Effect of Rest Period Duration between Sets of Repeated Sprint Skating Ability Test on the Skating Ability of Ice Hockey Players

. 2021 Oct 09 ; 18 (20) : . [epub] 20211009

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34682336

The aim of this study was to determine the effects of two different rest periods, 2 min and 3 min, between consecutive sets of a repeated sprint skating ability (RSSA) test, on the skating ability of ice hockey players. Two RSSA tests, RSSA-2 and RSSA-3, were assessed on 24 ice hockey players. In RSSA-2, six sets of 3 × 80 m sprint skating, with 2 min passive recovery between two consecutive sets was allowed. In RSSA-3, the recovery period between the sets was 3 min. Average speed, average heart rate (HRaver), peak heart rate (HRpeak), blood lactate concentration ([BLa]), and rate of perceived exertion (RPE) were measured in both RSSA-2 and RSSA-3 tests. In all the sets, except set 1, the average speed of the subjects was significantly (p < 0.05) higher in RSSA-3 than the respective set in RSSA-2. Average HR and RPE were higher in RSSA-2 than RSSA-3 in most of the sets. For any given set, no difference in HRpeak was noted between RSSA-2 and RSSA-3. Post-sprint (Set 6) [BLa] was significantly (p < 0.05) higher in RSSA-3 than RSSA-2. This study concludes that the 3 min rest period is more beneficial than the 2 min rest period, for (1) increasing skating speed and (2) reducing overall cardiac workload and perceived fatigue.

Zobrazit více v PubMed

Cox M.H., Miles D.S., Verde T.J., Rhodes E.C. Applied Physiology of Ice Hockey. Sports Med. 1995;19:184–201. doi: 10.2165/00007256-199519030-00004. PubMed DOI

Green H., Bishop P., Houston M., McKillop R., Norman R., Stothart P. Time motion and physiological assessments of ice hockey performance. J. Appl. Physiol. 1976;40:159–163. doi: 10.1152/jappl.1976.40.2.159. PubMed DOI

Brocherie F., Girard O., Millet G.P. Updated analysis of changes in locomotor activities across periods in an international ice hockey game. Biol. Sport. 2018;35:261–267. doi: 10.5114/biolsport.2018.77826. PubMed DOI PMC

Peterson B.J., Fitzgerald J.S., Dietz C.C., Ziegler K.S., Ingraham S.J., Baker S.E., Snyder E.M. Aerobic capacity is associated with improved repeated shift performance in hockey. J. Strength Cond. Res. 2015;29:1465–1472. doi: 10.1519/JSC.0000000000000786. PubMed DOI

Roczniok R., Stanula A., Gabryś T., Szmatlan-Gabryś U., Gołaś A., Stastny P. Physical fitness and performance of polish ice-hockey players competing at different sports levels. J. Hum. Kinet. 2016;50:201–208. doi: 10.1515/hukin-2015-0165. PubMed DOI PMC

Stanula A., Roczniok R., Maszczyk A., Pietraszewski P., Zając A. The role of aerobic capacity in high-intensity intermittent efforts in ice-hockey. Biol. Sport. 2014;31:193–195. doi: 10.5604/20831862.1111437. PubMed DOI PMC

Oliver J.L. Is a fatigue index a worthwhile measure of repeated sprint ability? J. Sci. Med. Sport. 2009;12:20–23. doi: 10.1016/j.jsams.2007.10.010. PubMed DOI

Glaister M. Multiple sprint work: Physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med. 2005;35:757–777. doi: 10.2165/00007256-200535090-00003. PubMed DOI

Douglas A., Johnston K., Baker J., Rotondi M.A., Jamnik V.K., Macpherson A.K. On-Ice Measures of External Load in Relation to Match Outcome in Elite Female Ice Hockey. Sports. 2019;7:173. doi: 10.3390/sports7070173. PubMed DOI PMC

Leone M., Léger L.A., Larivière G., Comtois A.S. An on-ice aerobic maximal multistage shuttle skate test for elite adolescent hockey players. Int. J. Sports Med. 2007;28:823–828. doi: 10.1055/s-2007-964986. PubMed DOI

Allisse M., Bui H.T., Léger L., Comtois A.-S., Leone M. Updating the Skating Multistage Aerobic Test and Correction for Vo2max Prediction Using a New Skating Economy Index in Elite Youth Ice Hockey Players. J. Strength Cond. Res. 2020;34:3182–3189. doi: 10.1519/JSC.0000000000002602. PubMed DOI

McGowan C.J., Pyne D.B., Thompson K.G., Rattray B. Warm-Up Strategies for Sport and Exercise: Mechanisms and Applications. Sports Med. 2015;45:1523–1546. doi: 10.1007/s40279-015-0376-x. PubMed DOI

Hůlka K., Bělka J., Cuberek R., Schneider O. Reliability of specific on-ice repeated-sprint ability test for ice-hockey players. Acta Gymnica. 2014;44:69–75. doi: 10.5507/ag.2014.007. DOI

