Mutational Characterization of Cutaneous Melanoma Supports Divergent Pathways Model for Melanoma Development

. 2021 Oct 18 ; 13 (20) : . [epub] 20211018

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34680367

Grantová podpora
110078/Z/15/Z Wellcome Trust - United Kingdom
PI15/01860; PI19/00667 Instituto de Salud Carlos III
Ayuda predoctoral en Oncología Asociación Española Contra el Cáncer
PPRC-2018-36 EADV

According to the divergent pathway model, cutaneous melanoma comprises a nevogenic group with a propensity to melanocyte proliferation and another one associated with cumulative solar damage (CSD). While characterized clinically and epidemiologically, the differences in the molecular profiles between the groups have remained primarily uninvestigated. This study has used a custom gene panel and bioinformatics tools to investigate the potential molecular differences in a thoroughly characterized cohort of 119 melanoma patients belonging to nevogenic and CSD groups. We found that the nevogenic melanomas had a restricted set of mutations, with the prominently mutated gene being BRAF. The CSD melanomas, in contrast, showed mutations in a diverse group of genes that included NF1, ROS1, GNA11, and RAC1. We thus provide evidence that nevogenic and CSD melanomas constitute different biological entities and highlight the need to explore new targeted therapies.

Zobrazit více v PubMed

Whiteman D.C., Parsons P., Green A. p53 expression and risk factors for cutaneous melanoma: A case-control study. Int. J. Cancer. 1998;77:843–848. doi: 10.1002/(SICI)1097-0215(19980911)77:6<843::AID-IJC8>3.0.CO;2-U. PubMed DOI

Lee E.Y., Williamson R., Watt P., Hughes M.C., Green A.C., Whiteman D.C. Sun exposure and host phenotype as predictors of cutaneous melanoma associated with neval remnants or dermal elastosis. Int. J. Cancer. 2006;119:636–642. doi: 10.1002/ijc.21907. PubMed DOI

Gibbs D.C., Orlow I., Bramson J.I., Kanetsky P.A., Luo L., Kricker A., Armstrong B.K., Anton-Culver H., Gruber S.B., Marrett L.D., et al. Association of Interferon Regulatory Factor-4 Polymorphism rs12203592 With Divergent Melanoma Pathways. J. Natl. Cancer Inst. 2016;108:108. doi: 10.1093/jnci/djw004. PubMed DOI PMC

Whiteman D.C., Watt P., Purdie D.M., Hughes M.C., Hayward N.K., Green A.C. Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous mela-noma. J. Natl. Cancer Inst. 2003;95:806–812. doi: 10.1093/jnci/95.11.806. PubMed DOI

Carli P., Palli D. Re: Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous mela-noma. J. Natl. Cancer Inst. 2003;95:1801–1802. doi: 10.1093/jnci/djg127. PubMed DOI

Ghiasvand R., Robsahm T.E., Green A.C., Rueegg C.S., Weiderpass E., Lund E., Veierød M.B. Association of Phenotypic Characteristics and UV Radiation Exposure With Risk of Melanoma on Different Body Sites. JAMA Dermatol. 2019;155:39–49. doi: 10.1001/jamadermatol.2018.3964. PubMed DOI PMC

Martin-Gorgojo A., Llinares M., Virós A., Requena C., Garcia-Casado Z., Traves V., Kumar R., Nagore E. Cutaneous melanoma primary site is linked to nevus density. Oncotarget. 2017;8:98876–98886. doi: 10.18632/oncotarget.22016. PubMed DOI PMC

Elder D.E., Bastian B.C., Cree I.A., Massi D., Scolyer R.A. The 2018 World Health Organization Classification of Cutaneous, Mucosal, and Uveal Melanoma: Detailed Analysis of 9 Distinct Subtypes Defined by Their Evolutionary Pathway. Arch. Pathol. Lab. Med. 2020;144:500–522. doi: 10.5858/arpa.2019-0561-RA. PubMed DOI

