• This record comes from PubMed

Synthesis of Magnetic Adsorbents Based Carbon Highly Efficient and Stable for Use in the Removal of Pb(II) and Cd(II) in Aqueous Solution

. 2021 Oct 15 ; 14 (20) : . [epub] 20211015

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
RNM172 - project reference P18-RTJ-2974. Junta de Andalucía

In this study, two alternative synthesis routes for magnetic adsorbents were evaluated to remove Pb(II) and Cd(II) in an aqueous solution. First, activated carbon was prepared from argan shells (C). One portion was doped with magnetite (Fe3O4+C) and the other with cobalt ferrite (CoFe2O4+C). Characterization studies showed that C has a high surface area (1635 m2 g-1) due to the development of microporosity. For Fe3O4+C the magnetic particles were nano-sized and penetrated the material's texture, saturating the micropores. In contrast, CoFe2O4+C conserves the mesoporosity developed because most of the cobalt ferrite particles adhered to the exposed surface of the material. The adsorption capacity for Pb(II) was 389 mg g-1 (1.88 mmol g-1) and 249 mg g-1 (1.20 mmol g-1); while for Cd(II) was 269 mg g-1 (2.39 mmol g-1) and 264 mg g-1 (2.35 mmol g-1) for the Fe3O4+C and CoFe2O4+C, respectively. The predominant adsorption mechanism is the interaction between -FeOH groups with the cations in the solution, which are the main reason these adsorption capacities remain high in repeated adsorption cycles after regeneration with HNO3. The results obtained are superior to studies previously reported in the literature, making these new materials a promising alternative for large-scale wastewater treatment processes using batch-type reactors.

See more in PubMed

Kołodyńska D., Wnetrzak R., Leahy J.J., Hayes M.H.B., Kwapiński W., Hubicki Z. Kinetic and adsorptive characterization of biochar in metal ions removal. Chem. Eng. J. 2012;197:295–305. doi: 10.1016/j.cej.2012.05.025. DOI

Rehman K., Fatima F., Waheed I., Akash M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018;119:157–184. doi: 10.1002/jcb.26234. PubMed DOI

Liu C., Wu T., Hsu P.C., Xie J., Zhao J., Liu K., Sun J., Xu J., Tang J., Ye Z., et al. Direct/alternating current electrochemical method for removing and recovering heavy metal from water using graphene oxide electrode. ACS Nano. 2019;13:6431–6437. doi: 10.1021/acsnano.8b09301. PubMed DOI

Bora A.J., Dutta R.K. Removal of metals (Pb, Cd, Cu, Cr, Ni, and Co)from drinking water by oxidation-coagulation-absorption at optimized pH. J. Water Process. Eng. 2019;31:100839. doi: 10.1016/j.jwpe.2019.100839. DOI

Jamshidifard S., Koushkbaghi S., Hosseini S., Rezaei S., Karamipour A., Jafari rad A., Irani M. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. J. Hazard. Mater. 2019;368:10–20. doi: 10.1016/j.jhazmat.2019.01.024. PubMed DOI

Ramdani A., Kadeche A., Adjdir M., Taleb Z., Ikhou D., Taleb S., Deratani A. Lead and cadmium removal by adsorption process using hydroxyapatite porous materials. Water Pract. Technol. 2020;15:130–141. doi: 10.2166/wpt.2020.003. DOI

Kongsuwan A., Patnukao P., Pavasant P. Binary component sorption of Cu(II) and Pb(II) with activated carbon from Eucalyptus camaldulensis Dehn bark. J. Ind. Eng. Chem. 2009;15:465–470. doi: 10.1016/j.jiec.2009.02.002. DOI

El-ashtoukhy E.Z., Amin N.K., Abdelwahab O. Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent. Desalination. 2008;223:162–173. doi: 10.1016/j.desal.2007.01.206. DOI

Acharya J., Sahu J.N., Mohanty C.R., Meikap B.C. Removal of lead (II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chem. Eng. J. 2009;149:249–262. doi: 10.1016/j.cej.2008.10.029. DOI

