Effect of Rest Period Duration between Sets of Repeated Sprint Skating Ability Test on the Skating Ability of Ice Hockey Players
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34682336
PubMed Central
PMC8536092
DOI
10.3390/ijerph182010591
PII: ijerph182010591
Knihovny.cz E-zdroje
- Klíčová slova
- average heart rate, average speed, blood lactate concentration, peak heart rate, rate of perceived exertion, speed decrement,
- MeSH
- bruslení * MeSH
- hokej * MeSH
- kyselina mléčná MeSH
- lidé MeSH
- odpočinek MeSH
- srdeční frekvence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyselina mléčná MeSH
The aim of this study was to determine the effects of two different rest periods, 2 min and 3 min, between consecutive sets of a repeated sprint skating ability (RSSA) test, on the skating ability of ice hockey players. Two RSSA tests, RSSA-2 and RSSA-3, were assessed on 24 ice hockey players. In RSSA-2, six sets of 3 × 80 m sprint skating, with 2 min passive recovery between two consecutive sets was allowed. In RSSA-3, the recovery period between the sets was 3 min. Average speed, average heart rate (HRaver), peak heart rate (HRpeak), blood lactate concentration ([BLa]), and rate of perceived exertion (RPE) were measured in both RSSA-2 and RSSA-3 tests. In all the sets, except set 1, the average speed of the subjects was significantly (p < 0.05) higher in RSSA-3 than the respective set in RSSA-2. Average HR and RPE were higher in RSSA-2 than RSSA-3 in most of the sets. For any given set, no difference in HRpeak was noted between RSSA-2 and RSSA-3. Post-sprint (Set 6) [BLa] was significantly (p < 0.05) higher in RSSA-3 than RSSA-2. This study concludes that the 3 min rest period is more beneficial than the 2 min rest period, for (1) increasing skating speed and (2) reducing overall cardiac workload and perceived fatigue.
Faculty of Medical Sciences University of West Indies Cave Hill 11000 Barbados
Faculty of Science and Technology University of Silesia in Katowice 41 500 Chorzów Poland
Institute of Sport Sciences Jerzy Kukuczka Academy of Physical Education 40 065 Katowice Poland
Zobrazit více v PubMed
Cox M.H., Miles D.S., Verde T.J., Rhodes E.C. Applied Physiology of Ice Hockey. Sports Med. 1995;19:184–201. doi: 10.2165/00007256-199519030-00004. PubMed DOI
Green H., Bishop P., Houston M., McKillop R., Norman R., Stothart P. Time motion and physiological assessments of ice hockey performance. J. Appl. Physiol. 1976;40:159–163. doi: 10.1152/jappl.1976.40.2.159. PubMed DOI
Brocherie F., Girard O., Millet G.P. Updated analysis of changes in locomotor activities across periods in an international ice hockey game. Biol. Sport. 2018;35:261–267. doi: 10.5114/biolsport.2018.77826. PubMed DOI PMC
Peterson B.J., Fitzgerald J.S., Dietz C.C., Ziegler K.S., Ingraham S.J., Baker S.E., Snyder E.M. Aerobic capacity is associated with improved repeated shift performance in hockey. J. Strength Cond. Res. 2015;29:1465–1472. doi: 10.1519/JSC.0000000000000786. PubMed DOI
Roczniok R., Stanula A., Gabryś T., Szmatlan-Gabryś U., Gołaś A., Stastny P. Physical fitness and performance of polish ice-hockey players competing at different sports levels. J. Hum. Kinet. 2016;50:201–208. doi: 10.1515/hukin-2015-0165. PubMed DOI PMC
Stanula A., Roczniok R., Maszczyk A., Pietraszewski P., Zając A. The role of aerobic capacity in high-intensity intermittent efforts in ice-hockey. Biol. Sport. 2014;31:193–195. doi: 10.5604/20831862.1111437. PubMed DOI PMC
Oliver J.L. Is a fatigue index a worthwhile measure of repeated sprint ability? J. Sci. Med. Sport. 2009;12:20–23. doi: 10.1016/j.jsams.2007.10.010. PubMed DOI
Glaister M. Multiple sprint work: Physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med. 2005;35:757–777. doi: 10.2165/00007256-200535090-00003. PubMed DOI
Douglas A., Johnston K., Baker J., Rotondi M.A., Jamnik V.K., Macpherson A.K. On-Ice Measures of External Load in Relation to Match Outcome in Elite Female Ice Hockey. Sports. 2019;7:173. doi: 10.3390/sports7070173. PubMed DOI PMC
Leone M., Léger L.A., Larivière G., Comtois A.S. An on-ice aerobic maximal multistage shuttle skate test for elite adolescent hockey players. Int. J. Sports Med. 2007;28:823–828. doi: 10.1055/s-2007-964986. PubMed DOI
Allisse M., Bui H.T., Léger L., Comtois A.-S., Leone M. Updating the Skating Multistage Aerobic Test and Correction for Vo2max Prediction Using a New Skating Economy Index in Elite Youth Ice Hockey Players. J. Strength Cond. Res. 2020;34:3182–3189. doi: 10.1519/JSC.0000000000002602. PubMed DOI
