Modeling the Structure of Crystalline Alamethicin and Its NMR Chemical Shift Tensors
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LTAUSA18011
Ministry of Education Youth and Sports
PubMed
34680845
PubMed Central
PMC8532780
DOI
10.3390/antibiotics10101265
PII: antibiotics10101265
Knihovny.cz E-resources
- Keywords
- DFT, alamethicin, antimicrobial peptides, solid-state NMR,
- Publication type
- Journal Article MeSH
Alamethicin (ALM) is an antimicrobial peptide that is frequently employed in studies of the mechanism of action of pore-forming molecules. Advanced techniques of solid-state NMR spectroscopy (SSNMR) are important in these studies, as they are capable of describing the alignment of helical peptides, such as ALM, in lipid bilayers. Here, it is demonstrated how an analysis of the SSNMR measurements can benefit from fully periodic calculations, which employ the plane-wave density-functional theory (PW DFT) of the solid-phase geometry and related spectral parameters of ALM. The PW DFT calculations are used to obtain the structure of desolvated crystalline ALM and predict the NMR chemical shift tensors (CSTs) of its nuclei. A variation in the CSTs of the amidic nitrogens and carbonyl carbons along the ALM backbone is evaluated and included in simulations of the orientation-dependent anisotropic 15N and 13C chemical shift components. In this way, the influence of the site-specific structural effects on the experimentally determined orientation of ALM is shown in models of cell membranes.
See more in PubMed
Hwon J.H., Powderly W.G. The post anti-biotic era is here. Nature. 2021;373:471. doi: 10.1126/science.abl5997. PubMed DOI
Antimicrobial Resistance. [(accessed on 13 September 2021)]. Available online: https://www.who.int/health-topics/antimicrobial-resistance.
Hanna C.C., Hermant Y.O., Harris P.W.R., Brimble M.A. Discovery, Synthesis, and Optimization of Peptide-Based Antibiotics. Acc. Chem. Res. 2021;54:1878–1890. doi: 10.1021/acs.accounts.0c00841. PubMed DOI
Yan Y., Zhang Z., Wang X., Niu Y., Zhang S., Xu W., Ren C. Advances of peptides for antibacterial applications. Colloids Surf. B. 2021;202:11682. doi: 10.1016/j.colsurfb.2021.111682. PubMed DOI
Kabelka I., Vácha R. Advances in Molecular Understanding of α-Helical Membrane-Active Peptides. Acc. Chem. Res. 2021;54:2196–2204. doi: 10.1021/acs.accounts.1c00047. PubMed DOI
Marquette A., Bechinger B. Biophysical Investigations Elucidating the Mechanisms of Action of Antimicrobial Peptides and Their Synergism. Biomolecules. 2018;8:18. doi: 10.3390/biom8020018. PubMed DOI PMC
Malanovic N., Marx L., Blondelle S.E., Pabst G., Semeraro E.F. Experimental concepts for linking the biological activities of antimicrobial peptides to their molecular modes of action. BBA Biomembr. 2020;1862:183275. doi: 10.1016/j.bbamem.2020.183275. PubMed DOI
Bechinger B. The SMART model: Soft Membranes Adapt and Respond, also Transiently, in the presence of antimicrobial peptides. J. Pept. Sci. 2015;21:346–355. doi: 10.1002/psc.2729. PubMed DOI
Simcock P.W., Bublitz M., Cipcigan F., Ryadnov M.G., Crain J., Stansfeld P.J., Sansom M.S.P. Membrane Binding of Antimicrobial Peptides Is Modulated by Lipid Charge Modification. J. Chem. Theory Comput. 2021;17:1218–1228. doi: 10.1021/acs.jctc.0c01025. PubMed DOI
Aronica P.G.A., Reid L.M., Desai N., Li J., Fox S.J., Yadahalli S., Essex J.W., Verma C.S. Computational Methods and Tools in Antimicrobial Peptide Research. J. Chem. Inf. Model. 2021;61:3172–3196. doi: 10.1021/acs.jcim.1c00175. PubMed DOI
