DOI
Horii T., Hatada I. Regulation of CpG methylation by Dnmt and Tet in pluripotent stem cells. J. Reprod. Dev. 2016;62:331–335. doi: 10.1262/jrd.2016-046. PubMed DOI PMC
Frankel T., Yonkos L., Ampy F., Frankel J. Exposure to levonorgestrel increases nest acquisition success and decreases sperm motility in the male fathead minnow (Pimephales promelas) Environ. Toxicol. Chem. 2018;37:1131–1137. doi: 10.1002/etc.4054. PubMed DOI
Zebral Y.D., Anni I.S.A., Junior A.S.V., Corcini C.D., da Silva J.C., Caldas J.S., Acosta I.B., Afonso S.B., Bianchini A. Life-time exposure to waterborne copper IV: Sperm quality parameters are negatively affected in the killifish Poecilia vivipara. Chemosphere. 2019;236:124332. doi: 10.1016/j.chemosphere.2019.07.063. PubMed DOI
Murack P.J., Parrish J., Barry T.P. Effects of progesterone on sperm motility in fathead minnow (Pimephales promelas) Aquat. Toxicol. 2011;104:121–125. doi: 10.1016/j.aquatox.2011.04.006. PubMed DOI
Das Neves J., Barnhoorn I.E.J., Wagenaar G.M. The effects of environmentally relevant concentrations of aldrin and methoxychlor on the testes and sperm of male Clarias gariepinus (Burchell, 1822) after short-term exposure. Fish Physiol. Biochem. 2018;44:1421–1434. doi: 10.1007/s10695-018-0474-4. PubMed DOI
Martin J.M., Bertram M.G., Saaristo M., Ecker T.E., Hannington S.L., Tanner J.L., Michelangeli M., O’Bryan M.K., Wong B.B.M. Impact of the widespread pharmaceutical pollutant fluoxetine on behaviour and sperm traits in a freshwater fish. Sci. Total Environ. 2019;650:1771–1778. doi: 10.1016/j.scitotenv.2018.09.294. PubMed DOI
Guyón N.F., Roggio M.A., Amé M.V., Hued A.C., Valdés M.E., Giojalas L.C., Wunderlin D.A., Bistoni M.A. Impairments in aromatase expression, reproductive behavior, and sperm quality of male fish exposed to 17β-estradiol. Environ. Toxicol. Chem. 2012;31:935–940. doi: 10.1002/etc.1790. PubMed DOI
Soares J., Coimbra A.M., Reis-Henriques M.A., Monteiro N.M., Vieira M.N., Oliveira J.M.A., Guedes-Dias P., Fontaínhas-Fernandes A., Silva Parra S., Carvalho A.P., et al. Disruption of zebrafish (Danio rerio) embryonic development after full life-cycle parental exposure to low levels of ethinylestradiol. Aquat. Toxicol. 2009;95:330–338. doi: 10.1016/j.aquatox.2009.07.021. PubMed DOI
Velicu M., Suri R. Presence of steroid hormones and antibiotics in surface water of agricultural, suburban and mixed-use areas. Environ. Monit. Assess. 2009;154:349–359. doi: 10.1007/s10661-008-0402-7. PubMed DOI
Kuch H.M., Ballschmitter K. Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environ. Sci. Technol. 2001;35:3201–3206. doi: 10.1021/es010034m. PubMed DOI
Baronti C., Curini R., D’Ascenzo G., Di Corcia A., Gentili A., Samperi R. Monitoring natural and synthetic estrogens at activated treatment plants and in receiving river water. Environ. Sci. Technol. 2000;34:5059–5066. doi: 10.1021/es001359q. DOI
Nasu M., Goto M., Kato H., Oshima Y., Tanaka H. Study on endocrine disrupting chemicals in wastewater treatment plants. Water Sci. Technol. 2000;43:101–108. doi: 10.2166/wst.2001.0078. PubMed DOI
Desbrow C., Routledge E.J., Brighty G.C., Sumpter J.P., Waldock M. Identification of estrogenic chemicals in STW effluent: 1. Chemical fractionation and in vitro biological screening. Environ. Sci. Technol. 1998;32:1549–1558. doi: 10.1021/es9707973. DOI
Liu S., Ying G.G., Zhao J.L., Chen F., Yang B., Zhou L.J., Lai H.J. Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. A. 2011;1218:1367–1378. doi: 10.1016/j.chroma.2011.01.014. PubMed DOI
Belfroid A.C., Van der Horst A., Vethaak A.D., Schafer A.J., Ris G.B.J., Wegener J., Cofino W.P. Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in the Netherlands. Sci. Total Environ. 1999;225:101–108. doi: 10.1016/S0048-9697(98)00336-2. PubMed DOI