Anitha K., Namsani S., Singh J.K. Removal of Heavy Metal Ions Using a Functionalized Single-Walled Carbon Nanotube: A Molecular Dynamics Study. J. Phys. Chem. A. 2015;119:8349–8358. doi: 10.1021/acs.jpca.5b03352. PubMed DOI

Li Y., Ding J., Luan Z., Di Z., Zhu Y., Xu C. Competitive adsorption of Pb 2, Cu 2 and Cd 2 ions from aqueous solutions by multiwalled carbon nanotubes. Carbon. 2003;41:2787–2792. doi: 10.1016/S0008-6223(03)00392-0. DOI

Stafiej A., Pyrzynska K. Solid phase extraction of metal ions using carbon nanotubes. Microchem. J. 2008;89:29–33. doi: 10.1016/j.microc.2007.11.001. DOI

Deng X., Lü L., Li H., Luo F. The adsorption properties of Pb (II) and Cd (II) on functionalized graphene prepared by electrolysis method. J. Hazard. Mater. 2010;183:923–930. doi: 10.1016/j.jhazmat.2010.07.117. PubMed DOI

Li F., Wang X., Yuan T., Sun R. A lignosulfonate-modified graphene hydrogel with ultrahigh adsorption capacity for Pb(ii) removal. J. Mater. Chem. A. 2016:11888–11896. doi: 10.1039/C6TA03779H. DOI

Samonin V.V., Nikonova V.Y., Podvyaznikov M.L. Carbon Adsorbents on the Basis of the Hydrolytic Lignin Modi fi ed with Fullerenes in Producing. Russ. J. Appl. Chem. 2014;87:190–193. doi: 10.1134/S1070427214020116. DOI

Hur J., Shin J., Yoo J., Seo Y. Competitive Adsorption of Metals onto Magnetic Graphene Oxide: Comparison with Other Carbonaceous Adsorbents. Sci. World J. 2015;2015:836287. doi: 10.1155/2015/836287. PubMed DOI PMC

Li X., Wang C., Zhang J., Liu J., Liu B., Chen G. Preparation and application of magnetic biochar in water treatment: A critical review. Sci. Total Environ. 2020;711:134847. doi: 10.1016/j.scitotenv.2019.134847. PubMed DOI

Ding Z., Hu X., Wan Y., Wang S., Gao B. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. J. Ind. Eng. Chem. 2016;33:239–245. doi: 10.1016/j.jiec.2015.10.007. DOI

Li H., Yu K., Wan C., Zhu J., Li X., Tong S., Zhao Y. Comparison of the nickel addition patterns on the catalytic performances of LaCoO3 for low-temperature CO oxidation. Catal. Today. 2017;281:534–541. doi: 10.1016/j.cattod.2016.05.027. DOI

Zhu X., Liu Y., Qian F., Zhou C., Zhang S., Chen J. Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Bioresour. Technol. 2014;154:209–214. doi: 10.1016/j.biortech.2013.12.019. PubMed DOI

Shan D., Deng S., Zhao T., Wang B., Wang Y., Huang J., Yu G., Winglee J., Wiesner M.R. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J. Hazard. Mater. 2016;305:156–163. doi: 10.1016/j.jhazmat.2015.11.047. PubMed DOI PMC

Qin Y., Wang H., Li X., Cheng J.J., Wu W. Improving methane yield from organic fraction of municipal solid waste (OFMSW) with magnetic rice-straw biochar. Bioresour. Technol. 2017;245:1058–1066. doi: 10.1016/j.biortech.2017.09.047. PubMed DOI

Liu S., Li M., Liu Y., Liu N., Tan X., Jiang L., Wen J., Hu X., Yin Z. Removal of 17β-estradiol from aqueous solution by graphene oxide supported activated magnetic biochar: Adsorption behavior and mechanism. J. Taiwan Inst. Chem. Eng. 2019;102:330–339. doi: 10.1016/j.jtice.2019.05.002. DOI

Benjedim S., Romero-Cano L.A., Pérez-Cadenas A.F., Bautista-Toledo M.I., Lotfi E.M., Carrasco-Marín F. Removal of emerging pollutants present in water using an E-coli biofilm supported onto activated carbons prepared from argan wastes: Adsorption studies in batch and fixed bed. Sci. Total Environ. 2020;720 doi: 10.1016/j.scitotenv.2020.137491. PubMed DOI

