• This record comes from PubMed

In Silico Studies of Potential Selective Inhibitors of Thymidylate Kinase from Variola virus

. 2021 Oct 09 ; 14 (10) : . [epub] 20211009

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
VT2019-2021 UHK CEP Register
308225/2018-0 Brazilian agencies Conselho Nacional de Pesquisa (CNPq)
E-02/202.961/2017 Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)
FN HK 00179906 Ministry of Health of the Czech Republic
PROGRES Q40 Charles University in Prague, Czech Republic

Continuing the work developed by our research group, in the present manuscript, we performed a theoretical study of 10 new structures derived from the antivirals cidofovir and ribavirin, as inhibitor prototypes for the enzyme thymidylate kinase from Variola virus (VarTMPK). The proposed structures were subjected to docking calculations, molecular dynamics simulations, and free energy calculations, using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, inside the active sites of VarTMPK and human TMPK (HssTMPK). The docking and molecular dynamic studies pointed to structures 2, 3, 4, 6, and 9 as more selective towards VarTMPK. In addition, the free energy data calculated through the MM-PBSA method, corroborated these results. This suggests that these compounds are potential selective inhibitors of VarTMPK and, thus, can be considered as template molecules to be synthesized and experimentally evaluated against smallpox.

See more in PubMed

Russo A.T., Berhanu A., Bigger C.B., Prigge J., Silvera P.M., Grosenbach D.W., Hruby D. Co-administration of tecovirimat and ACAM2000™ in non-human primates: Effect of tecovirimat treatment on ACAM2000 immunogenicity and efficacy versus lethal monkeypox virus challenge. Vaccine. 2020;38:644–654. doi: 10.1016/j.vaccine.2019.10.049. PubMed DOI PMC

Chan-Tack K.M., Harrington P.R., Choi S.-Y., Myers L., O’Rear J., Seo S., McMillan D., Ghantous H., Birnkrant D., Sherwat A.I. Assessing a drug for an eradicated human disease: US Food and Drug Administration review of tecovirimat for the treatment of smallpox. Lancet Infect. Dis. 2019;19:e221–e224. doi: 10.1016/S1473-3099(18)30788-6. PubMed DOI

Bastos L.D.C., De Souza F.R., Guimarães A.P., Sirouspour M., Guizado T.R.C., Forgione P., Ramalho T.C., França T.C.C. Virtual screening, docking, and dynamics of potential new inhibitors of dihydrofolate reductase from Yersinia pestis. J. Biomol. Struct. Dyn. 2016;34:2184–2198. doi: 10.1080/07391102.2015.1110832. PubMed DOI

Guimarães A.P., de Souza F.R., Oliveira A.A., Gonçalves A.S., de Alencastro R.B., Ramalho T.C., França T.C.C. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox. Eur. J. Med. Chem. 2015;91:72–90. doi: 10.1016/j.ejmech.2014.09.099. PubMed DOI

Trost L.C., Rose M.L., Khouri J., Keilholz L., Long J., Godin S.J., Foster S.A. The efficacy and pharmacokinetics of brincidofovir for the treatment of lethal rabbitpox virus infection: A model of smallpox disease. Antivir. Res. 2015;117:115–121. doi: 10.1016/j.antiviral.2015.02.007. PubMed DOI

Damon I.K., Damaso C.R., McFadden G. Are We There Yet? The Smallpox Research Agenda Using Variola Virus. PLoS Pathog. 2014;10:e1004108. doi: 10.1371/journal.ppat.1004108. PubMed DOI PMC

Guimarães A.P., Ramalho T.C., França T.C.C. Preventing the return of smallpox: Molecular modeling studies on thymidylate kinase fromVariola virus. J. Biomol. Struct. Dyn. 2014;32:1601–1612. doi: 10.1080/07391102.2013.830578. PubMed DOI PMC

Prichard M.N., Kern E.R. Orthopoxvirus targets for the development of new antiviral agents. Antivir. Res. 2012;94:111–125. doi: 10.1016/j.antiviral.2012.02.012. PubMed DOI PMC