Ternes T.A., Stumpf M., Mueller J., Haberer K., Wilken R.D., Servos M. Behaviour and occurrence of estrogens in municipal sewage treatment plants—I. Investigations in Germany, Canada and Brazil. Sci. Total Environ. 1999;225:81–90. doi: 10.1016/S0048-9697(98)00334-9. PubMed DOI
Snyder S., Giesy J., Kannan K., Gross T., Snyder E., Verbrugge D., Keith T. Analytical methods for detection of selected estrogenic compounds in aqueous mixtures. Environ. Sci. Technol. 1999;33:2814–2820. doi: 10.1021/es981294f. DOI
Yu Q., Geng J., Ren H. Occurrence and fate of androgens in municipal wastewater treatment plants in China. Chemosphere. 2019;237:124371. doi: 10.1016/j.chemosphere.2019.124371. PubMed DOI
Blankvoort B.M.G., Rodenburg R.J.T., Murk A.J., Koeman J.H., Schilt R., Aarts J.M.M.J.G. Androgenic activity in surface water samples detected using the AR-LUX assay: Indication for mixture effects. Environ. Toxicol. Pharmacol. 2005;19:263–272. doi: 10.1016/j.etap.2004.08.004. PubMed DOI
Höhne C., Püttmann W. Occurrence and temporal variations of the xenoestrogens bisphenol A, 4-tert-octylphenol, and tech. 4-nonylphenol in two German wastewater treatment plants. Environ. Sci. Pollut. Res. Int. 2008;15:405–416. doi: 10.1007/s11356-008-0007-2. PubMed DOI
Cailleaud K., Forget-Leray J., Souissi S., Lardy S., Augagneur S., Budzinski H. Seasonal variation of hydrophobic organic contaminant concentrations in the water-column of the Seine Estuary and their transfer to a planktonic species Eurytemora affinis (Calanoid, copepod). Part 2: Alkylphenol-polyethoxylates. Chemosphere. 2007;70:281–287. doi: 10.1016/j.chemosphere.2007.06.012. PubMed DOI
Mohapatra S., Huang C.H., Mukherji S., Padhye L.P. Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States. Chemosphere. 2016;159:526–535. doi: 10.1016/j.chemosphere.2016.06.047. PubMed DOI
Kang J.H., Aasi D., Katayama Y. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms. Crit. Rev. Toxicol. 2007;37:607–625. doi: 10.1080/10408440701493103. PubMed DOI
Fromme H., Küchler T., Otto T., Pilz K., Müller J., Wenzel A. Occurrence of phthalates and bisphenol A and F in the environment. Water Res. 2002;36:1429–1438. doi: 10.1016/S0043-1354(01)00367-0. PubMed DOI
Yang Y., Lu L., Zhang J., Yang Y., Wu Y., Shao B. Simultaneous determination of seven bisphenols in environmental water and solid samples by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. A. 2014;1328:26–34. doi: 10.1016/j.chroma.2013.12.074. PubMed DOI
Bókony V., Üveges B., Ujhegyi N., Verebélyi V., Nemesházi E., Csíkvári O., Hettyey A. Endocrine disruptors in breeding ponds and reproductive health of toads in agricultural, urban and natural landscapes. Sci. Total Environ. 2018;634:1335–1345. doi: 10.1016/j.scitotenv.2018.03.363. PubMed DOI
Wen Z., Huang X., Gao D., Liu G., Fang C., Shang Y., Du J., Zhao Y., Lv L., Song K. Phthalate esters in surface water of Songhua River watershed associated with land use types, Northeast China. Environ. Sci. Pollut. Res. Int. 2018;25:7688–7698. doi: 10.1007/s11356-017-1119-3. PubMed DOI
Zhang Z.M., Zhang H.H., Zou Y.W., Yang G.P. Distribution and ecotoxicological state of phthalate esters in the sea-surface microlayer, seawater and sediment of the Bohai Sea and the Yellow Sea. Environ. Pollut. 2018;240:235–247. doi: 10.1016/j.envpol.2018.04.056. PubMed DOI
Readman J.W., Albanis T.A., Barcelo D., Galassi S., Tronczynski J., Gabrielides G.P. Fungicide contamination of Mediterranean estuarine waters: Results from a MED POL pilot survey. Mar. Poll. Bull. 1997;34:259–263. doi: 10.1016/S0025-326X(97)00101-X. DOI
Kreuger J., Graaf S., Patring J., Adielsson S. Pesticides in Surface Water in Areas with Open Ground and Greenhouse Horticultural Crops in Sweden 2008. Swedish University of Agricultural Sciences; Uppsala, Sweden: 2010.