Fernández-Sáez N., Villela-Martinez D.E., Carrasco-Marín F., Pérez-Cadenas A.F., Pastrana-Martínez L.M. Heteroatom-doped graphene aerogels and carbon-magnetite catalysts for the heterogeneous electro-Fenton degradation of acetaminophen in aqueous solution. J. Catal. 2019;378:68–79. doi: 10.1016/j.jcat.2019.08.020. DOI

Kavitha D. Adsorptive removal of phenol by thermally modified activated carbon: Equilibrium, kinetics and thermodynamics. J. Environ. Biotechnol. Res. 2016;3:24–34.

Ho Y.S., McKay G. Pseudo-second order model for sorption processes. Process. Biochem. 1999;34:451–465. doi: 10.1016/S0032-9592(98)00112-5. DOI

Zeldowitsch J. Uber den mechanismus der katalytischen oxidation von CO an MnO2. Acta Physicochim. 1934;1:364–449.

Langmuir I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918;40:1361–1403. doi: 10.1021/ja02242a004. DOI

Freundlich H. Kapillarchemie. Kapillarchemie Akad. Verl. Ger. Leipzig. 1909;15:948. doi: 10.1002/bbpc.19090152312. DOI

Elmouwahidi A., Bailón-García E., Pérez-Cadenas A.F., Maldonado-Hódar F.J., Carrasco-Marín F. Activated carbons from KOH and H3PO4-activation of olive residues and its application as supercapacitor electrodes. Electrochim. Acta. 2017;229:219–228. doi: 10.1016/j.electacta.2017.01.152. DOI

Fang D., He F., Xie J., Xue L. Calibration of Binding Energy Positions with C1s for XPS Results. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2020;35:711–718. doi: 10.1007/s11595-020-2312-7. DOI

Abdelwahab A., Carrasco-Marín F., Pérez-Cadenas A.F. Carbon xerogels hydrothermally doped with bimetal oxides for oxygen reduction reaction. Materials. 2019;12:2446. doi: 10.3390/ma12152446. PubMed DOI PMC

Biniak S., Szymansky G., Siedlewski J., Swiatkowski A. The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon N. Y. 1997;35:1799–1810. doi: 10.1016/S0008-6223(97)00096-1. DOI

Figueiredo J., Pereira M.F., Freitas M.M., Órfão J.J. Modification of the surface chemistry of activated carbons. Carbon N. Y. 1999;37:1379–1389. doi: 10.1016/S0008-6223(98)00333-9. DOI

Zielke U., Hüttinger K.J., Hoffman W.P. Surface-oxidized carbon fibers: I. Surface structure and chemistry. Carbon N. Y. 1996;34:983–998. doi: 10.1016/0008-6223(96)00032-2. DOI

Zárate-Guzmán A.I., González-Gutiérrez L.V., Ocampo-Pérez R., Carrasco-Marín F., Romero-Cano L.A. Iron precursor salt effect on the generation of [rad]OH radicals and sulfamethoxazole degradation through a heterogeneous Fenton process using Carbon-Fe catalysts. J. Water Process. Eng. 2020;36:101273. doi: 10.1016/j.jwpe.2020.101273. DOI

Rey A., Hungria A.B., Duran-Valle C.J., Faraldos M., Bahamonde A., Casas J.A., Rodriguez J.J. On the optimization of activated carbon-supported iron catalysts in catalytic wet peroxide oxidation process. Appl. Catal. B Environ. 2016;181:249–259. doi: 10.1016/j.apcatb.2015.07.051. DOI

Magno De Lima Alves T., Amorim B.F., Morales Torres M.A., Bezerra C.G., Nóbrega De Medeiros S., Gastelois P.L., Fernandez Outon L.E., Augusto De Almeida Macedo W. Wasp-waisted behavior in magnetic hysteresis curves of CoFe2O4 nanopowder at a low temperature: Experimental evidence and theoretical approach. RSC Adv. 2017;7:22187–22196. doi: 10.1039/C6RA28727A. DOI