Rabbie R., Ferguson P.M., Aguilar C.M., Adams D.J., Robles-Espinoza C.D. Melanoma subtypes: Genomic profiles, prognostic molecular markers and therapeutic possibilities. J. Pathol. 2018;247:539–551. doi: 10.1002/path.5213. PubMed DOI PMC

Zhang T., Dutton-Regester K., Brown K.M., Hayward N.K. The cutaneous melanoma genome: A high mutation rate and a signature of UVR exposure. Pigment Cell Melanoma Res. 2016;29:266–283. doi: 10.1111/pcmr.12459. PubMed DOI

De Unamuno Bustos B., Murria Estal R., Pérez Simó G., de Juan Jimenez I., Escutia Muñoz B., Rodríguez Serna M., Alegre de Miquel V., Llavador Ros M., Ballester Sánchez R., Nagore Enguídanos E., et al. Towards Personalized Medicine in Melanoma: Implementation of a Clinical Next-Generation Sequencing Panel. Sci. Rep. 2017;7:495. doi: 10.1038/s41598-017-00606-w. PubMed DOI PMC

Akbani R., Akdemir K.C., Aksoy B.A., Albert M., Ally A., Amin S.B., Arachchi H., Arora A., Auman J.T., Ayala B., et al. Cancer Genome Atlas Network. Genomic Classification of Cutaneous Melanoma. Cell. 2015;161:1681–1696. doi: 10.1016/j.cell.2015.05.044. PubMed DOI PMC

Horn S., Figl A., Rachakonda P.S., Fischer C., Sucker A., Gast A., Kadel S., Moll I., Nagore E., Hemminki K., et al. TERT Promoter Mutations in Familial and Sporadic Melanoma. Science. 2013;339:959–961. doi: 10.1126/science.1230062. PubMed DOI

Salavert F., Hidago M.R., Amadoz A., Çubuk C., Medina I., Crespo D., Carbonell-Caballero J., Dopazo J. Actionable pathways: Interactive discovery of therapeutic targets using signal-ing pathway models. Nucleic Acids Res. 2016;44:W212–W216. doi: 10.1093/nar/gkw369. PubMed DOI PMC

Cubuk C., Hidalgo M.R., Amadoz A., Pujana M.A., Mateo F., Herranz C., Carbonell-Caballero J., Dopazo J. Gene expression integration into pathway modules reveals a pan-cancer meta-bolic landscape. Cancer Res. 2018;78:6059–6072. doi: 10.1158/0008-5472.CAN-17-2705. PubMed DOI

Peña-Chilet M., Esteban-Medina M., Falco M.M., Rian K., Hidalgo M.R., Loucera C., Dopazo J. Using mechanistic models for the clinical interpretation of complex genomic variation. Sci. Rep. 2019;9:1–12. doi: 10.1038/s41598-019-55454-7. PubMed DOI PMC

Schadendorf D., Fisher D.E., Garbe C., Gershenwald J.E., Grob J.J., Halpern A., Herlyn M., Marchetti M.A., McArthur G., Ribas A., et al. Melanoma. Nat. Rev. Dis. Primers. 2015;1:15003. doi: 10.1038/nrdp.2015.3. PubMed DOI

Cirenajwis H., Lauss M., Ekedahl H., Törngren T., Kvist A., Saal L.H., Olsson H., Staaf J., Carneiro A., Ingvar C., et al. NF1-mutated melanoma tumors harbor distinct clinical and biological charac-teristics. Mol. Oncol. 2017;11:438–451. doi: 10.1002/1878-0261.12050. PubMed DOI PMC

Sato H., Schoenfeld A.J., Siau E., Lu Y.C., Tai H., Suzawa K., Kubota D., Lui A.J., Qeriqi B., Mattar M., et al. MAPK Pathway Alterations Correlate with Poor Survival and Drive Resistance to Therapy in Patients with Lung Cancers Driven by ROS1 Fusions. Clin. Cancer Res. 2020;26:2932–2945. doi: 10.1158/1078-0432.CCR-19-3321. PubMed DOI PMC

