Growth phase matters: Boosting immunity via Lacticasebacillus-derived membrane vesicles and their interactions with TLR2 pathways
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39185335
PubMed Central
PMC11341917
DOI
10.1002/jex2.169
PII: JEX2169
Knihovny.cz E-zdroje
- Klíčová slova
- Lacticaseibacillus rhamnosus, TLR2, growth curve, immunomodulation, lipoteichoic acid, membrane vesicles, nanocarriers,
- Publikační typ
- časopisecké články MeSH
Lipid bi-layered particles known as membrane vesicles (MVs), produced by Gram-positive bacteria are a communication tool throughout the entire bacterial growth. However, the MVs characteristics may vary across all stages of maternal culture growth, leading to inconsistencies in MVs research. This, in turn, hinders their employment as nanocarriers, vaccines and other medical applications. In this study, we aimed to comprehensively characterize MVs derived from Lacticaseibacillus rhamnosus CCM7091 isolated at different growth stages: early exponential (6 h, MV6), late exponential (12 h, MV12) and late stationary phase (48 h, MV48). We observed significant differences in protein content between MV6 and MV48 (data are available via ProteomeXchange with identifier PXD041580), likely contributing to their different immunomodulatory capacities. In vitro analysis demonstrated that MV48 uptake rate by epithelial Caco-2 cells is significantly higher and they stimulate an immune response in murine macrophages RAW 264.7 (elevated production of TNFα, IL-6, IL-10, NO). This correlated with increased expression of lipoteichoic acid (LTA) and enhanced TLR2 signalling in MV48, suggesting that LTA contributes to the immunomodulation. In conclusion, we showed that Lacticaseibacillus rhamnosus CCM7091-derived MVs from the late stationary phase boost the immune response the most effectively, which pre-destines them for therapeutical application as nanocarriers.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Pharmacology and Toxicology Veterinary Research Institute Brno Czech Republic
Faculty of Science Department of Biochemistry Masaryk University Brno Czech Republic
Faculty of Science Department of Experimental Biology Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Aakko, J. , Sanchez, B. , Gueimonde, M. , & Salminen, S. (2014). Assessment of stress tolerance acquisition in the heat‐tolerant derivative strains of Bifidobacterium animalis subsp. lactis BB‐12 and Lactobacillus rhamnosus GG. Journal of Applied Microbiology, 117, 239–248. PubMed
Al‐Nedawi, K. , Mian, M. F. , Hossain, N. , Karimi, K. , Mao, Y. K. , Forsythe, P. , Min, K. K. , Stanisz, A. M. , Kunze, W. A. , & Bienenstock, J. (2015). Gut commensal microvesicles reproduce parent bacterial signals to host immune and enteric nervous systems. FASEB Journal, 29, 684–695. PubMed
Alexander, L. M. , & van Pijkeren, J. P. (2023). Modes of therapeutic delivery in synthetic microbiology. Trends in Microbiology, 31, 197–211. PubMed PMC
Ambrozova, G. , Pekarova, M. , & Lojek, A. (2010). Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw 264.7 macrophages. European Journal of Nutrition, 49, 133–139. PubMed
Arias‐Negrete, S. , Jimenez‐Romero, L. A. , Solis‐Martinez, M. O. , Ramirez‐Emiliano, J. , Avila, E. E. , & Cuellar‐Mata, P. (2004). Indirect determination of nitric oxide production by reduction of nitrate with a freeze‐thawing‐resistant nitrate reductase from Escherichia coli MC1061. Analytical Biochemistry, 328, 14–21. PubMed
