Nitro-oleic acid inhibits vascular endothelial inflammatory responses and the endothelial-mesenchymal transition
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 HL132550
NHLBI NIH HHS - United States
P01 HL103455
NHLBI NIH HHS - United States
R37 HL058115
NHLBI NIH HHS - United States
R01 HL058115
NHLBI NIH HHS - United States
R01 HL064937
NHLBI NIH HHS - United States
PubMed
27431604
PubMed Central
PMC5010974
DOI
10.1016/j.bbagen.2016.07.010
PII: S0304-4165(16)30251-3
Knihovny.cz E-zdroje
- Klíčová slova
- Endothelial cells, Endothelial-mesenchymal transition, Macrophages, Nitro-fatty acids, Nitro-oleic acid, Vascular inflammation,
- MeSH
- cévní endotel cytologie účinky léků metabolismus MeSH
- endoteliální buňky účinky léků metabolismus MeSH
- epitelo-mezenchymální tranzice * MeSH
- kyseliny olejové farmakologie MeSH
- lidé MeSH
- makrofágy účinky léků metabolismus MeSH
- MAP kinasový signální systém MeSH
- myši MeSH
- NF-kappa B metabolismus MeSH
- proteiny Smad metabolismus MeSH
- transformující růstový faktor beta farmakologie MeSH
- transkripční faktory STAT metabolismus MeSH
- zánět metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- 10-nitro-oleic acid MeSH Prohlížeč
- kyseliny olejové MeSH
- NF-kappa B MeSH
- proteiny Smad MeSH
- transformující růstový faktor beta MeSH
- transkripční faktory STAT MeSH
BACKGROUND: Inflammatory-mediated pathological processes in the endothelium arise as a consequence of the dysregulation of vascular homeostasis. Of particular importance are mediators produced by stimulated monocytes/macrophages inducing activation of endothelial cells (ECs). This is manifested by excessive soluble pro-inflammatory mediator production and cell surface adhesion molecule expression. Nitro-fatty acids are endogenous products of metabolic and inflammatory reactions that display immuno-regulatory potential and may represent a novel therapeutic strategy to treat inflammatory diseases. The purpose of our study was to characterize the effects of nitro-oleic acid (OA-NO2) on inflammatory responses and the endothelial-mesenchymal transition (EndMT) in ECs that is a consequence of the altered healing phase of the immune response. METHODS: The effect of OA-NO2 on inflammatory responses and EndMT was determined in murine macrophages and murine and human ECs using Western blotting, ELISA, immunostaining, and functional assays. RESULTS: OA-NO2 limited the activation of macrophages and ECs by reducing pro-inflammatory cytokine production and adhesion molecule expression through its modulation of STAT, MAPK and NF-κB-regulated signaling. OA-NO2 also decreased transforming growth factor-β-stimulated EndMT and pro-fibrotic phenotype of ECs. These effects are related to the downregulation of Smad2/3. CONCLUSIONS: The study shows the pleiotropic effect of OA-NO2 on regulating EC-macrophage interactions during the immune response and suggests a role for OA-NO2 in the regulation of vascular endothelial immune and fibrotic responses arising during chronic inflammation. GENERAL SIGNIFICANCE: These findings propose the OA-NO2 may be useful as a novel therapeutic agent for treatment of cardiovascular disorders associated with dysregulation of the endothelial immune response.
Zobrazit více v PubMed
Popa C, Netea MG, van Riel PL, van der Meer JW, Stalenhoef AF. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. Journal of lipid research. 2007;48:751–762. PubMed
Ambrozova G, Martiskova H, Koudelka A, Ravekes T, Rudolph TK, Klinke A, Rudolph V, Freeman BA, Woodcock SR, Kubala L, Pekarova M. Nitro-oleic acid modulates classical and regulatory activation of macrophages and their involvement in pro-fibrotic responses. Free radical biology & medicine. 2015 PubMed PMC
Khoo NK, Rudolph V, Cole MP, Golin-Bisello F, Schopfer FJ, Woodcock SR, Batthyany C, Freeman BA. Activation of vascular endothelial nitric oxide synthase and heme oxygenase-1 expression by electrophilic nitro-fatty acids. Free radical biology & medicine. 2010;48:230–239. PubMed PMC
Mai J, Virtue A, Shen J, Wang H, Yang XF. An evolving new paradigm: endothelial cells--conditional innate immune cells. Journal of hematology & oncology. 2013;6:61. PubMed PMC
Lawson C, Wolf S. ICAM-1 signaling in endothelial cells. Pharmacological reports : PR. 2009;61:22–32. PubMed