Garcia D.R., De Souza F.R., Guimarães A.P., Ramalho T.C., De Aguiar A.P., França T.C.C. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox: Part II. J. Biomol. Struct. Dyn. 2019;37:4569–4579. doi: 10.1080/07391102.2018.1554510. PubMed DOI PMC

Merchlinsky M., Albright A., Olson V., Schiltz H., Merkeley T., Hughes C., Petersen B., Challberg M. The development and approval of tecoviromat (TPOXX®), the first antiviral against smallpox. Antivir. Res. 2019;168:168–174. doi: 10.1016/j.antiviral.2019.06.005. PubMed DOI PMC

Nuth M., Guan H., Xiao Y., Kulp J.L., III, Parker M.H., Strobel E.D., Isaacs S.N., Scott R.W., Reitz A.B., Ricciardi R.P. Mutation and structure guided discovery of an antiviral small molecule that mimics an essential C-Terminal tripeptide of the vaccinia D4 processivity factor. Antivir. Res. 2018;162:178–185. doi: 10.1016/j.antiviral.2018.12.011. PubMed DOI PMC

Chaudhuri S., Symons J.A., Deval J. Innovation and trends in the development and approval of antiviral medicines: 1987–2017 and beyond. Antivir. Res. 2018;155:76–88. doi: 10.1016/j.antiviral.2018.05.005. PubMed DOI PMC

Noyce R.S., Lederman S., Evans D.H. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS ONE. 2018;13:e0188453. doi: 10.1371/journal.pone.0188453. PubMed DOI PMC

Chittick G., Morrison M., Brundage T., Nichols W.G. Short-term clinical safety profile of brincidofovir: A favorable benefit–risk proposition in the treatment of smallpox. Antivir. Res. 2017;143:269–277. doi: 10.1016/j.antiviral.2017.01.009. PubMed DOI

Crump R., Korom M., Buller R.M., Parker S. Buccal viral DNA as a trigger for brincidofovir therapy in the mousepox model of smallpox. Antivir. Res. 2017;139:112–116. doi: 10.1016/j.antiviral.2016.12.015. PubMed DOI PMC

Grossi I.M., Foster S.A., Gainey M.R., Krile R.T., Dunn J.A., Brundage T., Khouri J.M. Efficacy of delayed brincidofovir treatment against a lethal rabbitpox virus challenge in New Zealand White rabbits. Antivir. Res. 2017;143:278–286. doi: 10.1016/j.antiviral.2017.04.002. PubMed DOI

Arita I. Discovery of forgotten variola specimens at the National Institutes of Health in the USA. Expert Rev. Anti-Infect. Ther. 2014;12:1419–1421. doi: 10.1586/14787210.2014.979157. PubMed DOI

Gómez-Tatay L., Hernández-Andreu J.M. Biosafety and biosecurity in synthetic biology: A review. Crit. Rev. Environ. Sci. Technol. 2019;49:1587–1621. doi: 10.1080/10643389.2019.1579628. DOI

Esparza J., Schrick L., Damaso C.R., Nitsche A. Equination (inoculation of horsepox): An early alternative to vaccination (inoculation of cowpox) and the potential role of horsepox virus in the origin of the smallpox vaccine. Vaccine. 2017;35:7222–7230. doi: 10.1016/j.vaccine.2017.11.003. PubMed DOI

Schoepp R.J., Morin M.D., Martinez M.J., Kulesh D.A., Hensley L., Geisbert T.W., Brady D.R., Jahrling P.B. Detection and identification of Variola virus in fixed human tissue after prolonged archival storage. Lab. Investig. 2004;84:41–48. doi: 10.1038/labinvest.3700008. PubMed DOI

Berche P. The threat of smallpox and bioterrorism. Trends Microbiol. 2001;9:15–18. doi: 10.1016/S0966-842X(00)01855-2. PubMed DOI

Chen D., Qi E.Y. Innovative highlights of clinical drug trial design. Transl. Res. 2020;224:71–77. doi: 10.1016/j.trsl.2020.05.007. PubMed DOI PMC

