Microbiota, Phagocytic Activity, Biochemical Parameters and Parasite Control in Horses with Application of Autochthonous, Bacteriocin-Producing, Probiotic Strain Enterococcus faecium EF 412
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35119612
DOI
10.1007/s12602-022-09918-4
PII: 10.1007/s12602-022-09918-4
Knihovny.cz E-zdroje
- Klíčová slova
- Beneficial strain, Biochemical parameters, Health, Horses, Microbiota, Parasites,
- MeSH
- bakteriociny * metabolismus MeSH
- Enterococcus faecium * metabolismus MeSH
- feces mikrobiologie MeSH
- koně MeSH
- kontrola infekčních nemocí MeSH
- mikrobiota * MeSH
- probiotika * metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriociny * MeSH
The beneficial influence of bacteriocin-producing, probiotic, mostly non-autochthonous bacteria has already been reported in various animals. However, their use in horses provides limited information, and results with autochthonous bacteria have not been reported. Therefore, the main objective of this model study was to test the effect of autochthonous, bacteriocin-producing faecal strain Enterococcus faecium EF 412 application in horses. One gram of freeze-dried EF 412 strain (109 CFU/mL for 21 days) was applied to horses in a small feed ball. Clinically healthy horses (12), Slovak warm-blood breed of various ages (5-13 years), were involved in a 35-day-long experiment, also functioning as control for themselves. They were stabled in separate boxes (university property), fed twice a day (hay, whole oats or grazed) with water access ad libitum. Sampling was performed at the start of the experiment, i.e. at days 0/1, 21 (3 weeks of EF 412 application) and at day 35 (2 weeks of EF 412 cessation). EF 412 colonized GIT of horses was 3.54 ± 0.75 CFU/g (log 10) at day 21. The eggs of the nematode Strongylus spp. were not found in horses after EF 412 application, and Eimeria spp. oocysts were similarly not found. The other microbiota were not reduced as evaluated by the use of standard method. Using next-generation sequencing, at phylum level, phyla Bacteroidetes and Firmicutes dominated and at family level, they were Bacteroidales BS11 and S24-7 gut goups and Lentisphaerae. In horses, the increasing tendency in phagocytic activity was noted after EF 412 application. Biochemical parameters were in the physiological range. Total protein value was significantly decreased at day 21 compared with day 0/1 as well as with day 35 (P < 0.05). Cholesterol and triglycerides were influenced (decreased) at day 21 compared with day 0/1 and day 35. Neither nematode eggs Strongylus spp. nor Eimeria spp. oocysts were found in faeces after EF 412 application. Autochthonous, faecal strain E. faecium EF 412 showed promising application potential.
Faculty of Science RECETOX Masaryk University Kotlárska 2 625 00 Brno Czech Republic
University of Veterinary Medicine and Pharmacy Komenského 73 041 83 Košice Slovakia
Zobrazit více v PubMed
Cho I, Blaser MJ (2012) The human microbiome; at the interface of health and disease. Nat Rev Genet 13:260–270 DOI
Cooke CG, Zamira Gibb, Harnett JE (2021) The safety, tolerability and efficacy of probiotic bacteria for equine use. J Equine Vet Sci 99:103407. https://doi.org/10.1016/j.jevs.2021.103407 DOI
Antisari LV, Carbone S, Gatti A, Ferrando S, Nacucchi M, de Pascalis F et al (2016) Effect of cobalt and silver nanoparticles and ions on Lumbricus rubellus health and on microbial community of earthworm faeces and soil. Appl Soil Ecol 108:62–71 DOI
Pogány Simonová M, Chrastinová Ľ, Lauková A (2020) Autochtonous strain Enterococcus faecium EF 2019 (CCM 7420), its bacteriocin and their beneficial effects in broiler rabbits-a review. Animals 10:1188. https://doi.org/10.3390/ani10071188 DOI