Davis M.J., Ha B.H., Holman E.C., Halaban R., Schlessinger J., Boggon T.J. RAC1P29S is a spontaneously activating cancer-associated GTPase. Proc. Natl. Acad. Sci. USA. 2013;110:912–917. doi: 10.1073/pnas.1220895110. PubMed DOI PMC

Halaban R. RAC1 and Melanoma. Clin. Ther. 2015;37:682–685. doi: 10.1016/j.clinthera.2014.10.027. PubMed DOI PMC

Patel S.P., Kim D.W., Lacey C.L., Hwu P. GNA11 mutation in a patient with cutaneous origin melanoma a case report. Medicine. 2016;95:e2336. doi: 10.1097/MD.0000000000002336. PubMed DOI PMC

Cadley J., Simpson D., Ferguson R., Pandya A., Hekal T., Richards T., Ibrahim K., Weber J.S., Osman I., Kirchhoff T. Mutation burden in conjunction with MAPK-pathway mutation status as a prognostic biomarker of overall melanoma survival. J. Clin. Oncol. 2018;36:9584. doi: 10.1200/JCO.2018.36.15_suppl.9584. DOI

Simpson D., Ferguson R., Martinez C.N., Kazlow E., Moran U., Heguy A., Hanniford D., Hernando E., Osman I., Kirchhoff T. Mutation burden as a potential prognostic marker of melanoma progression and survival. J. Clin. Oncol. 2017;35:9567. doi: 10.1200/JCO.2017.35.15_suppl.9567. DOI

Kang K., Xie F., Mao J., Bai Y., Wang X. Significance of Tumor Mutation Burden in Immune Infiltration and Prognosis in Cutaneous Melanoma. Front. Oncol. 2020;10:1–18. doi: 10.3389/fonc.2020.573141. PubMed DOI PMC

Byrne E.H., Fisher D.E. Immune and molecular correlates in melanoma treated with immune checkpoint blockade. Cancer. 2017;123:2143–2153. doi: 10.1002/cncr.30444. PubMed DOI PMC

Snyder A., Makarov V., Merghoub T., Yuan J., Zaretsky J.M., Desrichard A., Walsh L.A., Postow M.A., Wong P., Ho T.S., et al. Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. N. Engl. J. Med. 2014;371:2189–2199. doi: 10.1056/NEJMoa1406498. PubMed DOI PMC

Shtivelman E., A Davies M.Q., Hwu P., Yang J., Lotem M., Oren M., Flaherty K.T., Fisher D.E. Pathways and therapeutic targets in melanoma. Oncotarget. 2014;5:1701–1752. doi: 10.18632/oncotarget.1892. PubMed DOI PMC

Tsao H., Chin L., Garraway L.A., Fisher D.E. Melanoma: From mutations to medicine. Genes Dev. 2012;26:1131–1155. doi: 10.1101/gad.191999.112. PubMed DOI PMC

Davis E.J., Johnson D.B., Sosman J.A., Chandra S. Melanoma: What do all the mutations mean? Cancer. 2018;124:3490–3499. doi: 10.1002/cncr.31345. PubMed DOI PMC

Maldonado J.L., Fridlyand J., Patel H., Jain A.N., Busam K., Kageshita T., Ono T., Albertson D.G., Pinkel D., Bastian B.C. Determinants of BRAF Mutations in Primary Melanomas. J. Natl. Cancer Inst. 2003;95:1878–1890. doi: 10.1093/jnci/djg123. PubMed DOI

Damsky W.E., Bosenberg M. Melanocytic nevi and melanoma: Unraveling a complex relationship. Oncogene. 2017;36:5771–5792. doi: 10.1038/onc.2017.189. PubMed DOI PMC

Roh M.R., Eliades P., Gupta S., Tsao H. Genetics of melanocytic nevi. Pigment Cell Melanoma Res. 2015;28:661–672. doi: 10.1111/pcmr.12412. PubMed DOI PMC

Kumar R., Angelini S., Snellman E., Hemminki K. BRAF Mutations Are Common Somatic Events in Melanocytic Nevi. J. Investig. Dermatol. 2004;122:342–348. doi: 10.1046/j.0022-202X.2004.22225.x. PubMed DOI