Baddal, B. , Muzzi, A. , Censini, S. , Calogero, R. A. , Torricelli, G. , Guidotti, S. , Taddei, A. R. , Covacci, A. , Pizza, M. , Rappuoli, R. , Soriani, M. , & Pezzicoli, A. (2015). Dual RNA‐seq of nontypeable haemophilus influenzae and host cell transcriptomes reveals novel insights into host‐pathogen cross talk. MBio, 6, e01765‐e01715. PubMed PMC
Bajic, S. S. , Canas, M. A. , Tolinacki, M. , Badia, J. , Sanchez, B. , Golic, N. , Margolles, A. , Baldoma, L. , & Ruas‐Madiedo, P. (2020). Proteomic profile of extracellular vesicles released by Lactiplantibacillus plantarum BGAN8 and their internalization by non‐polarized HT29 cell line. Scientific Reports, 10, 21829. PubMed PMC
Behzadi, E. , Mahmoodzadeh Hosseini, H. , & Imani Fooladi, A. A. (2017). The inhibitory impacts of Lactobacillus rhamnosus GG‐derived extracellular vesicles on the growth of hepatic cancer cells. Microbial Pathogenesis, 110, 1–6. PubMed
Bhatt, T. K. , Khan, S. , Dwivedi, V. P. , Banday, M. M. , Sharma, A. , Chandele, A. , Camacho, N. , Ribas de Pouplana, L. , Wu, Y. , Craig, A. G. , Mikkonen, A. T. , Maier, A. G. , Yogavel, M. , & Sharma, A. (2011). Malaria parasite tyrosyl‐tRNA synthetase secretion triggers pro‐inflammatory responses. Nature Communications, 2, 530. PubMed
Champagne‐Jorgensen, K. , Mian, M. F. , McVey Neufeld, K. A. , Stanisz, A. M. , & Bienenstock, J. (2021). Membrane vesicles of Lacticaseibacillus rhamnosus JB‐1 contain immunomodulatory lipoteichoic acid and are endocytosed by intestinal epithelial cells. Scientific Reports, 11, 13756. PubMed PMC
Chatterjee, S. N. , & Das, J. (1967). Electron microscopic observations on the excretion of cell‐wall material by Vibrio cholerae. Journal of General Microbiology, 49, 1–11. PubMed
Chen, W. , Wu, Y. , Deng, J. , Yang, Z. , Chen, J. , Tan, Q. , Guo, M. , & Jin, Y. (2022). Phospholipid‐membrane‐based nanovesicles acting as vaccines for tumor immunotherapy: Classification, mechanisms and applications. Pharmaceutics, 14, 2446. PubMed PMC
Chiba, Y. , Shida, K. , Nagata, S. , Wada, M. , Bian, L. , Wang, C. , Shimizu, T. , Yamashiro, Y. , Kiyoshima‐Shibata, J. , Nanno, M. , & Nomoto, K. (2010). Well‐controlled proinflammatory cytokine responses of Peyer's patch cells to probiotic Lactobacillus casei. Immunology, 130, 352–362. PubMed PMC
Choi, J. H. , Moon, C. M. , Shin, T. S. , Kim, E. K. , McDowell, A. , Jo, M. K. , Joo, Y. H. , Kim, S. E. , Jung, H. K. , Shim, K. N. , Jung, S. A. , & Kim, Y. K. (2020). Lactobacillus paracasei‐derived extracellular vesicles attenuate the intestinal inflammatory response by augmenting the endoplasmic reticulum stress pathway. Experimental & Molecular Medicine, 52, 423–437. PubMed PMC
Choi, J. , Kwon, H. , Kim, Y. K. , & Han, P. L. (2022). Extracellular vesicles from gram‐positive and gram‐negative probiotics remediate stress‐induced depressive behavior in mice. Molecular Neurobiology, 59, 2715–2728. PubMed
Chubukov, V. , & Sauer, U. (2014). Environmental dependence of stationary‐phase metabolism in Bacillus subtilis and Escherichia coli. Applied and Environmental Microbiology, 80, 2901–2909. PubMed PMC
da Luz, B. S. R. , de Rezende Rodovalho, V. , Nicolas, A. , Chabelskaya, S. , Jardin, J. , Briard‐Bion, V. , Le Loir, Y. , de Carvalho Azevedo, V. A. , & Guedon, E. (2022). Impact of environmental conditions on the protein content of Staphylococcus aureus and its derived extracellular vesicles. Microorganisms, 10, 1808. PubMed PMC