Vargová M, Hurníková Z, Revajová V, Lauková A, Dvorožňáková E (2020) Probiotic bacteria can modulate murine macrophages superoxide procduction in Trichinella spiralis infection. Helminthologia 57:226–234. https://doi.org/10.2478/helm-2020-0024 DOI
Pogány Simonová M, Chrastinová Ľ, Kandričáková A, Gancarčíková S, Bino E, Plachá I, Ščerbová J, Strompfová V, Žitňan R, Lauková A (2020) Can enterocin M in combination with sage extract have beneficial effe ct on microbiota, blood biochemistry, phagocytic activity and jejunal morphometry in broiler rabbits?. Animals 10:115. https://doi.org/10.3390/ani10010115 DOI
Mareková M, Lauková A, De Vuyst L, Skaugen M, Nes IF (2003) Partial characteriyation of bacteriocins produced by environmental strain Enterococcus faecium EK13. J Appl Microbiol 94:523–530. https://doi.org/10.1007/S12602.2003 DOI
Mareková M, Lauková A, Skaugen M, Nes IF (2007) Isolation and characterization of a new bacteriocin, termed enterocin M, produced by environmental isolate Enterococcus faecium AL41. J Ind Microbiol Biotechnol 34: 533–537. https://doi.org/10.1007/s10295-007-0226-4
Franz CHMAP, van Belkum MJ, Holzapfel WH, Abriouel H, Gálvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310. https://doi.org/10.1111/j.1574-6976.2007.0004.x DOI
Nes IF, Diep DB, Moss MO (2014) Enterococcal bacteriocins and antimicrobial proteins that contribute to niche control. In Enterococci from commensals to leading of drug resistant infection. 1–34
Kubašová I, Diep Dzung D, Ovčinnikov KV, Lauková A, Strompfová V (2020) Bacteriocin production and distribution of bacteriocin-encoding genes in enterococci from dogs. In. J Antimicrob Agents 55:105859. https://doi.org/10.1016/j.ijantimicag.2019.11.016 DOI
Foulquié Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L (2006) The role and application of enterococci in food and health. Int J Food Microbiol 1061–24.
Lauková A, Styková E, Kubašová I, Gancarčíková S, Plachá I, Mudroňová D, Kandričáková A, Miltko R, Belzecki G, Valocký I, Strompfová V (2018) Enterocin M and its beneficial effects in horses-pilot experiment. Prob Antimicro Prot 10:420–426. https://doi.org/10.1007/s12602-018-9390-2 DOI
Lauková A, Chrastinová Ľ, Pogány Simonová M, Strompfová V, Plachá I, Čobanová K, Formelová Z, Chrenková M, Ondruška Ľ (2012) Enterococcus faecium AL41: Its Enterocin M and their beneficial use in rabbits husbandry. Prob Antimicro Prot 4:243–249. https://doi.org/10.1007/s12602-012-9118-7 DOI
Revajová V, Karaffová V, Levkutová M, Šefcová M, LaukováA, Levkut M (2020) Reaction of immune cells to Campylobacter jejuni in chicken PBMC treated by different probiotic bacteria in vitro. Appro Poultry Dairy Vet 7:649654. https://doi.org/10.31031/APDV.2020.07.000665
Lauková A, Simonová M, Strompfová V, Štyriak I, Ouwehand AC, Várady M (2008) Potential of enterococci isolated from horses. Anaerobe 14:234–236 DOI
Franz CHMAP, Huch M, Abriouel H, Holzapfel W, Gálvéz A (2011) Enterococci as probiotics and their implication in food safety. Int J Food Microbiol 15:125–140. https://doi.org/10.1016/j.ijfoodmicro.2011.08.014 DOI
Lauková A, Styková E, Kubašová I, Strompfová V, Gancarčíková S, Plachá I, Miltko R, Belzecki G, Valocký I, Pogány Simonová M (2020) Enterocin M-producing Enterococcus faecium CCM 8558 demonstrating probiotic properties in horses. Prob Antimicro Prot 12:1555–1561. https://doi.org/10.1007/s12602-020-09655-6 DOI
Bolger AM, Lohse Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinfor 30:2114–20 DOI