Mitra D., Luo X., Morgan A., Wang J., Hoang M.P., Lo J., Guerrero C.R., Lennerz J.K., Mihm M.C., Wargo J.A., et al. An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature. 2012;491:449–453. doi: 10.1038/nature11624. PubMed DOI PMC

Roider E., Fisher D.E. Red Hair, Light Skin, and UV-Independent Risk for Melanoma Development in Humans. JAMA Dermatol. 2016;152:751–753. doi: 10.1001/jamadermatol.2016.0524. PubMed DOI PMC

Bowman R.L., Hennessey R.C., Weiss T.J., A Tallman D., Crawford E.R., Murphy B.M., Webb A., Zhang S., La Perle K.M., Burd C.J., et al. UVB mutagenesis differs in Nras- and Braf-mutant mouse models of melanoma. Life Sci. Alliance. 2021;4:e202101135. doi: 10.26508/lsa.202101135. PubMed DOI PMC

Brash D.E. UV Signature Mutations. Photochem. Photobiol. 2015;91:15–26. doi: 10.1111/php.12377. PubMed DOI PMC

García-Nieto P.E., Schwartz E.K., A King D., Paulsen J., Collas P., E Herrera R., Morrison A.J. Carcinogen susceptibility is regulated by genome architecture and predicts cancer mutagenesis. EMBO J. 2017;36:2829–2843. doi: 10.15252/embj.201796717. PubMed DOI PMC

Ferguson B., Handoko H.Y., Mukhopadhyay P., Chitsazan A., Balmer L., Morahan G., Walker G.J. Different genetic mechanisms mediate spontaneous versus UVR-induced malignant melanoma. eLife. 2019;8:8–10. doi: 10.7554/eLife.42424. PubMed DOI PMC

Heidenreich B., Kumar R. TERT promoter mutations in telomere biology. Mutat. Res. Rev. Mutat. Res. 2017;771:15–31. doi: 10.1016/j.mrrev.2016.11.002. PubMed DOI

Rachakonda S., Hoheisel J.D., Kumar R. Occurrence, functionality and abundance of the TERT promoter mutations. Int. J. Cancer. 2021;149:1852–1862. doi: 10.1002/ijc.33750. PubMed DOI

Heidenreich B., Nagore E., Rachakonda P.S., Garcia-Casado Z., Requena C., Traves V., Becker J., Soufir N., Hemminki K., Kumar R. Telomerase reverse transcriptase promoter mutations in primary cuta-neous melanoma. Nat. Commun. 2014;5:3401. doi: 10.1038/ncomms4401. PubMed DOI

Motaparthi K., Kim J., Andea A.A., Missall T.A., Novoa R.A., Vidal C.I., Fung M.A., Emanuel P.O. TERT and TERT promoter in melanocytic neoplasms: Current concepts in patho-genesis, diagnosis, and prognosis. J. Cutan. Pathol. 2020;47:710–719. doi: 10.1111/cup.13691. PubMed DOI

Nagore E., Rachakonda S., Kumar R. TERT promoter mutations in melanoma survival. Oncotarget. 2019;10:1546–1548. doi: 10.18632/oncotarget.26688. PubMed DOI PMC

Andres-Lencina J.J., Rachakonda S., García-Casado Z., Srinivas N., Skorokhod A., Requena C., Soriano V., Kumar R., Nagore E. TERT promoter mutation subtypes and survival in stage I and II melanoma patients. Int. J. Cancer. 2019;144:1027–1036. doi: 10.1002/ijc.31780. PubMed DOI

Nagore E., Heidenreich B., Requena C., García-Casado Z., Martorell-Calatayud A., Pont-Sanjuan V., Jimenez-Sanchez A.I., Kumar R. TERT promoter mutations associate with fast-growing melanoma. Pigment Cell Melanoma Res. 2016;29:236–238. doi: 10.1111/pcmr.12441. PubMed DOI

