Regio- and Stereoselective Synthesis of Nitro-fatty Acids as NRF2 Pathway Activators Working under Ambient or Hypoxic Conditions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40419458
PubMed Central
PMC12169669
DOI
10.1021/acs.jmedchem.5c00982
Knihovny.cz E-zdroje
- MeSH
- dusíkaté sloučeniny * farmakologie chemická syntéza chemie MeSH
- faktor 2 související s NF-E2 * metabolismus MeSH
- hemoxygenasa-1 metabolismus MeSH
- hypoxie buňky MeSH
- kyseliny linolové chemická syntéza chemie farmakologie MeSH
- kyslík metabolismus MeSH
- mastné kyseliny * farmakologie chemická syntéza chemie MeSH
- myši MeSH
- signální transdukce účinky léků MeSH
- stereoizomerie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusíkaté sloučeniny * MeSH
- faktor 2 související s NF-E2 * MeSH
- hemoxygenasa-1 MeSH
- kyseliny linolové MeSH
- kyslík MeSH
- mastné kyseliny * MeSH
- Nfe2l2 protein, mouse MeSH Prohlížeč
Nitro-fatty acids (NO2FAs) are endogenously produced electrophiles and NRF2 activators with therapeutic potential. We developed a synthetic protocol combining a Henry reaction and base-promoted β-elimination, yielding ultrapure regio/stereoisomers of nitro-stearic (NO2SA), nitro-oleic (NO2OA), and conjugated/bis-allylic nitro-linoleic (NO2LA) acids. These were tested for NRF2 pathway activation in bone marrow cells under different oxygen conditions. We observed that 9- and 10-NO2OA, and 10-NO2LA increased NRF2 stabilization under hypoxia, while 9- and 10-NO2OA significantly upregulated Hmox1 and Gclm at all oxygen levels. 9- and 10-NO2OA enhanced HO-1 and GCLM proteins independently of oxygen, while 10-NO2LA was oxygen-dependent, boosting HO-1 under hypoxia and GCLM under ambient conditions. Moreover, 10-NO2OA and 10-NO2LA induced NRF2 nuclear translocation. In contrast, the saturated 10-NO2SA, which has lower electron-acceptor ability, was inactive. In summary, these findings suggest the biological activity of NO2FAs is dependent on oxygen level, which could be used in future research of other oxidative stress-dependent pathways.
Zobrazit více v PubMed
Colussi N., Chang F., Schopfer F. J.. The specificity of endogenous fatty acid nitration: only conjugated substrates support the in vivo formation of nitro-fatty acids. Redox Biochem. Chem. 2024;9:100037. doi: 10.1016/j.rbc.2024.100037. DOI
Schopfer F. J., Khoo N. K. H.. Nitro-Fatty Acid Logistics: Formation, Biodistribution, Signaling, and Pharmacology. Trends Endocrinol. Metab. 2019;30(8):505–519. doi: 10.1016/j.tem.2019.04.009. PubMed DOI PMC
Turell L., Steglich M., Alvarez B.. The chemical foundations of nitroalkene fatty acid signaling through addition reactions with thiols. Nitric Oxide. 2018;78:161–169. doi: 10.1016/j.niox.2018.03.014. PubMed DOI
Grippo V., Mojovic M., Pavicevic A., Kabelac M., Hubatka F., Turanek J., Zatloukalova M., Freeman B. A., Vacek J.. Electrophilic characteristics and aqueous behavior of fatty acid nitroalkenes. Redox Biol. 2021;38:101756. doi: 10.1016/j.redox.2020.101756. PubMed DOI PMC
Novák D., Vrba J., Zatloukalova M., Roubalova L., Stolarczyk K., Dorcak V., Vacek J.. Cysteamine assay for the evaluation of bioactive electrophiles. Free Radic. Biol. Med. 2021;164:381–389. doi: 10.1016/j.freeradbiomed.2021.01.007. PubMed DOI