De Angelis, M. , Calasso, M. , Cavallo, N. , Di Cagno, R. , & Gobbetti, M. (2016). Functional proteomics within the genus Lactobacillus. Proteomics, 16, 946–962. PubMed
EV‐TRACK Consortium . Van Deun, J. , Mestdagh, P. , Agostinis, P. , Akay, O. , Anand, S. , Anckaert, J. , Martinez, Z. A. , Baetens, T. , Beghein, E. , Bertier, L. , Berx, G. , Boere, J. , Boukouris, S. , Bremer, M. , Buschmann, D. , Byrd, J. B. , Casert, C. , Cheng, L. , … Hendrix, A. . (2017). EV‐TRACK: Transparent reporting and centralizing knowledge in extracellular vesicle research. Nature Methods, 14, 228–232. PubMed
Frees, D. , Savijoki, K. , Varmanen, P. , & Ingmer, H. (2007). Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram‐positive bacteria. Molecular Microbiology, 63, 1285–1295. PubMed
Friedrich, A. D. , Leoni, J. , Paz, M. L. , & Gonzalez Maglio, D. H. (2022). Lipoteichoic acid from Lacticaseibacillus rhamnosus GG modulates dendritic cells and T cells in the gut. Nutrients, 14, 723. PubMed PMC
Gilmore, W. J. , Johnston, E. L. , Zavan, L. , Bitto, N. J. , & Kaparakis‐Liaskos, M. (2021). Immunomodulatory roles and novel applications of bacterial membrane vesicles. Molecular Immunology, 134, 72–85. PubMed
Gnopo, Y. M. D. , & Putnam, D. (2020). A lipid mixing assay to accurately quantify the fusion of outer membrane vesicles. Methods (San Diego, California), 177, 74–79. PubMed PMC
Goedhart, J. , & Luijsterburg, M. S. (2020). VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Scientific Reports, 10, 20560. PubMed PMC
Gonzalez‐Lozano, E. , Garcia‐Garcia, J. , Galvez, J. , Hidalgo‐Garcia, L. , Rodriguez‐Nogales, A. , Rodriguez‐Cabezas, M. E. , & Sanchez, M. (2022). Novel horizons in postbiotics: Lactobacillaceae extracellular vesicles and their applications in health and disease. Nutrients, 14, 5296. PubMed PMC
Gu, Z. , Li, F. , Liu, Y. , Jiang, M. , Zhang, L. , He, L. , Wilkey, D. W. , Merchant, M. , Zhang, X. , Deng, Z. B. , Chen, S. Y. , Barve, S. , McClain, C. J. , & Feng, W. (2021). Exosome‐like nanoparticles from Lactobacillus rhamnosus GG protect against alcohol‐associated liver disease through intestinal aryl hydrocarbon receptor in mice. Hepatology Communications, 5, 846–864. PubMed PMC
Hameed, A. , Natarajan, M. , Jabbar, S. , Dhanasekaran, J. J. , Kumar, K. , Sivanesan, S. , Kron, M. , & Dhanasekaran, A. (2019). Immune response to Brugia malayi Asparaginyl‐tRNA synthetase in Balb/c mice and human clinical samples of lymphatic filariasis. Lymphatic Research and Biology, 17, 447–456. PubMed
Han, F. , Wang, K. , Shen, K. , Wang, J. , Han, S. , Hu, D. , & Wu, G. (2023). Extracellular vesicles from Lactobacillus druckerii inhibit hypertrophic scar fibrosis. Journal of Nanobiotechnology, 21, 113. PubMed PMC
He, X. , Zeng, Q. , Puthiyakunnon, S. , Zeng, Z. , Yang, W. , Qiu, J. , Du, L. , Boddu, S. , Wu, T. , Cai, D. , Huang, S. H. , & Cao, H. (2017). Lactobacillus rhamnosus GG supernatant enhance neonatal resistance to systemic Escherichia coli K1 infection by accelerating development of intestinal defense. Scientific Reports, 7, 43305. PubMed PMC
Hu, R. , Lin, H. , Wang, M. , Zhao, Y. , Liu, H. , Min, Y. , Yang, X. , Gao, Y. , & Yang, M. (2021). Lactobacillus reuteri‐derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide‐induced inflammatory responses in broilers. Journal of Animal Science and Biotechnology, 12, 25. PubMed PMC