Aronesty E, ea-utils (2011) Command-line tools for processing biological sequencing data. https://github.com/ExpressionAnalysis/ea-utils
Edgar R (2010) Search and clustering orders of magnitude faster than BLAST. Bioinfor 26:2460–2461 DOI
Caporaso JG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Meth 7:335–336. https://doi.org/10.1038/nmeth.f.303
Quast C (2013) SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res 41:D590–D596 DOI
Alatoom AA, Cunningham SA, Ihde S, Mandrekar J, Patel R (2011) Comparison of direct colony method versus extraction method for identification of Gram-positive cocci by use of Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:2868–2873. ISSN:0095–1137
Vetvička V, Farnousek L, Kopeček J, Kaminková J, Kašpárek L, Vránová M (1982) Phagocytosis of human blood leucocytes, a simple micromethod. Immunol Lett 5:97–100 DOI
Master Mac (1986) Modified MacMaster egg counting for quantification of nematode eggs. Ministry of Agriculture and Fishing, London
Kováčik A, Arvay J, Tušimová E, Harangozó Ľ, Tvrdá E, Zbynovská K, Cupka P, Andrašovská Š, Tomas J, Massányi P (2017) Seasonal variations in the blood concentration of selected heavy metals in sheep and their effects on the biochemical and hematological parameters. Chemosphere 168:365–371
Kolesárová A, Capcarová M, Arpášová H, Kalafová A, Massányi P, Lukáč N, Kováčik J, Schneidgenová M (2008) Nickel induced blood biochemistry alterations in hens after an experimental per oral administration. Environ Sci Health Pt.B 43:625–632
Weese JS, Anderson ME, Lowe A, Monteith GJ (2003) Preliminary investigations of the probiotic potential of Lactobacillus rhamnosus strain GG in horses:fecal recovery following oral administration and safety. Can Vet J 44:299–302
Yuyama TYS, Takai S, Kado Y, Morotomi M (2004) Evaluation of a host-specific lactobacillus probiotic in neonatal foals. Int J Appl Res Vet Med 2:26–33
Weese JS, Roussuoe J (2005) Evaluation of Lactobacillus pentosus WE7 for prevention of diarrhoea in neonatal foals. Jawma-J AmVet Med Assoc 226:2031–2034
Schoster A, Staempfli HR, Abrahams M, Jalali M, Weese JS, Guardabassi L (2015) Effect of a probiotic on prevention of diarrhoea and Clostridium difficile and Cl. perfringens hedding in foals. J Vet Int Med 29:925–931 DOI
Theelen MJP, Roosmarijn ECL, Wagenaar JA, Sloet van Oldriutenborgh-Oosterbaan MM, Rossen JWA, Zomer AL (2021) The equine faecal microbiota of healthy horses and ponies in the Netherlands: Impact of host and environmental factors. Animals 11:1762. https://doi.org/10.3390/ani11061762 DOI
Rolot M, Dewals BG (2018) Macrophage activation and functions during helminth infection: Recent advances from the laboratory mouse. J Immunol Res Article ID 2790627. https://doi.org/10.1155/2018/2790627
Szabóová R, Lauková A, Herich R, Tarabová L, Chrastinová Ľ, Faixová Z, Maková Z, Piešová E (2021) The effect of dietary supplementation of sage plant extract and Enterocin M on the mucus in the small intestine and caecum in rabbits. Pol J Vet Sci 24:23–28
Gálik B, Bíro D, Halo M, Juráček M, Šimko M, Massányi P, Rolinec M (2012) The effect of different macromineral intakes on mineral metabolism of sport horses. Acta Vet Brno 81:113–117. https://doi.org/10.2754/avb201281020113 DOI
European Food Safety Authority (EFSA) (2016) EFSA assessment of heath claim on probiotic panel on Dietetic products, nutrition and allergy. EFSA J 14:38
Piskoríková M (2010) Quality and characterization of existing and new probiotics (EFSA QPS). In Proceedings of regulatory Framework Workshop Heath Claim Approval of Probiotics in the European union. Issues, Barriers, Success Drivers, Kosice, Slovakia