In Silico Studies of Potential Selective Inhibitors of Thymidylate Kinase from Variola virus
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
VT2019-2021
UHK
CEP Register
308225/2018-0
Brazilian agencies Conselho Nacional de Pesquisa (CNPq)
E-02/202.961/2017
Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)
FN HK 00179906
Ministry of Health of the Czech Republic
PROGRES Q40
Charles University in Prague, Czech Republic
PubMed
34681251
PubMed Central
PMC8537287
DOI
10.3390/ph14101027
PII: ph14101027
Knihovny.cz E-resources
- Keywords
- Variola virus, docking, molecular dynamics, smallpox, thymidylate kinase,
- Publication type
- Journal Article MeSH
Continuing the work developed by our research group, in the present manuscript, we performed a theoretical study of 10 new structures derived from the antivirals cidofovir and ribavirin, as inhibitor prototypes for the enzyme thymidylate kinase from Variola virus (VarTMPK). The proposed structures were subjected to docking calculations, molecular dynamics simulations, and free energy calculations, using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, inside the active sites of VarTMPK and human TMPK (HssTMPK). The docking and molecular dynamic studies pointed to structures 2, 3, 4, 6, and 9 as more selective towards VarTMPK. In addition, the free energy data calculated through the MM-PBSA method, corroborated these results. This suggests that these compounds are potential selective inhibitors of VarTMPK and, thus, can be considered as template molecules to be synthesized and experimentally evaluated against smallpox.
See more in PubMed
Russo A.T., Berhanu A., Bigger C.B., Prigge J., Silvera P.M., Grosenbach D.W., Hruby D. Co-administration of tecovirimat and ACAM2000™ in non-human primates: Effect of tecovirimat treatment on ACAM2000 immunogenicity and efficacy versus lethal monkeypox virus challenge. Vaccine. 2020;38:644–654. doi: 10.1016/j.vaccine.2019.10.049. PubMed DOI PMC
Chan-Tack K.M., Harrington P.R., Choi S.-Y., Myers L., O’Rear J., Seo S., McMillan D., Ghantous H., Birnkrant D., Sherwat A.I. Assessing a drug for an eradicated human disease: US Food and Drug Administration review of tecovirimat for the treatment of smallpox. Lancet Infect. Dis. 2019;19:e221–e224. doi: 10.1016/S1473-3099(18)30788-6. PubMed DOI
Bastos L.D.C., De Souza F.R., Guimarães A.P., Sirouspour M., Guizado T.R.C., Forgione P., Ramalho T.C., França T.C.C. Virtual screening, docking, and dynamics of potential new inhibitors of dihydrofolate reductase from Yersinia pestis. J. Biomol. Struct. Dyn. 2016;34:2184–2198. doi: 10.1080/07391102.2015.1110832. PubMed DOI
Guimarães A.P., de Souza F.R., Oliveira A.A., Gonçalves A.S., de Alencastro R.B., Ramalho T.C., França T.C.C. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox. Eur. J. Med. Chem. 2015;91:72–90. doi: 10.1016/j.ejmech.2014.09.099. PubMed DOI
Trost L.C., Rose M.L., Khouri J., Keilholz L., Long J., Godin S.J., Foster S.A. The efficacy and pharmacokinetics of brincidofovir for the treatment of lethal rabbitpox virus infection: A model of smallpox disease. Antivir. Res. 2015;117:115–121. doi: 10.1016/j.antiviral.2015.02.007. PubMed DOI
Damon I.K., Damaso C.R., McFadden G. Are We There Yet? The Smallpox Research Agenda Using Variola Virus. PLoS Pathog. 2014;10:e1004108. doi: 10.1371/journal.ppat.1004108. PubMed DOI PMC