Hunt, L. , Hacker, D. L. , Grosjean, F. , De Jesus, M. , Uebersax, L. , Jordan, M. , & Wurm, F. M. (2005). Low‐temperature pausing of cultivated mammalian cells. Biotechnology and Bioengineering, 89, 157–163. PubMed
Jeong, D. , Kim, M. J. , Park, Y. , Chung, J. , Kweon, H. S. , Kang, N. G. , Hwang, S. J. , Youn, S. H. , Hwang, B. K. , & Kim, D. (2022). Visualizing extracellular vesicle biogenesis in gram‐positive bacteria using super‐resolution microscopy. BMC Biology, 20, 270. PubMed PMC
Jones, E. J. , Booth, C. , Fonseca, S. , Parker, A. , Cross, K. , Miquel‐Clopes, A. , Hautefort, I. , Mayer, U. , Wileman, T. , Stentz, R. , & Carding, S. R. (2020). The uptake, trafficking, and biodistribution of bacteroides thetaiotaomicron generated outer membrane vesicles. Frontiers in Microbiology, 11, 57. PubMed PMC
Kanehisa, M. (2019). Toward understanding the origin and evolution of cellular organisms. Protein Science, 28, 1947–1951. PubMed PMC
Kanehisa, M. , Furumichi, M. , Sato, Y. , Kawashima, M. , & Ishiguro‐Watanabe, M. (2023). KEGG for taxonomy‐based analysis of pathways and genomes. Nucleic Acids Research, 51, D587–D592. PubMed PMC
Kanehisa, M. , & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30. PubMed PMC
Kang, J. Y. , Nan, X. , Jin, M. S. , Youn, S. J. , Ryu, Y. H. , Mah, S. , Han, S. H. , Lee, H. , Paik, S. G. , & Lee, J. O. (2009). Recognition of lipopeptide patterns by Toll‐like receptor 2‐Toll‐like receptor 6 heterodimer. Immunity, 31, 873–884. PubMed
Kawai, T. , & Akira, S. (2007). Signaling to NF‐kappaB by Toll‐like receptors. Trends in Molecular Medicine, 13, 460–469. PubMed
Keyhani, G. , Mahmoodzadeh Hosseini, H. , & Salimi, A. (2022). Effect of extracellular vesicles of Lactobacillus rhamnosus GG on the expression of CEA gene and protein released by colorectal cancer cells. Iranian Journal of Microbiology, 14, 90–96. PubMed PMC
Kim, O. Y. , Park, H. T. , Dinh, N. T. H. , Choi, S. J. , Lee, J. , Kim, J. H. , Lee, S. W. , & Gho, Y. S. (2017). Bacterial outer membrane vesicles suppress tumor by interferon‐gamma‐mediated antitumor response. Nature Communications, 8, 626. PubMed PMC
Kim, M. H. , Kim, S. Y. , Son, J. H. , Kim, S. I. , Lee, H. , Kim, S. , Shin, M. , & Lee, J. C. (2019). Production of membrane vesicles by Enterococcus faecium cultured with or without subinhibitory concentrations of antibiotics and their pathological effects on epithelial cells. Frontiers in Cellular and Infection Microbiology, 9, 295. PubMed PMC
Kim, Y. , Edwards, N. , & Fenselau, C. (2016). Extracellular vesicle proteomes reflect developmental phases of Bacillus subtilis. Clin Proteomics, 13, 6. PubMed PMC
Kirubakar, G. , Murugaiyan, J. , Schaudinn, C. , Dematheis, F. , Holland, G. , Eravci, M. , Weise, C. , Roesler, U. , & Lewin, A. (2018). Proteome analysis of a M. avium mutant exposes a novel role of the bifunctional protein LysX in the regulation of metabolic activity. Journal of Infectious Diseases, 218, 291–299. PubMed
Knapp, S. , von Aulock, S. , Leendertse, M. , Haslinger, I. , Draing, C. , Golenbock, D. T. , & van der Poll, T. (2008). Lipoteichoic acid‐induced lung inflammation depends on TLR2 and the concerted action of TLR4 and the platelet‐activating factor receptor. Journal of Immunology, 180, 3478–3484. PubMed
Koskenniemi, K. , Koponen, J. , Kankainen, M. , Savijoki, K. , Tynkkynen, S. , de Vos, W. M. , Kalkkinen, N. , & Varmanen, P. (2009). Proteome analysis of Lactobacillus rhamnosus GG using 2‐D DIGE and mass spectrometry shows differential protein production in laboratory and industrial‐type growth media. Journal of Proteome Research, 8, 4993–5007. PubMed