Kirschbaum J., Krause C., Winzheimer R.K., Brückner H. Sequences of alamethicins F30 and F50 reconsidered and reconciled. J. Pept. Sci. 2003;9:799–809. doi: 10.1002/psc.535. PubMed DOI
Pieta P., Mirza J., Lipkowski J. Direct visualization of the alamethicin pore formed in a planar phospholipid matrix. Proc. Natl. Acad. Sci. USA. 2012;109:21223–21227. doi: 10.1073/pnas.1201559110. PubMed DOI PMC
McClintic W.T., Taylor G.J., Simpson M.L., Collier C.P. Macromolecular Crowding Affects Voltage-Dependent Alamethicin Pore Formation in Lipid Bilayer Membranes. J. Phys. Chem. B. 2020;124:5095–5102. doi: 10.1021/acs.jpcb.0c01650. PubMed DOI
Molugu T.R., Lee S., Brown M.F. Concepts and Methods of Solid-State NMR Spectroscopy Applied to Biomembranes. Chem. Rev. 2017;117:12087–12132. doi: 10.1021/acs.chemrev.6b00619. PubMed DOI
Yeh V., Bonev B.B. Solid state NMR of membrane proteins: Methods and applications. Biochem. Soc. Trans. 2021;49:BST20200070. doi: 10.1042/BST20200070. PubMed DOI
Salnikov E.S., Friedrich H., Li X., Bertani P., Reissmann S., Hertweck C., O’Neil J.D.J., Raap J., Bechinger B. Structure and Alignment of the Membrane-Associated Peptaibols Ampullosporin A and Alamethicin by Oriented 15N and 31P Solid-State NMR Spectroscopy. Biophys. J. 2009;96:86–100. doi: 10.1529/biophysj.108.136242. PubMed DOI PMC
Bertelsen K., Paaske B., Thøgersen L., Tajkhorshid E., Schiøtt B., Skrydstrup T., Nielsen N.C., Vosegaard T. Residue-Specific Information about the Dynamics of Antimicrobial Peptides from 1H–15N Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 2009;131:18335–18342. doi: 10.1021/ja908604u. PubMed DOI
Toraya S., Nishimura K., Naito A. Dynamic Structure of Vesicle-Bound Melittin in a Variety of Lipid Chain Lenghts by Solid-State NMR. Biophys. J. 2004;87:3323–3335. doi: 10.1529/biophysj.104.046102. PubMed DOI PMC
Nagao T., Mishima D., Jakhlantugs N., Wang J., Ishioka D., Yokota K., Norisada K., Kawamura I., Ueda K., Naito A. Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. BBA Biomembr. 2015;1848:2789–2798. doi: 10.1016/j.bbamem.2015.07.019. PubMed DOI
Salnikov E.S., Aisebrey C., Raya J., Bechinger B. Investigations of the Structure, Topology and Dynamics of Membrane-Associated Polypeptides by Solid-State NMR Spectroscopy. In: Separovic F., Naito A., editors. Advances in Biological Solid-State NMR: Proteins and Membrane-Active Peptides. 1st ed. Royal Society of Chemistry; London, UK: 2014. pp. 214–234. DOI
Hansen S.K., Bertelsen K., Paaske B., Nielsen N.C., Vosegaard T. Solid-state NMR methods for oriented membrane proteins. Prog. Nucl. Mag. Res. Sp. 2015;88:48–85. doi: 10.1016/j.pnmrs.2015.05.001. PubMed DOI
Naito A., Matsumori N., Ramamoorthy A. Dynamic membrane interactions of antibacterial and antifungal biomolecules, and amyloid peptides, revealed by solid-state NMR spectroscopy. Biochim. Biophys. Acta Gen. Subj. 2018;1862:307–323. doi: 10.1016/j.bbagen.2017.06.004. PubMed DOI PMC
Hodgkinson P. NMR Crystallography of Molecular Organics. Prog. Nucl. Mag. Res. Sp. 2020;118:10–53. doi: 10.1016/j.pnmrs.2020.03.001. PubMed DOI
Czernek J., Brus J. Monitoring the Site-Specific Solid-State NMR Data in Oligopeptides. Int. J. Mol. Sci. 2020;21:2700. doi: 10.3390/ijms21082700. PubMed DOI PMC
Czernek J., Brus J. Polymorphic Forms of Valinomycin Investigated by NMR Crystallography. Int. J. Mol. Sci. 2020;21:4907. doi: 10.3390/ijms21144907. PubMed DOI PMC
Fox R.O., Richard F.M. A voltage-gated ion-channel model inferred from the crystal structure of alamethicin at 1.5-Å resolution. Nature. 1982;300:325–330. doi: 10.1038/300325a0. PubMed DOI