Guimarães A.P., Ramalho T.C., França T.C.C. Preventing the return of smallpox: Molecular modeling studies on thymidylate kinase fromVariola virus. J. Biomol. Struct. Dyn. 2014;32:1601–1612. doi: 10.1080/07391102.2013.830578. PubMed DOI PMC
Prichard M.N., Kern E.R. Orthopoxvirus targets for the development of new antiviral agents. Antivir. Res. 2012;94:111–125. doi: 10.1016/j.antiviral.2012.02.012. PubMed DOI PMC
Garcia D.R., De Souza F.R., Guimarães A.P., Ramalho T.C., De Aguiar A.P., França T.C.C. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox: Part II. J. Biomol. Struct. Dyn. 2019;37:4569–4579. doi: 10.1080/07391102.2018.1554510. PubMed DOI PMC
Merchlinsky M., Albright A., Olson V., Schiltz H., Merkeley T., Hughes C., Petersen B., Challberg M. The development and approval of tecoviromat (TPOXX®), the first antiviral against smallpox. Antivir. Res. 2019;168:168–174. doi: 10.1016/j.antiviral.2019.06.005. PubMed DOI PMC
Nuth M., Guan H., Xiao Y., Kulp J.L., III, Parker M.H., Strobel E.D., Isaacs S.N., Scott R.W., Reitz A.B., Ricciardi R.P. Mutation and structure guided discovery of an antiviral small molecule that mimics an essential C-Terminal tripeptide of the vaccinia D4 processivity factor. Antivir. Res. 2018;162:178–185. doi: 10.1016/j.antiviral.2018.12.011. PubMed DOI PMC
Chaudhuri S., Symons J.A., Deval J. Innovation and trends in the development and approval of antiviral medicines: 1987–2017 and beyond. Antivir. Res. 2018;155:76–88. doi: 10.1016/j.antiviral.2018.05.005. PubMed DOI PMC
Noyce R.S., Lederman S., Evans D.H. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS ONE. 2018;13:e0188453. doi: 10.1371/journal.pone.0188453. PubMed DOI PMC
Chittick G., Morrison M., Brundage T., Nichols W.G. Short-term clinical safety profile of brincidofovir: A favorable benefit–risk proposition in the treatment of smallpox. Antivir. Res. 2017;143:269–277. doi: 10.1016/j.antiviral.2017.01.009. PubMed DOI
Crump R., Korom M., Buller R.M., Parker S. Buccal viral DNA as a trigger for brincidofovir therapy in the mousepox model of smallpox. Antivir. Res. 2017;139:112–116. doi: 10.1016/j.antiviral.2016.12.015. PubMed DOI PMC
Grossi I.M., Foster S.A., Gainey M.R., Krile R.T., Dunn J.A., Brundage T., Khouri J.M. Efficacy of delayed brincidofovir treatment against a lethal rabbitpox virus challenge in New Zealand White rabbits. Antivir. Res. 2017;143:278–286. doi: 10.1016/j.antiviral.2017.04.002. PubMed DOI
Arita I. Discovery of forgotten variola specimens at the National Institutes of Health in the USA. Expert Rev. Anti-Infect. Ther. 2014;12:1419–1421. doi: 10.1586/14787210.2014.979157. PubMed DOI
Gómez-Tatay L., Hernández-Andreu J.M. Biosafety and biosecurity in synthetic biology: A review. Crit. Rev. Environ. Sci. Technol. 2019;49:1587–1621. doi: 10.1080/10643389.2019.1579628. DOI
Esparza J., Schrick L., Damaso C.R., Nitsche A. Equination (inoculation of horsepox): An early alternative to vaccination (inoculation of cowpox) and the potential role of horsepox virus in the origin of the smallpox vaccine. Vaccine. 2017;35:7222–7230. doi: 10.1016/j.vaccine.2017.11.003. PubMed DOI
Schoepp R.J., Morin M.D., Martinez M.J., Kulesh D.A., Hensley L., Geisbert T.W., Brady D.R., Jahrling P.B. Detection and identification of Variola virus in fixed human tissue after prolonged archival storage. Lab. Investig. 2004;84:41–48. doi: 10.1038/labinvest.3700008. PubMed DOI