Calomarde-Rees L., García-Calatayud R., Requena Caballero C., Manrique-Silva E., Traves V., García-Casado Z., Soriano V., Kumar R., Nagore E. Risk Factors for Lymphatic and Hematogenous Dis-semination in Patients With Stages I to II Cutaneous Melanoma. JAMA Dermatol. 2019;155:679–687. doi: 10.1001/jamadermatol.2019.0069. PubMed DOI PMC

Williams E.A., Montesion M., Shah N., Sharaf R., Pavlick D.C., Sokol E.S., Alexander B., Venstrom J., Elvin J.A., Ross J.S., et al. Melanoma with in-frame deletion of MAP2K1: A distinct molecular subtype of cutaneous melanoma mutually exclusive from BRAF, NRAS, and NF1 mutations. Mod. Pathol. 2020;33:2397–2406. doi: 10.1038/s41379-020-0581-5. PubMed DOI PMC

Cho J., Kim S.Y., Kim Y.J., Sim M.H., Kim S.T., Kim N.K.D., Kim K., Park W., Kim J.H., Jang K.T., et al. Emergence of CTNNB1 mutation at acquired resistance to KIT inhibitor in metastatic mela-noma. Clin. Transl. Oncol. 2017;19:1247–1252. doi: 10.1007/s12094-017-1662-x. PubMed DOI

Curtin J.A., Fridlyand J., Kageshita T., Patel H.N., Busam K.J., Kutzner H., Cho K.-H., Aiba S., Bröcker E.-B., LeBoit P.E., et al. Distinct Sets of Genetic Alterations in Melanoma. N. Engl. J. Med. 2005;353:2135–2147. doi: 10.1056/NEJMoa050092. PubMed DOI

Peña-Vilabelda M.M., García-Casado Z., Requena C., Traves V., López-Guerrero J.A., Guillén C., Kumar R., Nagorea E. Características clínicas de los pacientes con melanoma cutáneo en función de las variaciones en el gen del receptor 1 de la melanocortina (MC1R) Actas Dermo-Sifiliogr. 2014;105:159–171. doi: 10.1016/j.ad.2013.10.001. PubMed DOI

Landi M.T., Bauer J., Pfeiffer R.M., Elder D.E., Hulley B., Minghetti P., Calista D., Kanetsky P.A., Pinkel D., Bastian B.C. MC1R Germline Variants Confer Risk for BRAF -Mutant Melanoma. Science. 2006;313:521–522. doi: 10.1126/science.1127515. PubMed DOI

Kopanos C., Tsiolkas V., Kouris A., Chapple C.E., Aguilera M.A., Meyer R., Massouras A. VarSome: The human genomic variant search engine. Bioinformatics. 2019;35:1978–1980. doi: 10.1093/bioinformatics/bty897. PubMed DOI PMC

Aguet F., Anand S., Ardlie K.G., Gabriel S., Getz G.A., Graubert A., Hadley K., Handsaker R.E., Huang K.H., Kashin S., et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–1330. PubMed PMC

Ogata H., Goto S., Sato K., Fujibuchi W., Bono H., Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999;27:29–34. doi: 10.1093/nar/27.1.29. PubMed DOI PMC

Hidalgo M.R., Cubuk C., Amadoz A., Salavert F., Carbonell-Caballero J., Dopazo J. High throughput estimation of functional cell activities reveals disease mecha-nisms and predicts relevant clinical outcomes. Oncotarget. 2017;8:5160–5178. doi: 10.18632/oncotarget.14107. PubMed DOI PMC

Smyth G.K. Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Stat. Appl. Genet. Mol. Biol. 2004;3:1–25. doi: 10.2202/1544-6115.1027. PubMed DOI

Baker S., Ali I., Silins I., Pyysalo S., Guo Y., Högberg J., Stenius U., Korhonen A. Cancer Hallmarks Analytics Tool (CHAT): A text mining approach to organize and evaluate scientific literature on cancer. Bioinformatics. 2017;33:3973–3981. doi: 10.1093/bioinformatics/btx454. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...