Incorporation of Temperature and Plastic Strain Effects into Local Approach to Fracture
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
0121U107569
National Academy of Sciences of Ukraine
PubMed
34683816
PubMed Central
PMC8537486
DOI
10.3390/ma14206224
PII: ma14206224
Knihovny.cz E-zdroje
- Klíčová slova
- ductile-to-brittle transition, ferritic steel, fracture toughness, local approach to fracture,
- Publikační typ
- časopisecké články MeSH
An unjustified simplification of the local quantitative criterion regarding cleavage nucleation is a key problem in the utilisation of the Local Approach to Fracture (LA), particularly to predict the fracture toughness within the ductile-to-brittle transition (DBT) region. The theoretical concept of the effect of both temperature and the plastic strain value on the crack nuclei (CN) generation rate in iron and ferritic steels is presented. It is shown how the plastic strain and temperature affect CN formation rate and, as a consequence, govern the shape of the temperature dependence of fracture toughness KJc and its scatter limits. Within the framework of the microscopic model proposed, dependences of the CN bulk density on the plastic deformation value and temperature are predicted. Convenient approximation dependences for incorporating this effect into the LA are suggested. The experimental data of reactor pressure vessel steel and cast manganese steel demonstrate that the use of these dependences enables one to predict, with sufficient accuracy, the effect of temperature on the value of fracture toughness and its scatter limits over the DBT region. It is shown that accounting for both the temperature and strain dependence of CN bulk density gives rise to the invariance of parameters of the Weibull distribution to temperature.
Zobrazit více v PubMed
Beremin F.M., Pineau A., Mudry F., Devaux J.-C., D’Escatha Y., Ledermann P. A local criterion for cleavage fracture of a nuclear pressure vessel steel. Met. Trans. A. 1983;14:2277–2287. doi: 10.1007/BF02663302. DOI
Wiesner C.S., Goldthorpe M.R. The effect of temperature and specimen geometry on the parameters of the ‘Local Approach’ to cleavage fracture. J. Phys. IV. 1996;6:C6–295. doi: 10.1051/jp4:1996629. DOI
Wasiliuk B., Petti J.R., Dodds R.H. Temperature dependence of Weibull stress parameters: Studies using euro-material. Eng. Fract. Mech. 2006;73:1046–1059. doi: 10.1016/j.engfracmech.2005.11.006. DOI
Pineau A. Development of the local approach to fracture over the past 25 years: Theory and applications. Int. J. Fract. 2006;138:139–166. doi: 10.1007/s10704-006-0035-1. DOI
Ruggieri C., Dodds R.H. A local approach to cleavage fracture modelling: An overview of progress and challenge for engineering applications. Eng. Fract. Mech. 2018;187:381–403. doi: 10.1016/j.engfracmech.2017.12.021. DOI
Gao X., Dodds R.H., Jr. Constraint effects on the ductile-to-brittle transition temperature of ferritic steels: A Weibull stress model. Int. J. Fract. 2000;102:43–69. doi: 10.1023/A:1007526006632. DOI
Qian G., González-Albuixech V.F., Niffenegger M. Calibration of Beremin model with the Master Curve. Eng. Fract. Mech. 2015;136:15–25. doi: 10.1016/j.engfracmech.2015.02.003. DOI
Gao X., Zhang GSrivatsan T.S. A probabilistic model for prediction of cleavage fracture in the ductile-to-brittle transition region and the effect of temperature on model parameters. Mat. Sci. Eng. 2006;415:264–272. doi: 10.1016/j.msea.2005.09.098. DOI
Cao Y., Hui H., Wang G., Xuan F.-Z. Inferring the temperature dependence of Beremin cleavage model parameters from the Master Curve. Nucl. Eng. Des. 2011;241:39–45. doi: 10.1016/j.nucengdes.2010.11.009. DOI
Kotrechko S., Strnadel B., Dlouhý I. Fracture toughness of cast ferritic steel applying local approach. Appl. Fract. Mech. 2007;47:171–181. doi: 10.1016/j.tafmec.2006.11.008. DOI