Zheng S., Chen B., Qiu X., Chen M., Ma Z., Yu X. Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China. Chemosphere. 2016;144:1177–1192. doi: 10.1016/j.chemosphere.2015.09.050. PubMed DOI
Wang L., Ying G.G., Zhao J.L., Liu S., Yang B., Zhou L.J., Tao R., Su H.C. Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools. Environ. Pollut. 2011;159:148–156. doi: 10.1016/j.envpol.2010.09.017. PubMed DOI
Chen T.S., Chen T.C., Yeh K.J.C., Chao H.R., Liaw E.T., Hsieh C.Y., Chen K.C., Hsieh L.T., Yeh Y.L. High estrogen concentrations in receiving river discharge from a concentrated livestock feedlot. Sci. Total Environ. 2010;408:3223–3230. doi: 10.1016/j.scitotenv.2010.03.054. PubMed DOI
Lei B., Huang S., Zhou Y., Wang D., Wang Z. Levels of six estrogens in water and sediment from three rivers in Tianjin area, China. Chemosphere. 2009;76:36–42. doi: 10.1016/j.chemosphere.2009.02.035. PubMed DOI
Pojana G., Gomiero A., Jonkers N., Marcomini A. Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environ. Int. 2007;33:929–936. doi: 10.1016/j.envint.2007.05.003. PubMed DOI
Wu M., Xiang J., Que C., Chen F., Xu G. Occurrence and fate of psychiatric pharmaceuticals in the urban water system of Shanghai, China. Chemosphere. 2015;138:486–493. doi: 10.1016/j.chemosphere.2015.07.002. PubMed DOI
Paíga P., Santos L.H., Ramos S., Jorge S., Silva J.G., Delerue-Matos C. Presence of pharmaceuticals in the Lis river (Portugal): Sources, fate and seasonal variation. Sci. Total Environ. 2016;573:164–177. doi: 10.1016/j.scitotenv.2016.08.089. PubMed DOI
Lindim C., van Gils J., Georgieva D., Mekenyan O., Cousins I.T. Evaluation of human pharmaceutical emissions and concentrations in Swedish river basins. Sci. Total Environ. 2016;572:508–519. doi: 10.1016/j.scitotenv.2016.08.074. PubMed DOI
Santos L.H., Gros M., Rodriguez-Mozaz S., Delerue-Matos C., Pena A., Barceló D., Montenegro M.C.B. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: Identification of ecologically relevant pharmaceuticals. Sci. Total Environ. 2013;461:302–316. doi: 10.1016/j.scitotenv.2013.04.077. PubMed DOI
Yan Q., Zhang Y.X., Kang J., Gan X.M., Xu Y.P., Guo J.S., Gao X. A preliminary study on the occurrence of pharmaceutically active compounds in the river basins and their removal in two conventional drinking water treatment plants in Chongqing, China. Clean Soil Air Water. 2015;43:794–803. doi: 10.1002/clen.201400039. DOI
Nentwig G., Oetken M., Oehlmann J. Effects of Pharmaceuticals on Aquatic Invertebrates—The Example of Carbamazepine and Clofibric Acid. In: Kümmerer K., editor. Pharmaceuticals in the Environment. Sources, Fate, Effects and Risks. Springer; Heidelberg, Germany: 2004. pp. 195–208. DOI
Anjum R., Malik A. Evaluation of mutagenicity of wastewater in the vicinity of pesticide industry. Environ. Toxicol. Pharmacol. 2013;35:284–291. doi: 10.1016/j.etap.2012.12.013. PubMed DOI
Kang Y., Zhang G. Analysis of organophosphorous pesticides from source water using solid-phase extraction technique. China Environ. Sci. 2000;20:1–4.