Berche P. The threat of smallpox and bioterrorism. Trends Microbiol. 2001;9:15–18. doi: 10.1016/S0966-842X(00)01855-2. PubMed DOI
Chen D., Qi E.Y. Innovative highlights of clinical drug trial design. Transl. Res. 2020;224:71–77. doi: 10.1016/j.trsl.2020.05.007. PubMed DOI PMC
Mucker E.M., Goff A.J., Shamblin J.D., Grosenbach D.W., Damon I.K., Mehal J.M., Holman R.C., Carroll D., Gallardo N., Olson V.A., et al. Efficacy of Tecovirimat (ST-246) in Nonhuman Primates Infected with Variola Virus (Smallpox) Antimicrob. Agents Chemother. 2013;57:6246–6253. doi: 10.1128/AAC.00977-13. PubMed DOI PMC
Caillat C., Topalis D., Agrofoglio L.A., Pochet S., Balzarini J., Deville-Bonne D., Meyer P. Crystal structure of poxvirus thymidylate kinase: An unexpected dimerization has implications for antiviral therapy. Proc. Natl. Acad. Sci. USA. 2008;105:16900–16905. doi: 10.1073/pnas.0804525105. PubMed DOI PMC
Auvynet C., Topalis D., Caillat C., Munier-Lehmann H., Seclaman E., Balzarini J., Agrofoglio L.A., Kaminski P.A., Meyer P.R., Deville-Bonne D., et al. Phosphorylation of dGMP analogs by vaccinia virus TMP kinase and human GMP kinase. Biochem. Biophys. Res. Commun. 2009;388:6–11. doi: 10.1016/j.bbrc.2009.07.089. PubMed DOI
Topalis D., Collinet B., Gasse C., Dugué L., Balzarini J., Pochet S., Deville-Bonne D. Substrate specificity of vaccinia virus thymidylate kinase. FEBS J. 2005;272:6254–6265. doi: 10.1111/j.1742-4658.2005.05006.x. PubMed DOI
Cui Q., Shin W.S., Luo Y., Tian J., Cui H., Yin D. Thymidylate Kinase: An Old Topic Brings New Perspectives. Curr. Med. Chem. 2013;20:1286–1305. doi: 10.2174/0929867311320100006. PubMed DOI
Irwin C.R., Hitt M.M., Evans D.H. Targeting Nucleotide Biosynthesis: A Strategy for Improving the Oncolytic Potential of DNA Viruses. Front. Oncol. 2017;7:229. doi: 10.3389/fonc.2017.00229. PubMed DOI PMC
El Omari K., Solaroli N., Karlsson A., Balzarini J., Stammers D.K. Structure of vaccinia virus thymidine kinase in complex with dTTP: Insights for drug design. BMC Struct. Biol. 2006;6:22. doi: 10.1186/1472-6807-6-22. PubMed DOI PMC
Solaroli N., Johansson M., Persoons L., Balzarini J., Karlsson A. Substrate specificity of feline and canine herpesvirus thymidine kinase. Antivir. Res. 2008;79:128–132. doi: 10.1016/j.antiviral.2008.03.003. PubMed DOI
Baker R.O., Bray M., Huggins J.W. Potential antiviral therapeutics for smallpox, monkeypox and other orthopoxvirus infections. Antivir. Res. 2003;57:13–23. doi: 10.1016/S0166-3542(02)00196-1. PubMed DOI PMC
Bray M. Pathogenesis and potential antiviral therapy of complications of smallpox vaccination. Antivir. Res. 2003;58:101–114. doi: 10.1016/S0166-3542(03)00008-1. PubMed DOI
Bursulaya B.D., Totrov M., Abagyan R., Brooks C.L., III Comparative study of several algorithms for flexible ligand docking. J. Comput. Aided Mol. Des. 2003;17:755–763. doi: 10.1023/B:JCAM.0000017496.76572.6f. PubMed DOI
Huang S.-Y., Zou X. Advances and Challenges in Protein-Ligand Docking. Int. J. Mol. Sci. 2010;11:3016–3034. doi: 10.3390/ijms11083016. PubMed DOI PMC
Wang C., Greene D.A., Xiao L., Qi R., Luo R. Recent Developments and Applications of the MMPBSA Method. Front. Mol. Biosci. 2018;4:87. doi: 10.3389/fmolb.2017.00087. PubMed DOI PMC
Genheden S., Kuhn O., Mikulskis P., Hoffmann D., Ryde U. The normal-mode entropy in the MM/GBSA method: Effect of system truncation, buffer region, and dielectric constant. J. Chem. Inf. Model. 2012;52:2079–2088. doi: 10.1021/ci3001919. PubMed DOI