Chugh J.K., Wallace B.A. Peptaibols: Models for ion channels. Biochem. Soc. Trans. 2001;29:565–570. doi: 10.1042/bst0290565. PubMed DOI
Miura Y. NMR studies of the conformation, stability, and dynamics of alamethicin in methanol. Eur. Biophys. J. 2020;49:113–124. doi: 10.1007/s00249-019-01418-8. PubMed DOI
Lee T.-H., Hall K.N., Aguilar M.-I. Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure. Curr. Top. Med. Chem. 2016;16:25–39. doi: 10.2174/1568026615666150703121700. PubMed DOI
Kumar P., Kizhakkedathu J.N., Straus S.K. Antimicrobial Peptides: Diversity, Mechanism of Action, and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules. 2018;8:4. doi: 10.3390/biom8010004. PubMed DOI PMC
Birdsall E.R., Petti M.K., Saraswat V., Ostrander J.S., Arnold M.S., Zanni M.T. Structure Changes of a Membrane Polypeptide under an Applied Voltage Observed with Surface-Enhanced 2D IR Spectroscopy. J. Phys. Chem. Lett. 2021;12:1786–1792. doi: 10.1021/acs.jpclett.0c03706. PubMed DOI PMC
Esteban-Martín S., Strandberg E., Fuertes G., Ulrich A.S., Salgado J. Influence of Whole-Body Dynamics on 15N PISEMA NMR Spectra of Membrane Proteins: A Theoretical Analysis. Biophys. J. 2009;96:3233–3241. doi: 10.1016/j.bpj.2008.12.3950. PubMed DOI PMC
Salnikov E., Bertani P., Raap J., Bechinger B. Analysis of the amide 15N chemical shift tensor of the Ca tetrasubstituted constituent of membrane-active peptaibols, the a-aminoisobutyric acid residue, compared to those of di- and tri-substituted proteinogenic amino acid residues. J. Biomol. NMR. 2009;45:373–387. doi: 10.1007/s10858-009-9380-5. PubMed DOI
Czernek J., Brus J. Theoretical predictions of the two-dimensional solid-state NMR spectra: A case study of the 13C—1H correlations in metergoline. Chem. Phys. Lett. 2013;586:56–60. doi: 10.1016/j.cplett.2013.09.015. DOI
Czernek J., Brus J. The covariance of the differences between experimental and theoretical chemical shifts as an aid for assigning two-dimensional heteronuclear correlation solid-state NMR spectra. Chem. Phys. Lett. 2014;608:334–339. doi: 10.1016/j.cplett.2014.05.099. DOI
Harris R.K., Becker E.D., De Menezes S.M.C., Granger P., Hoffman R.E., Zilm K.W. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008) Pure Appl. Chem. 2008;82:59–84. doi: 10.1351/pac200880010059. PubMed DOI
Czernek J., Brus J. Theoretical Investigations into the Variability of the N-15 Solid-State NMR Parameters Within an Antimicrobial Peptide Ampullosporin A. Phys. Res. 2018;67:S349–S356. doi: 10.33549/physiolres.933976. PubMed DOI
Quine J.R., Achuthan S., Asbury T., Bertram R., Chapman M.S., Hu J., Cross T.A. Intensity and mosaic spread analysis from PISEMA tensors in solid-state NMR. J. Magn. Reson. 2006;179:190–198. doi: 10.1016/j.jmr.2005.12.002. PubMed DOI
Opella S.J. Structure Determination of Membrane Proteins in Their Native Phospholipid Bilayer Environment by Rotationally Aligned Solid-State NMR Spectroscopy. Acc. Chem. Res. 2013;49:2145–2153. doi: 10.1021/ar400067z. PubMed DOI PMC
Takeda N., Kuroki S., Kurosu H., Ando S. 13C-NMR Chemical Shift Tensor and Hydrogen-Bonded Structure of Glycine-Containing Peptides in a Single Crystal. Biopolymers. 1999;50:61–69. doi: 10.1002/(SICI)1097-0282(199907)50:1<61::AID-BIP6>3.0.CO;2-9. DOI
Saito H., Ando I., Ramamoorthy A. Chemical shift tensor—The heart of NMR: Insights into biological aspects of proteins. Prog. Nucl. Mag. Res. Sp. 2010;57:181–228. doi: 10.1016/j.pnmrs.2010.04.005. PubMed DOI PMC
