Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw 264.7 macrophages
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- časové faktory MeSH
- dusík metabolismus MeSH
- dusitany metabolismus MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- kultivované buňky MeSH
- luminiscenční měření metody MeSH
- makrofágy účinky léků metabolismus MeSH
- myši MeSH
- nenasycené mastné kyseliny farmakologie MeSH
- oxidační stres účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- synthasa oxidu dusnatého účinky léků metabolismus MeSH
- viabilita buněk účinky léků MeSH
- western blotting metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
- dusitany MeSH
- nenasycené mastné kyseliny MeSH
- reaktivní formy kyslíku MeSH
- synthasa oxidu dusnatého MeSH
BACKGROUND: Polyunsaturated fatty acids (PUFAs) can affect various functions of the immune system including inflammatory responses. An oxidative burst of phagocytes accompanied by reactive oxygen species (ROS) and reactive nitrogen species (RNS) formation is one of the phagocyte functions that could be modulated by PUFAs. AIM OF THE STUDY: To investigate the effects of omega-3 (alpha-linolenic, docosahexaenoic, eicosapentaenoic) and omega-6 (arachidonic, linoleic) PUFAs on lipopolysaccharide (LPS)-stimulated ROS and RNS production by the murine macrophage cell line RAW 264.7. METHODS: Murine peritoneal macrophages RAW 264.7 were stimulated with LPS (0.1 microg/ml) and treated with 0.1-100 microM omega-3 or omega-6 PUFAs for either 8 (ROS production) or 20 h (RNS production). The cytotoxicity of PUFAs was evaluated by an ATP (adenosine triphosphate) test after both 8 and 20 h of treatment with PUFAs. Changes in ROS production by LPS-treated macrophages subsequently activated with phorbol myristate acetate (PMA) or opsonized zymosan particles (OZP) were determined by luminol-enhanced chemiluminescence, whilst the production of RNS was determined as the concentration of nitrites in cell supernatants (Griess reaction). Changes in inducible nitric oxide synthase (iNOS) expression were evaluated by Western blot analysis. The antioxidant properties of PUFAs were tested by TRAP (total peroxyl radical-trapping antioxidant parameter) assay. RESULTS: All PUFAs in 100 microM concentration except eicosapentaenoic acid decreased ROS production. The effect was most significant when docosahexaenoic acid was used. Arachidonic acid decreased PMA-activated ROS production even in 1 and 10 microM concentrations. On the other hand, 10 and 100 microM eicosapentaenoic acid potentiated ROS production. As concerns RNS production, all the fatty acids that were tested in a concentration of 100 microM decreased iNOS expression and nitrite accumulation. Fatty acids had no significant effect on the viability and proliferation of RAW 264.7 cells. The TRAP assay confirmed that none of the tested PUFAs exerted any significant antioxidant properties. CONCLUSION: High concentrations of PUFAs of both omega-3 and omega-6 groups can inhibit ROS and RNS formation by stimulated macrophages. The expression of iNOS can also be inhibited. This effect, together with the absence of antioxidant activity and cytotoxic properties, indicates that PUFAs can participate in the regulation of enzymes responsible for reactive species production.
Zobrazit více v PubMed
J Nutr Biochem. 2010 May;21(5):444-50 PubMed
Inflammation. 2001 Feb;25(1):17-23 PubMed
J Leukoc Biol. 2005 Oct;78(4):976-84 PubMed
Anal Biochem. 2004 May 1;328(1):14-21 PubMed
Neuro Endocrinol Lett. 2007 Dec;28(6):875-80 PubMed
Platelets. 2007 Dec;18(8):583-90 PubMed
J Agric Food Chem. 2007 Jun 27;55(13):5073-80 PubMed
Clin Diagn Lab Immunol. 2002 Sep;9(5):945-50 PubMed
Vet Immunol Immunopathol. 2009 Sep 15;131(1-2):79-85 PubMed
Biochem J. 1998 Dec 15;336 ( Pt 3):611-7 PubMed
J Exp Med. 1996 Mar 1;183(3):1241-6 PubMed
Am J Clin Nutr. 2004 Jun;79(6):935-45 PubMed
J Physiol. 2001 Sep 15;535(Pt 3):783-94 PubMed
Infect Immun. 2004 Jul;72(7):4327-9 PubMed
Proc Nutr Soc. 1998 May;57(2):277-92 PubMed
Luminescence. 2004 Jan-Feb;19(1):37-42 PubMed
Braz J Med Biol Res. 2000 Nov;33(11):1255-68 PubMed
Clin Sci (Lond). 2007 Jul;113(2):65-77 PubMed
Physiol Res. 2008;57(3):393-402 PubMed
Trends Immunol. 2003 Dec;24(12):639-45 PubMed
Neuro Endocrinol Lett. 2008 Oct;29(5):779-83 PubMed
FEBS Lett. 2006 May 29;580(13):3287-95 PubMed
Redox Rep. 2006;11(3):110-6 PubMed
Free Radic Biol Med. 2003 Apr 15;34(8):1006-16 PubMed