Estimating Growth in Height from Limited Longitudinal Growth Data Using Full-Curves Training Dataset: A Comparison of Two Procedures of Curve Optimization-Functional Principal Component Analysis and SITAR

. 2021 Oct 18 ; 8 (10) : . [epub] 20211018

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34682199

Grantová podpora
TL01000394 Technology Agency of the Czech Republic

A variety of models are available for the estimation of parameters of the human growth curve. Several have been widely and successfully used with longitudinal data that are reasonably complete. On the other hand, the modeling of data for a limited number of observation points is problematic and requires the interpolation of the interval between points and often an extrapolation of the growth trajectory beyond the range of empirical limits (prediction). This study tested a new approach for fitting a relatively limited number of longitudinal data using the normal variation of human empirical growth curves. First, functional principal components analysis was done for curve phase and amplitude using complete and dense data sets for a reference sample (Brno Growth Study). Subsequently, artificial curves were generated with a combination of 12 of the principal components and applied for fitting to the newly analyzed data with the Levenberg-Marquardt optimization algorithm. The approach was tested on seven 5-points/year longitudinal data samples of adolescents extracted from the reference sample. The samples differed in their distance from the mean age at peak velocity for the sample and were tested by a permutation leave-one-out approach. The results indicated the potential of this method for growth modeling as a user-friendly application for practical applications in pediatrics, auxology and youth sport.

Zobrazit více v PubMed

Bock R.D., Wainer H., Petersen A., Thissen D., Murray J., Roche A. A Parameterization for Individual Human Growth Curves. Hum. Biol. 1973;45:63–80. PubMed

Preece M.A., Baines M.J. A New Family of Mathematical Models Describing the Human Growth Curve. Ann. Hum. Biol. 1978;5:1–24. doi: 10.1080/03014467800002601. PubMed DOI

Sayers A., Baines M., Tilling K. A New Family of Mathematical Models Describing the Human Growth Curve—Erratum: Direct Calculation of Peak Height Velocity, Age at Take-off and Associated Quantities. Ann. Hum. Biol. 2013;40:298–299. doi: 10.3109/03014460.2013.772655. PubMed DOI

Čuta M. Modelování Lidského Růstu. Dynamický Fenotyp. Akademické nakladatelství CERM; Brno, Czech Republic: 2014.

Karlberg J. A Biologically-Oriented Mathematical Model (ICP) for Human Growth. Acta Paediatr. 1989;78:70–94. doi: 10.1111/j.1651-2227.1989.tb11199.x. PubMed DOI

Karlberg J. On the Construction of the Infancy-Childhood-Puberty Growth Standard. Acta Paediatr. 2009;79:963–967. doi: 10.1111/j.1651-2227.1989.tb11237.x. PubMed DOI

Novák L., Kukla L., Čuta M. Child and Adolescent Longitudinal Growth Data Evaluation Using Logistic Curve Fitting with Use of the Dynamic Phenotype Method. Scr. Med. 2008;81:31–46.

Novák L., Kukla L., Zeman L. Characteristic Differences between the Growth of Man and the Other Animals. Prague Med. Rep. 2007;108:155–166. PubMed

Beath K.J. Infant Growth Modelling Using a Shape Invariant Model with Random Effects. Stat. Med. 2007;26:2547–2564. doi: 10.1002/sim.2718. PubMed DOI

Cole T.J., Pan H., Butler G.E. A Mixed Effects Model to Estimate Timing and Intensity of Pubertal Growth from Height and Secondary Sexual Characteristics. Ann. Hum. Biol. 2014;41:76–83. doi: 10.3109/03014460.2013.856472. PubMed DOI PMC

Cole T.J., Donaldson M.D.C., Ben-Shlomo Y. SITAR—A Useful Instrument for Growth Curve Analysis. Int. J. Epidemiol. 2010;39:1558–1566. doi: 10.1093/ije/dyq115. PubMed DOI PMC

Ramsay J.O., Silverman B.W. Functional Data Analysis. 2nd ed. Springer Science+Business Media, Inc.; New York, NY, USA: 2005.

Ramsay J.O., Hooker G., Graves S. Functional Data Analysis with R and MATLAB. Springer; Dordrecht, The Netherlands: Heidelberg, Germany: London, UK: New York, NY, USA: 2009.

Ramsay J.O., Silverman B.W. Applied Functional Data Analysis: Methods and Case Studies. 1st ed. Springer; Berlin/Heidelberg, Germany: New York, NY, USA: 2002.