Baker L. M. S., Baker P. R. S., Golin-Bisello F., Schopfer F. J., Fink M., Woodcock S. R., Branchaud B. P., Radi R., Freeman B. A.. Nitro-fatty acid reaction with glutathione and cysteine - Kinetic analysis of thiol alkylation by a Michael addition reaction. J. Biol. Chem. 2007;282(42):31085–31093. doi: 10.1074/jbc.M704085200. PubMed DOI PMC
Batthyany C., Schopfer F. J., Baker P. R. S., Duran R., Baker L. M. S., Huang Y., Cervenansky C., Branchaud B. P., Freeman B. A.. Reversible post-translational modification of proteins by nitrated fatty acids in vivo . J. Biol. Chem. 2006;281(29):20450–20463. doi: 10.1074/jbc.M602814200. PubMed DOI PMC
Lu H., Sun J., Liang W., Zhang J., Rom O., Garcia-Barrio M. T., Li S., Villacorta L., Schopfer F. J., Freeman B. A.. et al. Novel gene regulatory networks identified in response to nitro-conjugated linoleic acid in human endothelial cells. Physiol. Genomics. 2019;51(6):224–233. doi: 10.1152/physiolgenomics.00127.2018. PubMed DOI PMC
Kansanen E., Jyrkkanen H. K., Volger O. L., Leinonen H., Kivela A. M., Hakkinen S. K., Woodcock S. R., Schopfer F. J., Horrevoets A. J., Yla-Herttuala S.. et al. Nrf2-dependent and -independent responses to nitro-fatty acids in human endothelial cells: identification of heat shock response as the major pathway activated by nitro-oleic acid. J. Biol. Chem. 2009;284(48):33233–33241. doi: 10.1074/jbc.M109.064873. PubMed DOI PMC
Cui T., Schopfer F. J., Zhang J., Chen K., Ichikawa T., Baker P. R. S., Batthyany C., Chacko B. K., Feng X., Patel R. P.. et al. Nitrated Fatty Acids: Endogenous Anti-inflammatory Signaling Mediators. J. Biol. Chem. 2006;281(47):35686–35698. doi: 10.1074/jbc.M603357200. PubMed DOI PMC
Baker P. R. S., Lin Y. M., Schopfer F. J., Woodcock S. R., Groeger A. L., Batthyany C., Sweeney S., Long M. H., Iles K. E., Baker L. M. S.. et al. Fatty acid transduction of nitric oxide signaling - Multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands. J. Biol. Chem. 2005;280(51):42464–42475. doi: 10.1074/jbc.M504212200. PubMed DOI PMC
Ambrozova G., Fidlerova T., Verescakova H., Koudelka A., Rudolph T. K., Woodcock S. R., Freeman B. A., Kubala L., Pekarova M.. Nitro-oleic acid inhibits vascular endothelial inflammatory responses and the endothelial-mesenchymal transition. Biochim. Biophys. Acta. 2016;1860(11):2428–2437. doi: 10.1016/j.bbagen.2016.07.010. PubMed DOI PMC
Pereckova J., Pekarova M., Szamecova N., Hoferova Z., Kamarytova K., Falk M., Perecko T.. Nitro-Oleic Acid Inhibits Stemness Maintenance and Enhances Neural Differentiation of Mouse Embryonic Stem Cells via STAT3 Signaling. Int. J. Mol. Sci. 2021;22(18):9981. doi: 10.3390/ijms22189981. PubMed DOI PMC
Ni H., Tan X., Du J., Wang Y.. Nitro-fatty acids: mechanisms of action, roles in metabolic diseases, and therapeutics. Curr. Med. 2024;3(1):3. doi: 10.1007/s44194-024-00030-z. DOI
Jobbagy S., Vitturi D. A., Salvatore S. R., Turell L., Pires M. F., Kansanen E., Batthyany C., Lancaster J. R. Jr., Freeman B. A., Schopfer F. J.. Electrophiles modulate glutathione reductase activity via alkylation and upregulation of glutathione biosynthesis. Redox Biol. 2019;21:101050. doi: 10.1016/j.redox.2018.11.008. PubMed DOI PMC
Kelley E. E., Batthyany C. I., Hundley N. J., Woodcock S. R., Bonacci G., Del Rio J. M., Schopfer F. J., Lancaster J. R., Freeman B. A., Tarpey M. M.. Nitro-oleic Acid, a Novel and Irreversible Inhibitor of Xanthine Oxidoreductase. J. Biol. Chem. 2008;283(52):36176–36184. doi: 10.1074/jbc.M802402200. PubMed DOI PMC