Maruyama H, Toda K, Uno K, Miyake K, Matsushima K, Yamamoto K, Mori JK, Masuda T. Murine endothelial cell line cells, F-2: interaction with leukocytes and cytokines production. Microbiology and immunology. 1993;37:895–903. PubMed
Sarafi MN, Garcia-Zepeda EA, MacLean JA, Charo IF, Luster AD. Murine monocyte chemoattractant protein (MCP)-5: a novel CC chemokine that is a structural and functional homologue of human MCP-1. The Journal of experimental medicine. 1997;185:99–109. PubMed PMC
Serini G, Gabbiani G. Mechanisms of myofibroblast activity and phenotypic modulation. Experimental cell research. 1999;250:273–283. PubMed
Huang PL. Endothelial nitric oxide synthase and endothelial dysfunction. Current hypertension reports. 2003;5:473–480. PubMed
Kolosova I, Nethery D, Kern JA. Role of Smad2/3 and p38 MAP kinase in TGF-beta1-induced epithelial-mesenchymal transition of pulmonary epithelial cells. Journal of cellular physiology. 2011;226:1248–1254. PubMed PMC
Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. The Journal of clinical investigation. 2002;110:341–350. PubMed PMC
van Meeteren LA, ten Dijke P. Regulation of endothelial cell plasticity by TGF-beta. Cell and tissue research. 2012;347:177–186. PubMed PMC
Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature medicine. 2007;13:952–961. PubMed
Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer research. 2007;67:10123–10128. PubMed
Kryczka J, Boncela J. Leukocytes: The Double-Edged Sword in Fibrosis. Mediators of inflammation. 2015;2015:652035. PubMed PMC
Liu CY, Xu JY, Shi XY, Huang W, Ruan TY, Xie P, Ding JL. M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Laboratory investigation; a journal of technical methods and pathology. 2013;93:844–854. PubMed
Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. The American journal of pathology. 2011;179:1074–1080. PubMed PMC
Techasen A, Loilome W, Namwat N, Dokduang H, Jongthawin J, Yongvanit P. Cytokines released from activated human macrophages induce epithelial mesenchymal transition markers of cholangiocarcinoma cells. Asian Pacific journal of cancer prevention : APJCP. 2012;13(Suppl):115–118. PubMed
Stramer BM, Austin JS, Roberts AB, Fini ME. Selective reduction of fibrotic markers in repairing corneas of mice deficient in Smad3. Journal of cellular physiology. 2005;203:226–232. PubMed
Freeman BA, Baker PR, Schopfer FJ, Woodcock SR, Napolitano A, d'Ischia M. Nitro-fatty acid formation and signaling. The Journal of biological chemistry. 2008;283:15515–15519. PubMed PMC
Hwang J, Lee KE, Lim JY, Park SI. Nitrated fatty acids prevent TNFalpha-stimulated inflammatory and atherogenic responses in endothelial cells. Biochemical and biophysical research communications. 2009;387:633–640. PubMed
Shin E, Yeo E, Lim J, Chang YH, Park H, Shim E, Chung H, Hwang HJ, Chun J, Hwang J. Nitrooleate mediates nitric oxide synthase activation in endothelial cells. Lipids. 2014;49:457–466. PubMed
Klinke A, Moller A, Pekarova M, Ravekes T, Friedrichs K, Berlin M, Scheu KM, Kubala L, Kolarova H, Ambrozova G, Schermuly RT, Woodcock SR, Freeman BA, Rosenkranz S, Baldus S, Rudolph V, Rudolph TK. Protective effects of 10-nitro-oleic acid in a hypoxia-induced murine model of pulmonary hypertension. American journal of respiratory cell and molecular biology. 2014;51:155–162. PubMed PMC
Khoo NK, Freeman BA. Electrophilic nitro-fatty acids: anti-inflammatory mediators in the vascular compartment. Current opinion in pharmacology. 2010;10:179–184. PubMed PMC
Rudolph TK, Ravekes T, Klinke A, Friedrichs K, Mollenhauer M, Pekarova M, Ambrozova G, Martiskova H, Kaur JJ, Matthes B, Schwoerer A, Woodcock SR, Kubala L, Freeman BA, Baldus S, Rudolph V. Nitrated fatty acids suppress angiotensin II-mediated fibrotic remodelling and atrial fibrillation. Cardiovascular research. 2016;109:174–184. PubMed PMC
Rostamzadeh A, Zumbrunn T, Jongen LM, Nederkoorn PJ, Macdonald S, Lyrer PA, Kappelle LJ, Mali WP, Brown MM, van der Worp HB, Engelter ST, Bonati LH, I.-M.S. Investigators, M.R.I.S. following centers enrolled patients in the International Carotid Stenting Study, U.T.N. University Medical Centre, S. University Hospital Basel, R.T.N. Erasmus Medical Centre, N.u.T.U.K. Newcastle Acute Hospitals Nhs Foundation Trust, A.T.N. Academic Medical Centre, L.U.K. University College London Hospitals Nhs Foundation Trust, S.U.K. Sheffield Teaching Hospitals Nhs Foundation Trust Predictors of acute and persisting ischemic brain lesions in patients randomized to carotid stenting or endarterectomy. Stroke; a journal of cerebral circulation. 2014;45:591–594. PubMed