McGowan C.J., Pyne D.B., Thompson K.G., Rattray B. Warm-Up Strategies for Sport and Exercise: Mechanisms and Applications. Sports Med. 2015;45:1523–1546. doi: 10.1007/s40279-015-0376-x. PubMed DOI
Hůlka K., Bělka J., Cuberek R., Schneider O. Reliability of specific on-ice repeated-sprint ability test for ice-hockey players. Acta Gymnica. 2014;44:69–75. doi: 10.5507/ag.2014.007. DOI
Girard O., Mendez-Villanueva A., Bishop D. Repeated-sprint ability part I: Factors contributing to fatigue. Sports Med. 2011;41:673–694. doi: 10.2165/11590550-000000000-00000. PubMed DOI
Borg G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand. J. Work. Environ. Health. 1990;16:55–58. doi: 10.5271/sjweh.1815. PubMed DOI
Hopkins W.G., Marshall S.W., Batterham A.M., Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009;41:3–13. doi: 10.1249/MSS.0b013e31818cb278. PubMed DOI
Burr J.F., Jamnik R.K., Baker J., Macpherson A., Gledhill N., McGuire E.J. Relationship of physical fitness test results and hockey playing potential in elite-level ice hockey players. J. Strength Cond. Res. 2008;22:1535–1543. doi: 10.1519/JSC.0b013e318181ac20. PubMed DOI
Montgomery D.L. Physiology of ice hockey. Sports Med. 1988;5:99–126. doi: 10.2165/00007256-198805020-00003. PubMed DOI
Twist P., Rhodes T. Exercise physiology: A physiological analysis of ice hockey positions. Natl. Strength Cond. Assoc. J. 2008;15:44–46. doi: 10.1519/0744-0049(1993)015<0044:APAOIH>2.3.CO;2. DOI
McGawley K., Bishop D. Anaerobic and aerobic contribution to two, 5 × 6-s repeated-sprint bouts. Coach. Sport Sci. J. 2008;3:52.
Parolin M.L., Chesley A., Matsos M.P., Spriet L.L., Jones N.L., Heigenhauser G.J.F. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol.-Endocrinol. Metab. 1999;277:E890–E900. doi: 10.1152/ajpendo.1999.277.5.E890. PubMed DOI
Bogdanis G.C., Nevill M.E., Boobis L.H., Lakomy H.K., Nevill A.M. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J. Physiol. 1995;482:467–480. doi: 10.1113/jphysiol.1995.sp020533. PubMed DOI PMC
Tomlin D.L., Wenger H.A. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med. 2001;31:1–11. doi: 10.2165/00007256-200131010-00001. PubMed DOI
Noonan B.C. Intragame blood-lactate values during ice hockey and their relationships to commonly used hockey testing protocols. J. Strength Cond. Res. 2010;24:2290–2295. doi: 10.1519/JSC.0b013e3181e99c4a. PubMed DOI
Gaitanos G.C., Williams C., Boobis L.H., Brooks S. Human muscle metabolism during intermittent maximal exercise. J. Appl. Physiol. (Bethesda Md. 1985) 1993;75:712–719. doi: 10.1152/jappl.1993.75.2.712. PubMed DOI
Stanula A., Roczniok R. Game intensity analysis of elite adolescent ice hockey players. J. Hum. Kinet. 2014;44:211–221. doi: 10.2478/hukin-2014-0126. PubMed DOI PMC
Stanula A., Gabryś T., Roczniok R., Szmatlan-Gabryś U., Ozimek M., Mostowik A. Quantification of the demands during an ice-hockey game based on intensity zones determined from the incremental test outcomes. J. Strength Cond. Res. 2016;30:176–183. doi: 10.1519/JSC.0000000000001081. PubMed DOI
Eisenhofer G., Kopin I.J., Goldstein D.S. Catecholamine metabolism: A contemporary view with implications for physiology and medicine. Pharmacol. Rev. 2004;56:331–349. doi: 10.1124/pr.56.3.1. PubMed DOI
McArdle W.D., Foglia G.F., Patti A.V. Telemetered cardiac response to selected running events. J. Appl. Physiol. 1967;23:566–570. doi: 10.1152/jappl.1967.23.4.566. PubMed DOI
Le Meur Y., Buchheit M., Aubry A., Coutts A.J., Hausswirth C. Assessing Overreaching With Heart-Rate Recovery: What Is the Minimal Exercise Intensity Required? Int. J. Sports Physiol. Perform. 2016;12:569–573. doi: 10.1123/ijspp.2015-0675. PubMed DOI
Lamberts R.P., Swart J., Noakes T.D., Lambert M.I. A novel submaximal cycle test to monitor fatigue and predict cycling performance. Br. J. Sports Med. 2011;45:797–804. doi: 10.1136/bjsm.2009.061325. PubMed DOI
Eston R. Use of ratings of perceived exertion in sports. Int. J. Sports Physiol. Perform. 2012;7:175–182. doi: 10.1123/ijspp.7.2.175. PubMed DOI
Gupta S., Stanula A., Goswami A. Peak Blood Lactate Concentration and Its Arrival Time Following Different Track Running Events in Under-20 Male Track Athletes. Int. J. Sports Physiol. Perform. 2021:1–9. doi: 10.1123/ijspp.2020-0685. PubMed DOI