Bago Á., Cayuela M. L., Gil A., Calvo E., Vázquez J., Queiro A., Schopfer F. J., Radi R., Serrador J. M., Íñiguez M. A.. Nitro-oleic acid regulates T cell activation through post-translational modification of calcineurin. Proc. Natl. Acad. Sci. U.S.A. 2023;120(4):e2208924120. doi: 10.1073/pnas.2208924120. PubMed DOI PMC
Roos J., Manolikakes G., Schlomann U., Klinke A., Schopfer F. J., Neumann C. A., Maier T. J.. Nitro-fatty acids: promising agents for the development of new cancer therapeutics. Trends Pharmacol. Sci. 2024;45(11):1061–1080. doi: 10.1016/j.tips.2024.09.009. PubMed DOI
Schopfer F. J., Vitturi D. A., Jorkasky D. K., Freeman B. A.. Nitro-fatty acids: New drug candidates for chronic inflammatory and fibrotic diseases. Nitric Oxide. 2018;79:31–37. doi: 10.1016/j.niox.2018.06.006. PubMed DOI PMC
Kalyanaraman B.. Nitrated lipids: a class of cell-signaling molecules. Proc. Natl. Acad. Sci. U.S.A. 2004;101(32):11527–11528. doi: 10.1073/pnas.0404309101. PubMed DOI PMC
Rubbo H., Radi R.. Protein and lipid nitration: role in redox signaling and injury. Biochim. Biophys. Acta. 2008;1780(24):1318–1324. doi: 10.1016/j.bbagen.2008.03.007. PubMed DOI
Koutoulogenis G. S., Kokotos G.. Nitro Fatty Acids (NO(2)-FAs): An Emerging Class of Bioactive Fatty Acids. Molecules. 2021;26(24):7536. doi: 10.3390/molecules26247536. PubMed DOI PMC
Hernychova L., Alexandri E., Tzakos A. G., Zatloukalová M., Primikyri A., Gerothanassis I. P., Uhrik L., Šebela M., Kopečný D., Jedinák L., Vacek J.. Serum albumin as a primary non-covalent binding protein for nitro-oleic acid. Int. J. Biol. Macromol. 2022;203:116–129. doi: 10.1016/j.ijbiomac.2022.01.050. PubMed DOI
Maity S., Manna S., Rana S., Naveen T., Mallick A., Maiti D.. Efficient and stereoselective nitration of mono- and disubstituted olefins with AgNO2 and TEMPO. J. Am. Chem. Soc. 2013;135(9):3355–3358. doi: 10.1021/ja311942e. PubMed DOI
Woodcock S. R., Bonacci G., Gelhaus S. L., Schopfer F. J.. Nitrated fatty acids: synthesis and measurement. Free Radic. Biol. Med. 2013;59:14–26. doi: 10.1016/j.freeradbiomed.2012.11.015. PubMed DOI PMC
Kansanen E., Bonacci G., Schopfer F. J., Kuosmanen S. M., Tong K. I., Leinonen H., Woodcock S. R., Yamamoto M., Carlberg C., Yla-Herttuala S.. et al. Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism. J. Biol. Chem. 2011;286(16):14019–14027. doi: 10.1074/jbc.M110.190710. PubMed DOI PMC
Murakami S., Suzuki T., Harigae H., Romeo P. H., Yamamoto M., Motohashi H.. NRF2 Activation Impairs Quiescence and Bone Marrow Reconstitution Capacity of Hematopoietic Stem Cells. Mol. Cell. Biol. 2017;37(19):e00086–e00017. doi: 10.1128/MCB.00086-17. PubMed DOI PMC
Tsai J. J., Dudakov J. A., Takahashi K., Shieh J. H., Velardi E., Holland A. M., Singer N. V., West M. L., Smith O. M., Young L. F.. et al. Nrf2 regulates haematopoietic stem cell function. Nat. Cell Biol. 2013;15(3):309–316. doi: 10.1038/ncb2699. PubMed DOI PMC
Spencer J. A., Ferraro F., Roussakis E., Klein A., Wu J., Runnels J. M., Zaher W., Mortensen L. J., Alt C., Turcotte R.. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269–273. doi: 10.1038/nature13034. PubMed DOI PMC
Carroll D., St Clair D. K.. Hematopoietic Stem Cells: Normal Versus Malignant. Antiox. Redox Signal. 2018;29(16):1612–1632. doi: 10.1089/ars.2017.7326. PubMed DOI PMC
Broxmeyer H. E., O’Leary H. A., Huang X., Mantel C.. The importance of hypoxia and extra physiologic oxygen shock/stress for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex vivo . Curr. Opin. Hematol. 2015;22(4):273–278. doi: 10.1097/MOH.0000000000000144. PubMed DOI PMC