Kumari R., Kumar R., Lynn A., Open Source Drug Discovery Consortium G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014;54:1951–1962. doi: 10.1021/ci500020m. PubMed DOI
Kar P., Lipowsky R., Knecht V. Importance of Polar Solvation and Configurational Entropy for Design of Antiretroviral Drugs Targeting HIV-1 Protease. J. Phys. Chem. B. 2013;117:5793–5805. doi: 10.1021/jp3085292. PubMed DOI
Evertts A.G., Zee B.M., Garcia B.A. Modern approaches for investigating epigenetic signaling pathways. J. Appl. Physiol. 2010;109:927–933. doi: 10.1152/japplphysiol.00007.2010. PubMed DOI PMC
Norambuena T., Melo F. The Protein-DNA Interface database. BMC Bioinform. 2010;11:1–12. doi: 10.1186/1471-2105-11-262. PubMed DOI PMC
Shao Y., Molnar L.F., Jung Y., Kussmann J., Ochsenfeld C., Brown S.T., Gilbert A.T., Slipchenko L.V., Levchenko S.V., O’Neill D.P., et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 2006;8:3172–3191. doi: 10.1039/B517914A. PubMed DOI
Luscombe N.M., Austin S.E., Berman H.M., Thornton J.M. An overview of the structures of protein-DNA complexes. Genome Biol. 2000;1:REVIEWS001. doi: 10.1186/gb-2000-1-1-reviews001. PubMed DOI PMC
Jayaram B., Sprous D., Young M., Beveridge D.L. Free Energy Analysis of the Conformational Preferences of A and B Forms of DNA in Solution. J. Am. Chem. Soc. 1998;120:10629–10633. doi: 10.1021/ja981307p. DOI
Bren U., Martínek V., Florián J. Decomposition of the Solvation Free Energies of Deoxyribonucleoside Triphosphates Using the Free Energy Perturbation Method. J. Phys. Chem. B. 2006;110:12782–12788. doi: 10.1021/jp056623m. PubMed DOI
Bren M., Florián J., Mavri J., Bren U. Do all pieces make a whole? Thiele cumulants and the free energy decomposition. Theor. Chem. Acc. 2007;117:535–540. doi: 10.1007/s00214-007-0264-z. DOI
Swain M. chemicalize.org. J. Chem. Inf. Model. 2012;52:613–615. doi: 10.1021/ci300046g. DOI
Poli G., Granchi C., Rizzolio F., Tuccinardi T. Application of MM-PBSA Methods in Virtual Screening. Molecules. 2020;25:1971. doi: 10.3390/molecules25081971. PubMed DOI PMC
Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004;1:337–341. doi: 10.1016/j.ddtec.2004.11.007. PubMed DOI
Rocha G.B., Freire R.O., Simas A.M., Stewart J.J.P. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Comput. Chem. 2006;27:1101–1111. doi: 10.1002/jcc.20425. PubMed DOI
Gonçalves A.D.S., França T.C.C., Figueroa-Villar J.D., Pascutti P.G. Conformational Analysis of Toxogonine, TMB-4 and HI-6 using PM6 and RM1 methods. J. Braz. Chem. Soc. 2010;21:179–184. doi: 10.1590/S0103-50532010000100025. DOI
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Thomsen R., Christensen M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI
Kaminski G.A., Friesner R.A., Tirado-Rives J., Jorgensen W.L. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides†. J. Phys. Chem. B. 2001;105:6474–6487. doi: 10.1021/jp003919d. DOI
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. –GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Byrd R.H., Lu P., Nocedal J., Zhu C. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM J. Sci. Comput. 1995;16:1190–1208. doi: 10.1137/0916069. DOI
Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Da Silva A.W.S., Vranken W.F. ACPYPE-Antechamber python parser interface. BMC Res. Notes. 2012;5:367. doi: 10.1186/1756-0500-5-367. PubMed DOI PMC