Malina R.M., Claessens A.L., Van Aken K., Thomis M., Lefevre J., Philippaerts R., Beunen G.P. Maturity Offset in Gymnasts: Application of a Prediction Equation. Med. Sci. Sports Exerc. 2006;38:1342–1347. doi: 10.1249/01.mss.0000227321.61964.09. PubMed DOI

Philippaerts R.M., Vaeyens R., Janssens M., Van Renterghem B., Matthys D., Craen R., Bourgois J., Vrijens J., Beunen G., Malina R.M. The Relationship between Peak Height Velocity and Physical Performance in Youth Soccer Players. J. Sports Sci. 2006;24:221–230. doi: 10.1080/02640410500189371. PubMed DOI

Mirwald R.L., Baxter-Jones A.D.G., Bailey D.A., Beunen G.P. An Assessment of Maturity from Anthropometric Measurements. Med. Sci. Sports Exerc. 2002;34:689–694. doi: 10.1097/00005768-200204000-00020. PubMed DOI

Moore S.A., McKay H.A., Macdonald H., Nettlefold L., Baxter-Jones A.D.G., Cameron N., Brasher P.M.A. Enhancing a Somatic Maturity Prediction Model. Med. Sci. Sports Exerc. 2015;47:1755–1764. doi: 10.1249/MSS.0000000000000588. PubMed DOI

Malina R.M., Kozieł S.M., Králik M., Chrzanowska M., Suder A. Prediction of Maturity Offset and Age at Peak Height Velocity in a Longitudinal Series of Boys and Girls. Am. J. Hum. Biol. 2020:e23551. doi: 10.1002/ajhb.23551. PubMed DOI

Bouchalová M. Vývoj Během Dětství a Jeho Ovlivnění. Brněnská Růstová Studie. Avicenum, Zdravotnické nakladatelství; Praha, Czech Republic: 1987.

Bouchalová M. Sociální Poměry a Pořadí Dětí v Rodině Jako Činitelé Působící v Růstu Kojenců. Českoslov. Zdr. 1968;16:116–124. PubMed

Bouchalová M. Růst Dětí Za Růszných Sociálních a Biologických Podmínek. Českoslov. Pediatr. 1980;35:437–443. PubMed

Bouchalová M., Omelka F. Vývoj v Útlém Věku Podle Doby Kojení. Českoslov. Pediatr. 1970;25:545–547. PubMed

Moritz S., Bartz-Beielstein T. ImputeTS: Time Series Missing Value Imputation in R. R J. 2017;9:207–218. doi: 10.32614/RJ-2017-009. DOI

Johannesson T., Bjornsson H., Icelandic Met. Office. Grothendieck G. Stinepack: Stineman, a Consistently Well Behaved Method of Interpolation. 2018. [(accessed on 25 June 2020)]. Available online: https://CRAN.R-project.org/package=stinepack.

Stineman R.W. A Consistently Well Behaved Method of Interpolation. Creat. Comput. 1980;6:54–57.

Ramsay J.O., Graves S., Hooker G. fda: Functional Data Analysis. 2020. [(accessed on 25 September 2020)]. Available online: https://cran.r-project.org/web/packages/fda/index.html.

Kelley C.T. Iterative Methods for Optimization. Society for Industrial and Applied Mathematics; Philadelphia, PA, USA: 1999. Frontiers in Applied Mathematics.

Cole T. sitar: Super Imposition by Translation and Rotation Growth Curve Analysis. 2020. [(accessed on 20 June 2020)]. Available online: https://CRAN.R-project.org/package=sitar.

Lehnert B. BlandAltmanLeh: Plots (Slightly Extended) Bland-Altman Plots. R Package Version 0.3.1. 2015. [(accessed on 30 March 2021)]. Available online: https://CRAN.R-project.org/package=BlandAltmanLeh.

Pinheiro J., Bates D., DebRoy S., Sarkar D., R Core Team nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-148. 2020. [(accessed on 30 August 2020)]. Available online: https://CRAN.R-project.org/package=nlme.

Hermanussen M., Meigen C. Phase Variation in Child and Adolescent Growth. Int. J. Biostat. 2007;3 doi: 10.2202/1557-4679.1045. PubMed DOI

Ramsay J., Bock R. Functional Data Analysis for Human Growth. :2002. Unpublished Manuscript.

Ramsay J.O., Silverman B.W. Functional Data Analysis. Springer; New York, NY, USA: Berlin/Heidelberg, Germany: 1997.

Bronstein I., Semendjajew K. Taschenbuch Der Mathematik. Teubner; Leipzig, Germany: 1991.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...