Krsek, D. , Yara, D. A. , Hrbackova, H. , Daniel, O. , Mancikova, A. , Schuller, S. , & Bielaszewska, M. (2023). Translocation of outer membrane vesicles from enterohemorrhagic Escherichia coli O157 across the intestinal epithelial barrier. Frontiers in Microbiology, 14, 1198945. PubMed PMC
Kurata, A. , Kiyohara, S. , Imai, T. , Yamasaki‐Yashiki, S. , Zaima, N. , Moriyama, T. , Kishimoto, N. , & Uegaki, K. (2022). Characterization of extracellular vesicles from Lactiplantibacillus plantarum. Scientific Reports, 12, 13330. PubMed PMC
Laakso, K. , Koskenniemi, K. , Koponen, J. , Kankainen, M. , Surakka, A. , Salusjarvi, T. , Auvinen, P. , Savijoki, K. , Nyman, T. A. , Kalkkinen, N. , Tynkkynen, S. , & Varmanen, P. (2011). Growth phase‐associated changes in the proteome and transcriptome of Lactobacillus rhamnosus GG in industrial‐type whey medium. Microbial Biotechnology, 4, 746–766. PubMed PMC
Lee, E. Y. , Choi, D. Y. , Kim, D. K. , Kim, J. W. , Park, J. O. , Kim, S. , Kim, S. H. , Desiderio, D. M. , Kim, Y. K. , Kim, K. P. , & Gho, Y. S. (2009). Gram‐positive bacteria produce membrane vesicles: Proteomics‐based characterization of Staphylococcus aureus‐derived membrane vesicles. Proteomics, 9, 5425–5436. PubMed
Lee, B. H. , Wu, S. C. , Shen, T. L. , Hsu, Y. Y. , Chen, C. H. , & Hsu, W. H. (2021). The applications of Lactobacillus plantarum‐derived extracellular vesicles as a novel natural antibacterial agent for improving quality and safety in tuna fish. Food Chemistry, 340, 128104. PubMed
Liu, H. , Zhang, Q. , Wang, S. C. , Weng, W. Z. , Jing, Y. Y. , & Su, J. C. (2022). Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: Advances and perspectives. Bioactive Materials, 14, 169–181. PubMed PMC
Loaiza, C. D. , & Kaundal, R. (2021). PredHPI: An integrated web server platform for the detection and visualization of host‐pathogen interactions using sequence‐based methods. Bioinformatics, 37, 622–624. PubMed
Long, E. M. , Millen, B. , Kubes, P. , & Robbins, S. M. (2009). Lipoteichoic acid induces unique inflammatory responses when compared to other toll‐like receptor 2 ligands. PLoS ONE, 4, e5601. PubMed PMC
Ma, L. , Shen, Q. , Lyu, W. , Lv, L. , Wang, W. , Yu, M. , Yang, H. , Tao, S. , & Xiao, Y. (2022). Clostridium butyricum and its derived extracellular vesicles modulate gut homeostasis and ameliorate acute experimental colitis. Microbiology Spectrum, 10, e0136822. PubMed PMC
Maloney, E. , Stankowska, D. , Zhang, J. , Fol, M. , Cheng, Q. J. , Lun, S. C. , Bishai, W. R. , Rajagopalan, M. , Chatterjee, D. , & Madiraju, M. V. (2009). The two‐domain LysX protein of mycobacterium tuberculosis is required for production of lysinylated phosphatidylglycerol and resistance to cationic antimicrobial peptides. Plos Pathogens, 5, e1000534. PubMed PMC
Mata Forsberg, M. , Bjorkander, S. , Pang, Y. , Lundqvist, L. , Ndi, M. , Ott, M. , Escriba, I. B. , Jaeger, M. C. , Roos, S. , & Sverremark‐Ekstrom, E. (2019). Extracellular membrane vesicles from lactobacilli dampen IFN‐gamma responses in a monocyte‐dependent manner. Scientific Reports, 9, 17109. PubMed PMC
Mehanny, M. , Kroniger, T. , Koch, M. , Hoppstadter, J. , Becher, D. , Kiemer, A. K. , Lehr, C. M. , & Fuhrmann, G. (2022). Yields and immunomodulatory effects of pneumococcal membrane vesicles differ with the bacterial growth phase. Advanced Healthcare Materials, 11, e2101151. PubMed PMC