Mucker E.M., Goff A.J., Shamblin J.D., Grosenbach D.W., Damon I.K., Mehal J.M., Holman R.C., Carroll D., Gallardo N., Olson V.A., et al. Efficacy of Tecovirimat (ST-246) in Nonhuman Primates Infected with Variola Virus (Smallpox) Antimicrob. Agents Chemother. 2013;57:6246–6253. doi: 10.1128/AAC.00977-13. PubMed DOI PMC

Caillat C., Topalis D., Agrofoglio L.A., Pochet S., Balzarini J., Deville-Bonne D., Meyer P. Crystal structure of poxvirus thymidylate kinase: An unexpected dimerization has implications for antiviral therapy. Proc. Natl. Acad. Sci. USA. 2008;105:16900–16905. doi: 10.1073/pnas.0804525105. PubMed DOI PMC

Auvynet C., Topalis D., Caillat C., Munier-Lehmann H., Seclaman E., Balzarini J., Agrofoglio L.A., Kaminski P.A., Meyer P.R., Deville-Bonne D., et al. Phosphorylation of dGMP analogs by vaccinia virus TMP kinase and human GMP kinase. Biochem. Biophys. Res. Commun. 2009;388:6–11. doi: 10.1016/j.bbrc.2009.07.089. PubMed DOI

Topalis D., Collinet B., Gasse C., Dugué L., Balzarini J., Pochet S., Deville-Bonne D. Substrate specificity of vaccinia virus thymidylate kinase. FEBS J. 2005;272:6254–6265. doi: 10.1111/j.1742-4658.2005.05006.x. PubMed DOI

Cui Q., Shin W.S., Luo Y., Tian J., Cui H., Yin D. Thymidylate Kinase: An Old Topic Brings New Perspectives. Curr. Med. Chem. 2013;20:1286–1305. doi: 10.2174/0929867311320100006. PubMed DOI

Irwin C.R., Hitt M.M., Evans D.H. Targeting Nucleotide Biosynthesis: A Strategy for Improving the Oncolytic Potential of DNA Viruses. Front. Oncol. 2017;7:229. doi: 10.3389/fonc.2017.00229. PubMed DOI PMC

El Omari K., Solaroli N., Karlsson A., Balzarini J., Stammers D.K. Structure of vaccinia virus thymidine kinase in complex with dTTP: Insights for drug design. BMC Struct. Biol. 2006;6:22. doi: 10.1186/1472-6807-6-22. PubMed DOI PMC

Solaroli N., Johansson M., Persoons L., Balzarini J., Karlsson A. Substrate specificity of feline and canine herpesvirus thymidine kinase. Antivir. Res. 2008;79:128–132. doi: 10.1016/j.antiviral.2008.03.003. PubMed DOI

Baker R.O., Bray M., Huggins J.W. Potential antiviral therapeutics for smallpox, monkeypox and other orthopoxvirus infections. Antivir. Res. 2003;57:13–23. doi: 10.1016/S0166-3542(02)00196-1. PubMed DOI PMC

Bray M. Pathogenesis and potential antiviral therapy of complications of smallpox vaccination. Antivir. Res. 2003;58:101–114. doi: 10.1016/S0166-3542(03)00008-1. PubMed DOI

Bursulaya B.D., Totrov M., Abagyan R., Brooks C.L., III Comparative study of several algorithms for flexible ligand docking. J. Comput. Aided Mol. Des. 2003;17:755–763. doi: 10.1023/B:JCAM.0000017496.76572.6f. PubMed DOI

Huang S.-Y., Zou X. Advances and Challenges in Protein-Ligand Docking. Int. J. Mol. Sci. 2010;11:3016–3034. doi: 10.3390/ijms11083016. PubMed DOI PMC

Wang C., Greene D.A., Xiao L., Qi R., Luo R. Recent Developments and Applications of the MMPBSA Method. Front. Mol. Biosci. 2018;4:87. doi: 10.3389/fmolb.2017.00087. PubMed DOI PMC