Ambrozova G, Pekarova M, Lojek A. Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw 264.7 macrophages. European journal of nutrition. 2010;49:133–139. PubMed
Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nature reviews. Immunology. 2011;11:750–761. PubMed
Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime reports. 2014;6:13. PubMed PMC
Mantovani A, Bussolino F, Dejana E. Cytokine regulation of endothelial cell function. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 1992;6:2591–2599. PubMed
Cui T, Schopfer FJ, Zhang J, Chen K, Ichikawa T, Baker PR, Batthyany C, Chacko BK, Feng X, Patel RP, Agarwal A, Freeman BA, Chen YE. Nitrated fatty acids: Endogenous anti-inflammatory signaling mediators. The Journal of biological chemistry. 2006;281:35686–35698. PubMed PMC
Aird WC. Endothelial cell heterogeneity. Cold Spring Harbor perspectives in medicine. 2012;2:a006429. PubMed PMC
De Caterina R, Bourcier T, Laufs U, La Fata V, Lazzerini G, Neish AS, Libby P, Liao JK. Induction of endothelial-leukocyte interaction by interferon-gamma requires coactivation of nuclear factor-kappaB. Arteriosclerosis, thrombosis, and vascular biology. 2001;21:227–232. PubMed
Kano A, Wolfgang MJ, Gao Q, Jacoby J, Chai GX, Hansen W, Iwamoto Y, Pober JS, Flavell RA, Fu XY. Endothelial cells require STAT3 for protection against endotoxin-induced inflammation. The Journal of experimental medicine. 2003;198:1517–1525. PubMed PMC
Hadad N, Tuval L, Elgazar-Carmom V, Levy R. Endothelial ICAM-1 protein induction is regulated by cytosolic phospholipase A2alpha via both NF-kappaB and CREB transcription factors. J Immunol. 2011;186:1816–1827. PubMed
Lin FS, Lin CC, Chien CS, Luo SF, Yang CM. Involvement of p42/p44 MAPK, JNK, and NF-kappaB in IL-1beta-induced ICAM-1 expression in human pulmonary epithelial cells. Journal of cellular physiology. 2005;202:464–473. PubMed
Sano H, Nakagawa N, Chiba R, Kurasawa K, Saito Y, Iwamoto I. Cross-linking of intercellular adhesion molecule-1 induces interleukin-8 and RANTES production through the activation of MAP kinases in human vascular endothelial cells. Biochemical and biophysical research communications. 1998;250:694–698. PubMed
Schopfer FJ, Baker PR, Giles G, Chumley P, Batthyany C, Crawford J, Patel RP, Hogg N, Branchaud BP, Lancaster JR, Jr., Freeman BA. Fatty acid transduction of nitric oxide signaling. Nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor. The Journal of biological chemistry. 2005;280:19289–19297. PubMed
Trostchansky A, Rubbo H. Nitrated fatty acids: mechanisms of formation, chemical characterization, and biological properties. Free radical biology & medicine. 2008;44:1887–1896. PubMed
Moustakas A, Stournaras C. Regulation of actin organisation by TGF-beta in H-ras-transformed fibroblasts. Journal of cell science. 1999;112(Pt 8):1169–1179. PubMed
Kong P, Christia P, Saxena A, Su Y, Frangogiannis NG. Lack of specificity of fibroblast-specific protein 1 in cardiac remodeling and fibrosis. American journal of physiology. Heart and circulatory physiology. 2013;305:H1363–1372. PubMed PMC
Osterreicher CH, Penz-Osterreicher M, Grivennikov SI, Guma M, Koltsova EK, Datz C, Sasik R, Hardiman G, Karin M, Brenner DA. Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:308–313. PubMed PMC
Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, Neilson EG. Identification and characterization of a fibroblast marker: FSP1. The Journal of cell biology. 1995;130:393–405. PubMed PMC
Arciniegas E, Sutton AB, Allen TD, Schor AM. Transforming growth factor beta 1 promotes the differentiation of endothelial cells into smooth muscle-like cells in vitro. Journal of cell science. 1992;103(Pt 2):521–529. PubMed
Silber HA, Bluemke DA, Ouyang P, Du YP, Post WS, Lima JA. The relationship between vascular wall shear stress and flow-mediated dilation: endothelial function assessed by phase-contrast magnetic resonance angiography. J.Am.Coll.Cardiol. 2001;38:1859–1865. PubMed
Nitro-oleic acid regulates growth factor-induced differentiation of bone marrow-derived macrophages