Micoli, F. , & MacLennan, C. A. (2020). Outer membrane vesicle vaccines. Seminars in Immunology, 50, 101433. PubMed
Milacic, M. , Beavers, D. , Conley, P. , Gong, C. , Gillespie, M. , Griss, J. , Haw, R. , Jassal, B. , Matthews, L. , May, B. , Petryszak, R. , Ragueneau, E. , Rothfels, K. , Sevilla, C. , Shamovsky, V. , Stephan, R. , Tiwari, K. , Varusai, T. , Weiser, J. , … D'Eustachio, P. (2024). The Reactome Pathway Knowledgebase 2024. Nucleic Acids Research, 52, D672–D678. PubMed PMC
Morhardt, T. L. , Hayashi, A. , Ochi, T. , Quiros, M. , Kitamoto, S. , Nagao‐Kitamoto, H. , Kuffa, P. , Atarashi, K. , Honda, K. , Kao, J. Y. , Nusrat, A. , & Kamada, N. (2019). IL‐10 produced by macrophages regulates epithelial integrity in the small intestine. Scientific Reports, 9, 1223. PubMed PMC
Nahui Palomino, R. A. , Vanpouille, C. , Costantini, P. E. , & Margolis, L. (2021). Microbiota‐host communications: Bacterial extracellular vesicles as a common language. Plos Pathogens, 17, e1009508. PubMed PMC
Nie, A. , Sun, B. , Fu, Z. , & Yu, D. (2019). Roles of aminoacyl‐tRNA synthetases in immune regulation and immune diseases. Cell Death & Disease, 10, 901. PubMed PMC
Nilsen, N. J. , Deininger, S. , Nonstad, U. , Skjeldal, F. , Husebye, H. , Rodionov, D. , von Aulock, S. , Hartung, T. , Lien, E. , Bakke, O. , & Espevik, T. (2008). Cellular trafficking of lipoteichoic acid and Toll‐like receptor 2 in relation to signaling: Role of CD14 and CD36. Journal of Leukocyte Biology, 84, 280–291. PubMed PMC
O'Donoghue, E. J. , & Krachler, A. M. (2016). Mechanisms of outer membrane vesicle entry into host cells. Cellular Microbiology, 18, 1508–1517. PubMed PMC
Park, K. S. , Svennerholm, K. , Crescitelli, R. , Lasser, C. , Gribonika, I. , & Lotvall, J. (2021). Synthetic bacterial vesicles combined with tumour extracellular vesicles as cancer immunotherapy. Journal of Extracellular Vesicles, 10, e12120. PubMed PMC
Perez‐Riverol, Y. , Bai, J. , Bandla, C. , Garcia‐Seisdedos, D. , Hewapathirana, S. , Kamatchinathan, S. , Kundu, D. J. , Prakash, A. , Frericks‐Zipper, A. , Eisenacher, M. , Walzer, M. , Wang, S. , Brazma, A. , & Vizcaino, J. A. (2022). The PRIDE database resources in 2022: A hub for mass spectrometry‐based proteomics evidences. Nucleic Acids Research, 50, D543–D552. PubMed PMC
Pospichalova, V. , Svoboda, J. , Dave, Z. , Kotrbova, A. , Kaiser, K. , Klemova, D. , Ilkovics, L. , Hampl, A. , Crha, I. , Jandakova, E. , Minar, L. , Weinberger, V. , & Bryja, V. (2015). Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. Journal of Extracellular Vesicles, 4, 25530. PubMed PMC
Ramirez, B. L. , Howard, O. M. , Dong, H. F. , Edamatsu, T. , Gao, P. , Hartlein, M. , & Kron, M. (2006). Brugia malayi asparaginyl‐transfer RNA synthetase induces chemotaxis of human leukocytes and activates G‐protein‐coupled receptors CXCR1 and CXCR2. Journal of Infectious Diseases, 193, 1164–1171. PubMed
Rubio, A. P. D. , Martinez, J. , Palavecino, M. , Fuentes, F. , Lopez, C. M. S. , Marcilla, A. , Perez, O. E. , & Piuri, M. (2020). Transcytosis of Bacillus subtilis extracellular vesicles through an in vitro intestinal epithelial cell model. Scientific Reports, 10, 3120. PubMed PMC
Shiraishi, T. , Yokota, S. , Sato, Y. , Ito, T. , Fukiya, S. , Yamamoto, S. , Sato, T. , & Yokota, A. (2018). Lipoteichoic acids are embedded in cell walls during logarithmic phase, but exposed on membrane vesicles in Lactobacillus gasseri JCM 1131(T). Beneficial Microbes, 9, 653–662. PubMed