Mantel C. R., O’Leary H. A., Chitteti B. R., Huang X., Cooper S., Hangoc G., Brustovetsky N., Srour E. F., Lee M. R., Messina-Graham S.. et al. Enhancing Hematopoietic Stem Cell Transplantation Efficacy by Mitigating Oxygen Shock. Cell. 2015;161(7):1553–1565. doi: 10.1016/j.cell.2015.04.054. PubMed DOI PMC
Pauwels B., Korst A. E., de Pooter C. M., Pattyn G. G., Lambrechts H. A., Baay M. F., Lardon F., Vermorken J. B.. Comparison of the sulforhodamine B assay and the clonogenic assay for in vitro chemoradiation studies. Cancer Chemother. Pharmacol. 2003;51(3):221–226. doi: 10.1007/s00280-002-0557-9. PubMed DOI
Zanoni G., Valli M., Bendjeddou L., Porta A., Bruno P., Vidari G.. Improved Synthesis of (E)-12-Nitrooctadec-12-enoic acid, a Potent PPARγ Activator. Development of a “Buffer-Free” Enzymatic Method for Hydrolysis of Methyl Esters. J. Org. Chem. 2010;75(23):8311–8314. doi: 10.1021/jo101806m. PubMed DOI
Woodcock S. R., Salvatore S. R., Freeman B. A., Schopfer F. J.. Synthesis of 9- and 12-nitro conjugated linoleic acid: Regiospecific isomers of naturally occurring conjugated nitrodienes. Tetrahedron Lett. 2021;81:153371. doi: 10.1016/j.tetlet.2021.153371. DOI
Jeong W. S., Keum Y. S., Chen C., Jain M. R., Shen G., Kim J. H., Li W., Kong A. N.. Differential expression and stability of endogenous nuclear factor E2-related factor 2 (Nrf2) by natural chemopreventive compounds in HepG2 human hepatoma cells. J. Biochem. Mol. Biol. 2005;38(2):167–176. doi: 10.5483/BMBRep.2005.38.2.167. PubMed DOI
Bon D. J. Y. D., Chrenko D., Kováč O., Ferugová V., Lasák P., Fuksová M., Zálešák F., Pospíšil J.. Julia-Kocienski-Like Connective C–C and CC Bond-Forming Reaction. Adv. Synth. Catal. 2024;366(3):480–487. doi: 10.1002/adsc.202301054. DOI
Hassan M., Krieg S.-C., Ndefo Nde C., Roos J., Maier T. J., El Rady E. A., Raslan M. A., Sadek K. U., Manolikakes G.. Streamlined One-Pot Synthesis of Nitro Fatty Acids. Eur. J. Org. Chem. 2021;2021(15):2239–2252. doi: 10.1002/ejoc.202100247. DOI
Woodcock S. R., Marwitz A. J., Bruno P., Branchaud B. P.. Synthesis of nitrolipids. All four possible diastereomers of nitrooleic acids: (E)- and (Z)-, 9- and 10-nitro-octadec-9-enoic acids. Org. Lett. 2006;8(18):3931–3934. doi: 10.1021/ol0613463. PubMed DOI
Dunny E., Evans P.. Stereocontrolled synthesis of the PPAR-gamma agonist 10-nitrolinoleic acid. J. Org. Chem. 2010;75(15):5334–5336. doi: 10.1021/jo1007493. PubMed DOI
Trostchansky A., Souza J. M., Ferreira A., Ferrari M., Blanco F., Trujillo M., Castro D., Cerecetto H., Baker P. R. S., O’Donnell V. B., O’Donnell V. B.. Synthesis, isomer characterization, and anti-inflammatory properties of nitroarachidonate. Biochemistry. 2007;46(15):4645–4653. doi: 10.1021/bi602652j. Article. PubMed DOI
Merchant A. A., Singh A., Matsui W., Biswal S.. The redox-sensitive transcription factor Nrf2 regulates murine hematopoietic stem cell survival independently of ROS levels. Blood. 2011;118(25):6572–6579. doi: 10.1182/blood-2011-05-355362. PubMed DOI PMC
Dai X., Yan X., Wintergerst K. A., Cai L., Keller B. B., Tan Y.. Nrf2: Redox and Metabolic Regulator of Stem Cell State and Function. Trends Mol. Med. 2020;26(2):185–200. doi: 10.1016/j.molmed.2019.09.007. PubMed DOI
Baba K., Morimoto H., Imaoka S.. Seven in absentia homolog 2 (Siah2) protein is a regulator of NF-E2-related factor 2 (Nrf2) J. Biol. Chem. 2013;288(25):18393–18405. doi: 10.1074/jbc.M112.438762. PubMed DOI PMC