Bordet S.R., Karstensen A.D., Knowles D.M., Wiesner C.S. A new statistical local criterion for cleavage fracture in steel. Part I: Model presentation. Eng. Fract. Mech. 2005;72:435–452. doi: 10.1016/j.engfracmech.2004.02.009. DOI
Bordet S.R., Karstensen A.D., Knowles D.M., Wiesner C.S. A new statistical local criterion for cleavage fracture in steel. Part II: Application to an offshore structural steel. Eng. Fract. Mech. 2005;72:453–474. doi: 10.1016/j.engfracmech.2004.02.010. DOI
Gao X., Zhang G., Srivatsan T.S. Prediction of cleavage fracture in ferritic steel: A modified Weibull stress model. Mat. Sci. Eng. A. 2005;394:210–219. doi: 10.1016/j.msea.2004.11.035. DOI
Ruggieri C., Savioli R.G., Dodds R.H., Jr. An engineering methodology for constraint corrections of elastic–plastic fracture toughness—Part II: Effects of specimen geometry and plastic strain on cleavage fracture predictions. Eng. Fract. Mech. 2015;146:185–209. doi: 10.1016/j.engfracmech.2015.06.087. DOI
Ruggieri C., Jivkov A.P. A local approach incorporating the measured statistics of microcracks to assess the temperature dependence of cleavage fracture for a reactor pressure vessel steel. Proc. Struct. Int. 2019;18:28–35. doi: 10.1016/j.prostr.2019.08.137. DOI
Jivkov A.P., Burgos D.S., Ruggieri C., Beswick J., Savioli R.G., James P., Sherry A. Use of local approaches to calculate changes in cleavage fracture toughness due to pre-straining and constraint effects. Appl. Fract. Mech. 2019;104:102380. doi: 10.1016/j.tafmec.2019.102380. DOI
Kotrechko S., Zatsarna O., Kozák V., Dlouhý I. Threshold fracture stress: Theory and application. Proc. Struct. Int. 2019;23:413–418. doi: 10.1016/j.prostr.2020.01.122. DOI
Kotrechko S. Physical Fundamentals of Local Approach to Analysis of Cleavage Fracture. In: Dlouhý I., editor. Transferability of Fracture Mechanical Characteristics. Volume 78. Springer; Dordrecht, The Netherlands: 2002. pp. 135–150. (NATO Science Series (Series II: Mathematics, Physics and Chemistry)). DOI
Kotrechko S. The key problems of local approach to cleavage fracture. J. Theor. Appl. Mech. 2013;51:75–89.
Kotrechko S., Mamedov S. Multi-scale local approach to cleavage fracture and its applications; Proceedings of the 19th European Conference on Fracture (ECF19); Kazan, Russia. 26–31 August 2012; New York, NY, USA: Curran Associates, Inc.; 2016. pp. 971–982.
Mizubayashi H., Li S.J., Yumoto H., Shimotomai M. Young’s modulus of single phase cementite. Scr. Mat. 1999;40:773–777. doi: 10.1016/S1359-6462(99)00003-2. DOI
Zerilli F.J., Armstrong R.W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 1987;61:1816–1825. doi: 10.1063/1.338024. DOI
Standard Test Method for Determination of Reference Temperature, Т0, for Ferritic Steels in the Transition Range. Annual book of ASTM Standards 2005; Section 3: Metals Test Methods and Analytical Procedures; v.03.01: Metals–Mechanical Testing, Elevated and Low-Temperature Tests, Metallography. [(accessed on 18 October 2021)]. Available online: https://www.astm.org/Standards/E1921.
Holzmann M., Jurášek L., Dlouhý I. Master Curve Methodology and Data Transfer from Small on Standard Specimens. In: Dlouhý I., editor. Transferability of Fracture Mechanical Characteristics. Volume 78. Springer; Dordrecht, The Netherlands: 2002. pp. 225–242. (NATO Science Series (Series II: Mathematics, Physics and Chemistry)). DOI
Dlouhy I., Chlup Z., Kozak V. Constraint effects at brittle fracture initiation in a cast ferritic steel. Eng. Fract. Mech. 2004;71:873–883. doi: 10.1016/S0013-7944(03)00027-4. DOI
Ruggieri C. Influence of threshold parameters on cleavage fracture predictions using the Weibull stress model. Int. J. Fract. 2001;110:281–304. doi: 10.1023/A:1010801603304. DOI
Use of Cohesive Approaches for Modelling Critical States in Fibre-Reinforced Structural Materials