Deng Y., Huang S., Laird D.A., Wang X., Meng Z. Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems. Chemosphere. 2019;218:308–318. doi: 10.1016/j.chemosphere.2018.11.081. PubMed DOI

Xu D., Zhao Y., Sun K., Gao B., Wang Z., Jin J., Zhang Z., Wang S., Yan Y., Liu X., et al. Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: Impact of bulk and surface properties. Chemosphere. 2014;111:320–326. doi: 10.1016/j.chemosphere.2014.04.043. PubMed DOI

Trakal L., Veselská V., Šafařík I., Vítková M., Číhalová S., Komárek M. Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour. Technol. 2016;203:318–324. doi: 10.1016/j.biortech.2015.12.056. PubMed DOI

Trakal L., Bingöl D., Pohořelý M., Hruška M., Komárek M. Geochemical and spectroscopic investigations of Cd and Pb sorption mechanisms on contrasting biochars: Engineering implications. Bioresour. Technol. 2014;171:442–451. doi: 10.1016/j.biortech.2014.08.108. PubMed DOI

Zuo W.Q., Chen C., Cui H.J., Fu M.L. Enhanced removal of Cd(ii) from aqueous solution using CaCO3 nanoparticle modified sewage sludge biochar. RSC Adv. 2017;7:16238–16243. doi: 10.1039/C7RA00324B. DOI

Chen K., He J., Li Y., Cai X., Zhang K., Liu T., Hu Y., Lin D., Kong L., Liu J. Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. J. Colloid Interface Sci. 2017;494:307–316. doi: 10.1016/j.jcis.2017.01.082. PubMed DOI

Jia Y., Zhang Y., Fu J., Yuan L., Li Z., Liu C., Zhao D., Wang X. A novel magnetic biochar/MgFe-layered double hydroxides composite removing Pb2+ from aqueous solution: Isotherms, kinetics and thermodynamics. Colloids Surfaces A Physicochem. Eng. Asp. 2019;567:278–287. doi: 10.1016/j.colsurfa.2019.01.064. DOI

Li R., Deng H., Zhang X., Wang J.J., Awasthi M.K., Wang Q., Xiao R., Zhou B., Du J., Zhang Z. High-efficiency removal of Pb(II) and humate by a CeO2–MoS2 hybrid magnetic biochar. Bioresour. Technol. 2019;273:335–340. doi: 10.1016/j.biortech.2018.10.053. PubMed DOI

Chen Y.d., Ho S.H., Wang D., Wei Z.s., Chang J.S., Ren N. qi Lead removal by a magnetic biochar derived from persulfate-ZVI treated sludge together with one-pot pyrolysis. Bioresour. Technol. 2018;247:463–470. doi: 10.1016/j.biortech.2017.09.125. PubMed DOI

Zhou X., Zhou J., Liu Y., Guo J., Ren J., Zhou F. Preparation of iminodiacetic acid-modified magnetic biochar by carbonization, magnetization and functional modification for Cd(II) removal in water. Fuel. 2018;233:469–479. doi: 10.1016/j.fuel.2018.06.075. DOI

Wu J., Huang D., Liu X., Meng J., Tang C., Xu J. Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar. J. Hazard. Mater. 2018;348:10–19. doi: 10.1016/j.jhazmat.2018.01.011. PubMed DOI

Zhou X., Liu Y., Zhou J., Guo J., Ren J., Zhou F. Efficient removal of lead from aqueous solution by urea-functionalized magnetic biochar: Preparation, characterization and mechanism study. J. Taiwan Inst. Chem. Eng. 2018;91:457–467. doi: 10.1016/j.jtice.2018.04.018. DOI

Mohan D., Singh P., Sarswat A., Steele P.H., Pittman C.U. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars. J. Colloid Interface Sci. 2015;448:238–250. doi: 10.1016/j.jcis.2014.12.030. PubMed DOI

Yan L., Kong L., Qu Z., Li L., Shen G. Magnetic biochar decorated with ZnS nanocrytals for Pb (II) removal. ACS Sustain. Chem. Eng. 2015;3:125–132. doi: 10.1021/sc500619r. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...