Genheden S., Kuhn O., Mikulskis P., Hoffmann D., Ryde U. The normal-mode entropy in the MM/GBSA method: Effect of system truncation, buffer region, and dielectric constant. J. Chem. Inf. Model. 2012;52:2079–2088. doi: 10.1021/ci3001919. PubMed DOI

Kumari R., Kumar R., Lynn A., Open Source Drug Discovery Consortium G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014;54:1951–1962. doi: 10.1021/ci500020m. PubMed DOI

Kar P., Lipowsky R., Knecht V. Importance of Polar Solvation and Configurational Entropy for Design of Antiretroviral Drugs Targeting HIV-1 Protease. J. Phys. Chem. B. 2013;117:5793–5805. doi: 10.1021/jp3085292. PubMed DOI

Evertts A.G., Zee B.M., Garcia B.A. Modern approaches for investigating epigenetic signaling pathways. J. Appl. Physiol. 2010;109:927–933. doi: 10.1152/japplphysiol.00007.2010. PubMed DOI PMC

Norambuena T., Melo F. The Protein-DNA Interface database. BMC Bioinform. 2010;11:1–12. doi: 10.1186/1471-2105-11-262. PubMed DOI PMC

Shao Y., Molnar L.F., Jung Y., Kussmann J., Ochsenfeld C., Brown S.T., Gilbert A.T., Slipchenko L.V., Levchenko S.V., O’Neill D.P., et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 2006;8:3172–3191. doi: 10.1039/B517914A. PubMed DOI

Luscombe N.M., Austin S.E., Berman H.M., Thornton J.M. An overview of the structures of protein-DNA complexes. Genome Biol. 2000;1:REVIEWS001. doi: 10.1186/gb-2000-1-1-reviews001. PubMed DOI PMC

Jayaram B., Sprous D., Young M., Beveridge D.L. Free Energy Analysis of the Conformational Preferences of A and B Forms of DNA in Solution. J. Am. Chem. Soc. 1998;120:10629–10633. doi: 10.1021/ja981307p. DOI

Bren U., Martínek V., Florián J. Decomposition of the Solvation Free Energies of Deoxyribonucleoside Triphosphates Using the Free Energy Perturbation Method. J. Phys. Chem. B. 2006;110:12782–12788. doi: 10.1021/jp056623m. PubMed DOI

Bren M., Florián J., Mavri J., Bren U. Do all pieces make a whole? Thiele cumulants and the free energy decomposition. Theor. Chem. Acc. 2007;117:535–540. doi: 10.1007/s00214-007-0264-z. DOI

Swain M. chemicalize.org. J. Chem. Inf. Model. 2012;52:613–615. doi: 10.1021/ci300046g. DOI

Poli G., Granchi C., Rizzolio F., Tuccinardi T. Application of MM-PBSA Methods in Virtual Screening. Molecules. 2020;25:1971. doi: 10.3390/molecules25081971. PubMed DOI PMC

Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004;1:337–341. doi: 10.1016/j.ddtec.2004.11.007. PubMed DOI

Rocha G.B., Freire R.O., Simas A.M., Stewart J.J.P. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Comput. Chem. 2006;27:1101–1111. doi: 10.1002/jcc.20425. PubMed DOI

Gonçalves A.D.S., França T.C.C., Figueroa-Villar J.D., Pascutti P.G. Conformational Analysis of Toxogonine, TMB-4 and HI-6 using PM6 and RM1 methods. J. Braz. Chem. Soc. 2010;21:179–184. doi: 10.1590/S0103-50532010000100025. DOI

Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC

Thomsen R., Christensen M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI

Kaminski G.A., Friesner R.A., Tirado-Rives J., Jorgensen W.L. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides†. J. Phys. Chem. B. 2001;105:6474–6487. doi: 10.1021/jp003919d. DOI

Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. –GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Byrd R.H., Lu P., Nocedal J., Zhu C. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM J. Sci. Comput. 1995;16:1190–1208. doi: 10.1137/0916069. DOI

Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Da Silva A.W.S., Vranken W.F. ACPYPE-Antechamber python parser interface. BMC Res. Notes. 2012;5:367. doi: 10.1186/1756-0500-5-367. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...