Girard O., Mendez-Villanueva A., Bishop D. Repeated-sprint ability part I: Factors contributing to fatigue. Sports Med. 2011;41:673–694. doi: 10.2165/11590550-000000000-00000. PubMed DOI

Borg G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand. J. Work. Environ. Health. 1990;16:55–58. doi: 10.5271/sjweh.1815. PubMed DOI

Hopkins W.G., Marshall S.W., Batterham A.M., Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009;41:3–13. doi: 10.1249/MSS.0b013e31818cb278. PubMed DOI

Burr J.F., Jamnik R.K., Baker J., Macpherson A., Gledhill N., McGuire E.J. Relationship of physical fitness test results and hockey playing potential in elite-level ice hockey players. J. Strength Cond. Res. 2008;22:1535–1543. doi: 10.1519/JSC.0b013e318181ac20. PubMed DOI

Montgomery D.L. Physiology of ice hockey. Sports Med. 1988;5:99–126. doi: 10.2165/00007256-198805020-00003. PubMed DOI

Twist P., Rhodes T. Exercise physiology: A physiological analysis of ice hockey positions. Natl. Strength Cond. Assoc. J. 2008;15:44–46. doi: 10.1519/0744-0049(1993)015<0044:APAOIH>2.3.CO;2. DOI

McGawley K., Bishop D. Anaerobic and aerobic contribution to two, 5 × 6-s repeated-sprint bouts. Coach. Sport Sci. J. 2008;3:52.

Parolin M.L., Chesley A., Matsos M.P., Spriet L.L., Jones N.L., Heigenhauser G.J.F. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol.-Endocrinol. Metab. 1999;277:E890–E900. doi: 10.1152/ajpendo.1999.277.5.E890. PubMed DOI

Bogdanis G.C., Nevill M.E., Boobis L.H., Lakomy H.K., Nevill A.M. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J. Physiol. 1995;482:467–480. doi: 10.1113/jphysiol.1995.sp020533. PubMed DOI PMC

Tomlin D.L., Wenger H.A. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med. 2001;31:1–11. doi: 10.2165/00007256-200131010-00001. PubMed DOI

Noonan B.C. Intragame blood-lactate values during ice hockey and their relationships to commonly used hockey testing protocols. J. Strength Cond. Res. 2010;24:2290–2295. doi: 10.1519/JSC.0b013e3181e99c4a. PubMed DOI

Gaitanos G.C., Williams C., Boobis L.H., Brooks S. Human muscle metabolism during intermittent maximal exercise. J. Appl. Physiol. (Bethesda Md. 1985) 1993;75:712–719. doi: 10.1152/jappl.1993.75.2.712. PubMed DOI

Stanula A., Roczniok R. Game intensity analysis of elite adolescent ice hockey players. J. Hum. Kinet. 2014;44:211–221. doi: 10.2478/hukin-2014-0126. PubMed DOI PMC

Stanula A., Gabryś T., Roczniok R., Szmatlan-Gabryś U., Ozimek M., Mostowik A. Quantification of the demands during an ice-hockey game based on intensity zones determined from the incremental test outcomes. J. Strength Cond. Res. 2016;30:176–183. doi: 10.1519/JSC.0000000000001081. PubMed DOI

Eisenhofer G., Kopin I.J., Goldstein D.S. Catecholamine metabolism: A contemporary view with implications for physiology and medicine. Pharmacol. Rev. 2004;56:331–349. doi: 10.1124/pr.56.3.1. PubMed DOI

McArdle W.D., Foglia G.F., Patti A.V. Telemetered cardiac response to selected running events. J. Appl. Physiol. 1967;23:566–570. doi: 10.1152/jappl.1967.23.4.566. PubMed DOI

Le Meur Y., Buchheit M., Aubry A., Coutts A.J., Hausswirth C. Assessing Overreaching With Heart-Rate Recovery: What Is the Minimal Exercise Intensity Required? Int. J. Sports Physiol. Perform. 2016;12:569–573. doi: 10.1123/ijspp.2015-0675. PubMed DOI

Lamberts R.P., Swart J., Noakes T.D., Lambert M.I. A novel submaximal cycle test to monitor fatigue and predict cycling performance. Br. J. Sports Med. 2011;45:797–804. doi: 10.1136/bjsm.2009.061325. PubMed DOI

Eston R. Use of ratings of perceived exertion in sports. Int. J. Sports Physiol. Perform. 2012;7:175–182. doi: 10.1123/ijspp.7.2.175. PubMed DOI

Gupta S., Stanula A., Goswami A. Peak Blood Lactate Concentration and Its Arrival Time Following Different Track Running Events in Under-20 Male Track Athletes. Int. J. Sports Physiol. Perform. 2021:1–9. doi: 10.1123/ijspp.2020-0685. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...