Kumari B., Madan V.K., Kathpal T.S. Pesticide residues in rain water from Hisar, India. Environ. Monit. Assess. 2007;133:467–471. doi: 10.1007/s10661-006-9601-2. PubMed DOI
Canty M.N., Hutchinson T.H., Brown R.J., Jones M.B., Jha A.N. Linking genotoxic responses with cytotoxic and behavioural or physiological consequences: Differential sensitivity of echinoderms (Asterias rubens) and marine molluscs (Mytilus edulis) Aquat. Toxicol. 2009;94:68–76. doi: 10.1016/j.aquatox.2009.06.001. PubMed DOI
Guo S., Qian L., Shi H., Barry T., Cao Q., Liu J. Effects of tributyltin (TBT) on Xenopus tropicalis embryos at environmentally relevant concentrations. Chemosphere. 2010;79:529–533. doi: 10.1016/j.chemosphere.2010.02.021. PubMed DOI
Li X., Yin P., Zhao L. Phthalate esters in water and surface sediments of the Pearl River Estuary: Distribution, ecological, and human health risks. Environ. Sci. Pollut. Res. 2016;23:19341–19349. doi: 10.1007/s11356-016-7143-x. PubMed DOI
Nibamureke U.M.C., Barnhoorn I.E.J., Wagenaar G.M. Health assessment of freshwater fish species from Albasini Dam, outside a DDT-sprayed area in Limpopo province, South Africa: A preliminary study. Afr. J. Aquat. Sci. 2016;41:1–12. doi: 10.2989/16085914.2016.1172198. DOI
Song S., Ruan T., Wang T., Liu R., Jiang G. Distribution and preliminary exposure assessment of bisphenol AF (BPAF) in various environmental matrices around a manufacturing plant in China. Environ. Sci. Technol. 2012;46:13136–13143. doi: 10.1021/es303960k. PubMed DOI
Corcoran J., Winter M.J., Tyler C.R. Pharmaceuticals in the aquatic environment: A critical review of the evidence for health effects in fish. Crit. Rev. Toxicol. 2010;40:287–304. doi: 10.3109/10408440903373590. PubMed DOI
Patel M., Kumar R., Kishor K., Mlsna T., Pittman C.U., Jr., Mohan D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019;119:3510–3673. doi: 10.1021/acs.chemrev.8b00299. PubMed DOI
Dsikowitzky L., Schwarzbauer J. Industrial organic contaminants: Identification, toxicity and fate in the environment. Environ. Chem. Lett. 2014;12:371–386. doi: 10.1007/s10311-014-0467-1. DOI
Petrie B., Barden R., Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015;72:3–27. doi: 10.1016/j.watres.2014.08.053. PubMed DOI
Schwarzenbach R.P., Egli T., Hofstetter T.B., von Gunten U., Wehrli B. Global water pollution and human health. Ann. Rev. Environ. Resour. 2010;35:109–136. doi: 10.1146/annurev-environ-100809-125342. DOI
Denslow N., Sepulveda M. Ecotoxicological effects of endocrine disrupting compounds on fish reproduction. In: Babin P.J., Cerdà J., Lubzens E., editors. The Fish Oocyte: From Basic Studies to Biotechnological Applications. Springer; Dordrecht, The Netherlands: 2008. pp. 255–322. DOI
Dietrich M.A., Nynca J., Ciereszko A. Proteomic and metabolomic insights into the functions of the male reproductive system in fishes. Theriogenology. 2019;132:182–200. doi: 10.1016/j.theriogenology.2019.04.018. PubMed DOI
Hatef A., Alavi S.M.H., Butts I.A.E., Policar T., Linhart O. The mechanisms of action of mercury on sperm morphology, adenosine-5′-triphosphate content and motility in Perca fluviatilis (Percidae; Teleostei) Environ. Toxicol. Chem. 2011;30:905–914. doi: 10.1002/etc.461. PubMed DOI
Schiffer C., Müller A., Egeberg D.L., Alvarez L., Brenker C., Rehfeld A., Frederiksen H., Wäschle B., Kaupp U.B., Balbach M., et al. Direct action of endocrine disrupting chemicals on human sperm. EMBO Rep. 2014;15:758–765. doi: 10.15252/embr.201438869. PubMed DOI PMC
De la Fuente I.M., Cortés J.M., Valero E., Desroches M., Rodrigues S., Malaina I., Martínez L. On the dynamics of the adenylate energy system: Homeorhesis vs. homeostasis. PLoS ONE. 2014;9:e108676. doi: 10.1371/journal.pone.0108676. PubMed DOI PMC
Mills L.J., Chichester C. Review of evidence: Are endocrine-disrupting chemicals in the aquatic environment impacting fish populations? Sci. Total Environ. 2005;343:1–34. doi: 10.1016/j.scitotenv.2004.12.070. PubMed DOI
Zhou J., Zhu X.S., Cai Z.H. Endocrine disruptors: An overview and discussion on issues surrounding their impact on marine animals. J. Mar. Anim. Ecol. 2009;2:7–17.
Hamilton P.B., Cowx I.G., Oleksiak M.F., Griffiths A.M., Grahn M., Stevens J.R., Carvalho G.R., Nicol E., Tyler C.R. Population-level consequences for wild fish exposed to sublethal concentrations of chemicals—A critical review. Fish Fish. 2016;17:545–566. doi: 10.1111/faf.12125. DOI
Boryshpolets S., Kowalski R.K., Dietrich G.J., Dzyuba B., Ciereszko A. Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters. Theriogenology. 2013;80:758–765. doi: 10.1016/j.theriogenology.2013.06.019. PubMed DOI