Asakawa N., Kuroki S., Kurosu H., Ando I., Shoji A., Ozaki T. Hydrogen-bonding effect on 13C NMR chemical shifts of L-alanine residue carbonyl carbons of peptides in the solid state. J. Am. Chem. Soc. 1992;114:3261–3265. doi: 10.1021/ja00035a016. DOI
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Segall M.D., Lindan P.J.D., Probert M.J., Pickard C.J., Hasnip P.J., Clark S.J., Payne M.C. First principles simulation: Ideas, illustrations, and the CASTEP code. J. Phys. Condens. Matter. 2002;14:2717–2744. doi: 10.1088/0953-8984/14/11/301. DOI
Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.J., Refson K., Payne M.C. First principles methods using CASTEP. Z. Kristallogr. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI
BIOVIA Materials Studio . Dassault Systèmes. Vélizy-Villacoublay; Paris, France: [(accessed on 13 September 2021)]. Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/
Biswas A.B., Hughes E.W., Sharma B.D., Wilson J.N. The crystal structure of α-glycylglycine. Acta Cryst. B. 1968;24:40–50. doi: 10.1107/S0567740868001688. PubMed DOI
Rao S.N., Parthasarathy R. Structure and conformational aspects of the nitrates of amino acids and peptides. I. Crystal structure of glycylglycine nitrate. Acta Cryst. B. 1973;29:2379–2388. doi: 10.1107/S0567740873006734. DOI
Koetzle T.F., Hamilton W.C. Precision neutron diffraction structure determination of protein and nucleic acid components. II. The crystal and molecular structure of the dipeptide glycylglycine monohydrochloride monohydrate. Acta Cryst. B. 1972;28:2083–2090. doi: 10.1107/S0567740872005576. DOI
Gao S.-P., Pickard C.J., Perlov A., Milman V. Core-Level Spectroscopy Calculation and the Plane Wave Pseudopotential Method. J. Phys. Condens. Matter. 2009;21:104203. doi: 10.1088/0953-8984/21/10/104203. PubMed DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Tkatchenko A., Scheffler M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009;102:073005. doi: 10.1103/PhysRevLett.102.073005. PubMed DOI
Pickard C.J., Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B. 2001;63:245101. doi: 10.1103/PhysRevB.63.245101. DOI
Yates J.R., Pickard C.J., Mauri F. Calculations of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys. Rev. B. 2007;76:024401. doi: 10.1103/PhysRevB.76.024401. DOI
Czernek J. On the solid-state NMR spectra of naproxen. Chem. Phys. Lett. 2015;619:230–235. doi: 10.1016/j.cplett.2014.11.031. DOI
Bechinger B., Sizun C. Alignment and Structural Analysis of Membrane Polypeptides by 15N and 31P Solid-State NMR Spectroscopy. Concepts Magn. Reson. 2003;18A:130–145. doi: 10.1002/cmr.a.10070. DOI
Paulino J., Yi M., Hung I., Gan Z., Wang X.L., Chekmenev E.Y., Zhou H.X., Cross T.A. Functional stability of water wire–carbonyl interactions in an ion channel. Proc. Natl. Acad. Sci. USA. 2020;117:11908–11915. doi: 10.1073/pnas.2001083117. PubMed DOI PMC
Hung I., Gan Z., Wu G. Two- and Three-Dimensional 13C–17O Heteronuclear Correlation NMR Spectroscopy for Studying Organic and Biological Solid. J. Phys. Chem. Lett. 2021;12:8897–8902. doi: 10.1021/acs.jpclett.1c02465. PubMed DOI
Hauser K., He Y., Garcia-Diaz M., Simmerling C., Coutsias E. Characterization of Biomolecular Helices and Their Complementarity Using Geometric Analysis. J. Chem. Inf. Model. 2017;57:864–874. doi: 10.1021/acs.jcim.6b00721. PubMed DOI PMC
Czernek J., Brus J. On the predictions of the 11B solid state NMR parameters. Chem. Phys. Lett. 2016;655:66–70. doi: 10.1016/j.cplett.2016.05.027. DOI