Tartaglia, N. R. , Nicolas, A. , Rodovalho, V. R. , Luz, B. , Briard‐Bion, V. , Krupova, Z. , Thierry, A. , Coste, F. , Burel, A. , Martin, P. , Jardin, J. , Azevedo, V. , Le Loir, Y. , & Guedon, E. (2020). Extracellular vesicles produced by human and animal Staphylococcus aureus strains share a highly conserved core proteome. Scientific Reports, 10, 8467. PubMed PMC
Tashiro, Y. , Ichikawa, S. , Shimizu, M. , Toyofuku, M. , Takaya, N. , Nakajima‐Kambe, T. , Uchiyama, H. , & Nomura, N. (2010). Variation of physiochemical properties and cell association activity of membrane vesicles with growth phase in Pseudomonas aeruginosa. Applied and Environmental Microbiology, 76, 3732–3739. PubMed PMC
Tong, L. , Zhang, X. , Hao, H. , Liu, Q. , Zhou, Z. , Liang, X. , Liu, T. , Gong, P. , Zhang, L. , Zhai, Z. , Hao, Y. , & Yi, H. (2021). Lactobacillus rhamnosus GG derived extracellular vesicles modulate gut microbiota and attenuate inflammatory in DSS‐induced colitis mice. Nutrients, 13, 3319. PubMed PMC
Turnbull, L. , Toyofuku, M. , Hynen, A. L. , Kurosawa, M. , Pessi, G. , Petty, N. K. , Osvath, S. R. , Carcamo‐Oyarce, G. , Gloag, E. S. , Shimoni, R. , Omasits, U. , Ito, S. , Yap, X. , Monahan, L. G. , Cavaliere, R. , Ahrens, C. H. , Charles, I. G. , Nomura, N. , Eberl, L. , & Whitchurch, C. B. (2016). Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nature Communications, 7, 11220. PubMed PMC
Uppu, D. S. , Wang, X. , & Lee, J. C. (2023). Contribution of extracellular membrane vesicles to the secretome of Staphylococcus aureus. MBio, 14, e0357122. PubMed PMC
van der Ley, P. , & van den Dobbelsteen, G. (2011). Next‐generation outer membrane vesicle vaccines against Neisseria meningitidis based on nontoxic LPS mutants. Human Vaccines, 7, 886–890. PubMed
Veselovsky, V. A. , Dyachkova, M. S. , Bespiatykh, D. A. , Yunes, R. A. , Shitikov, E. A. , Polyaeva, P. S. , Danilenko, V. N. , Olekhnovich, E. I. , & Klimina, K. M. (2022). The gene expression profile differs in growth phases of the bifidobacterium longum culture. Microorganisms, 10, 1683. PubMed PMC
Wagner, T. , Joshi, B. , Janice, J. , Askarian, F. , Skalko‐Basnet, N. , Hagestad, O. C. , Mekhlif, A. , Wai, S. N. , Hegstad, K. , & Johannessen, M. (2018). Enterococcus faecium produces membrane vesicles containing virulence factors and antimicrobial resistance related proteins. Journal of Proteomics, 187, 28–38. PubMed
Wang, X. , Koffi, P. F. , English, O. F. , & Lee, J. C. (2021). Staphylococcus aureus extracellular vesicles: A story of toxicity and the stress of 2020. Toxins (Basel), 13, 75. PubMed PMC
Wisniewski, J. R. , Zougman, A. , Nagaraj, N. , & Mann, M. (2009). Universal sample preparation method for proteome analysis. Nature Methods, 6, 359–362. PubMed
Yerneni, S. S. , Werner, S. , Azambuja, J. H. , Ludwig, N. , Eutsey, R. , Aggarwal, S. D. , Lucas, P. C. , Bailey, N. , Whiteside, T. L. , Campbell, P. G. , & Hiller, N. L. (2021). Pneumococcal extracellular vesicles modulate host immunity. MBio, 12, e0165721. PubMed PMC
Yu, N. Y. , Wagner, J. R. , Laird, M. R. , Melli, G. , Rey, S. , Lo, R. , Dao, P. , Sahinalp, S. C. , Ester, M. , Foster, L. J. , & Brinkman, F. S. (2010). PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics, 26, 1608–1615. PubMed PMC
A comprehensive summary of the ASEV-CzeSEV joint meeting on extracellular vesicles