He G., Feng J., He G.. Hypoxia increases Nrf2-induced HO-1 expression via the PI3K/Akt pathway. Front. Biosci. 2016;21(2):385–396. doi: 10.2741/4395. PubMed DOI
Bates D. J., Smitherman P. K., Townsend A. J., King S. B., Morrow C. S.. Nitroalkene fatty acids mediate activation of Nrf2/ARE-dependent and PPARgamma-dependent transcription by distinct signaling pathways and with significantly different potencies. Biochemistry. 2011;50(36):7765–7773. doi: 10.1021/bi2005784. PubMed DOI PMC
Kansanen E., Kuosmanen S. M., Ruotsalainen A. K., Hynynen H., Levonen A. L.. Nitro-Oleic Acid Regulates Endothelin Signaling in Human Endothelial Cells. Mol. Pharmacol. 2017;92(4):481–490. doi: 10.1124/mol.117.109751. PubMed DOI
Villacorta L., Zhang J., Garcia-Barrio M. T., Chen X. L., Freeman B. A., Chen Y. E., Cui T.. Nitro-linoleic acid inhibits vascular smooth muscle cell proliferation via the Keap1/Nrf2 signaling pathway. Am. J. Physiol. Heart Circ. Physiol. 2007;293(1):H770–H776. doi: 10.1152/ajpheart.00261.2007. PubMed DOI PMC
Hellmuth N., Brat C., Awad O., George S., Kahnt A., Bauer T., Huynh Phuoc H. P., Steinhilber D., Angioni C., Hassan M.. et al. Structural Modifications Yield Novel Insights Into the Intriguing Pharmacodynamic Potential of Anti-inflammatory Nitro-Fatty Acids. Front. Pharmacol. 2021;12:715076. doi: 10.3389/fphar.2021.715076. PubMed DOI PMC
Khoo N. K. H., Li L., Salvatore S. R., Schopfer F. J., Freeman B. A.. Electrophilic fatty acid nitroalkenes regulate Nrf2 and NF-kappaB signaling: A medicinal chemistry investigation of structure-function relationships. Sci. Rep. 2018;8(1):2295. doi: 10.1038/s41598-018-20460-8. PubMed DOI PMC
Kopacz A., Rojo A. I., Patibandla C., Lastra-Martinez D., Piechota-Polanczyk A., Kloska D., Jozkowicz A., Sutherland C., Cuadrado A., Grochot-Przeczek A.. Overlooked and valuable facts to know in the NRF2/KEAP1 field. Free Radic. Biol. Med. 2022;192:37–49. doi: 10.1016/j.freeradbiomed.2022.08.044. PubMed DOI
Lee P. J., Jiang B. H., Chin B. Y., Iyer N. V., Alam J., Semenza G. L., Choi A. M.. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J. Biol. Chem. 1997;272(9):5375–5381. doi: 10.1074/jbc.272.9.5375. PubMed DOI
Chapple S. J., Keeley T. P., Mastronicola D., Arno M., Vizcay-Barrena G., Fleck R., Siow R. C. M., Mann G. E.. Bach1 differentially regulates distinct Nrf2-dependent genes in human venous and coronary artery endothelial cells adapted to physiological oxygen levels. Free Radic. Biol. Med. 2016;92:152–162. doi: 10.1016/j.freeradbiomed.2015.12.013. PubMed DOI
Perecko T., Hoferova Z., Hofer M., Pereckova J., Falk M.. Administration of nitro-oleic acid mitigates radiation-induced hematopoietic injury in mice. Life Sci. 2022;310:121106. doi: 10.1016/j.lfs.2022.121106. PubMed DOI
Chiba A., Kawabata N., Yamaguchi M., Tokonami S., Kashiwakura I.. Regulation of Antioxidant Stress-Responsive Transcription Factor Nrf2 Target Gene in the Reduction of Radiation Damage by the Thrombocytopenia Drug Romiplostim. Biol. Pharm. Bull. 2020;43(12):1876–1883. doi: 10.1248/bpb.b20-00442. PubMed DOI
Kim J. H., Thimmulappa R. K., Kumar V., Cui W., Kumar S., Kombairaju P., Zhang H., Margolick J., Matsui W., Macvittie T.. et al. NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation. J. Clin. Invest. 2014;124(2):730–741. doi: 10.1172/JCI70812. PubMed DOI PMC