Antifungal and Insecticidal Potential of the Essential Oil from Ocimum sanctum L. against Dangerous Fungal and Insect Species and Its Safety for Non-Target Useful Soil Species Eisenia fetida (Savigny, 1826)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
I. QK1910103; II. CZ.02.1.01/0.0/0.0/16_019/0000797
I. Ministry of Agriculture of the Czech Republic; II. Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34685990
PubMed Central
PMC8540552
DOI
10.3390/plants10102180
PII: plants10102180
Knihovny.cz E-zdroje
- Klíčová slova
- GC/MS analysis, Ocimum sanctum, human infections, insect pests, mosquito vector, non-target species, pathogenic and toxigenic fungi,
- Publikační typ
- časopisecké články MeSH
The antifungal and insecticidal effect of the essential oil from Ocimum sanctum L. was evaluated using a model set of harmful organisms hazardous for health and the economy. Toxigenic and plant pathogenic filamentous fungi, including causal agents of human infections, were chosen as exemplary fungal groups-Fusarium verticillioides, Penicillium expansum and Aspergillus flavus. Spodoptera littoralis (African cotton leafworm), Culex quinquefasciatus (Southern house mosquito), the lymphatic filariasis vector and potential Zika virus vector, and the common housefly, Musca domestica were chosen as model insects. Major and minor active substances were detected and quantified using GC/MS analysis. Environmental safety was verified using the non-target useful organism Eisenia fetida. Significant antifungal and insecticidal activity, as well as environmental safety, were confirmed. The essential oil showed the highest efficacy against A. flavus according to MIC50/90, and against S. littoralis larvae according to LD50/90. The monoterpenoid alcohol linalool, t-methyl cinnamate, and estragole as phenylpropanoids were detected as effective major components (85.4%). The essential oil from Ocimum sanctum L. was evaluated as universal and significantly efficient, providing a high potential for use in environmentally safe botanical pesticides.
Zobrazit více v PubMed
Narayana D.B.A., Manohar R., Mahapatra A., Sujithra R.M., Aramya A.R. Posological considerations of Ocimum sanctum (Tulasi) as per ayurvedic science and pharmaceutical sciences. [(accessed on 21 June 2014)];Indian J. Pharm. Sci. 2014 76:240–244. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090833/ PubMed PMC
Chowdhary K., Kaushik N. Fungal endophyte diversity and bioactivity in the Indian medicinal plant Ocimum sanctum Linn. PLoS ONE. 2015;10:25. doi: 10.1371/journal.pone.0141444. PubMed DOI PMC
Singh D., Chaudhuri P.K. A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.) Ind. Crop. Prod. 2018;118:367–382. doi: 10.1016/j.indcrop.2018.03.048. DOI
Rege N.N., Thatte U.M., Dahanukar S.A. Adaptogenic properties of six Rasayana herbs used in ayurvedic medicine. Phytother. Res. 1999;13:275–291. doi: 10.1002/(SICI)1099-1573(199906)13:4<275::AID-PTR510>3.0.CO;2-S. PubMed DOI
Bawankule D.U., Mani D., Pal A., Shanker K., Yadav N.P., Yadav S., Srivastava A.K., Agarwal J., Shasany A.K., Darokar M.P., et al. Immunopotentiating effect of an ayurvedic preparation from medicinal plants. J. Health Sci. 2009;55:285–289. doi: 10.1248/jhs.55.285. DOI
Rastogi S., Kalra A., Gupta V., Khan F., Lal R.K., Tripathi A.K., Parameswaran S., Gopalakrishnan C., Ramaswamy G., Shasany A.K. Unravelling the genome of Holy basil: An “incomparable” “elixir of life” of traditional Indian medicine. BMC Genomics. 2015;16:413. doi: 10.1186/s12864-015-1640-z. PubMed DOI PMC
Marchand P.A. Basic substances: An opportunity for approval of low-concern substances under EU pesticide regulation. Pest Manag. Sci. 2015;71:1197–1200. doi: 10.1002/ps.3997. PubMed DOI
Reganold J.P., Wachter J.M. Organic agriculture in the twenty-first century. Nat. Plants. 2016;2:1–8. doi: 10.1038/nplants.2015.221. PubMed DOI
Kumar A., Shukla R., Singh P., Dubey N.K. Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. essential oil and its safety assessment as plant based antimicrobial. Food Chem. Toxicol. 2010;48:539–543. doi: 10.1016/j.fct.2009.11.028. PubMed DOI
Villaverde J.J., Sevilla-Moran B., Sandin-Espana P., Lopez-Goti C., Alonso-Prados J.L. Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag. Sci. 2014;70:2–5. doi: 10.1002/ps.3663. PubMed DOI
Zabka M., Pavela R. Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere. 2013;93:1051–1056. doi: 10.1016/j.chemosphere.2013.05.076. PubMed DOI
Zabka M., Pavela R., Prokinova E. Antifungal activity and chemical composition of twenty essential oils against significant indoor and outdoor toxigenic and aeroallergenic fungi. Chemosphere. 2014;112:443–448. doi: 10.1016/j.chemosphere.2014.05.014. PubMed DOI
Pavela R., Benelli G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI
Pavela R., Zabka M., Bednar J., Triska J., Vrchotova N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.) Indian Crop. Prod. 2016;83:275–282. doi: 10.1016/j.indcrop.2015.11.090. DOI
Chaudhari A.K., Dwivedy A.K., Singh V.K., Das S., Singh A., Dubey N.K. Essential oils and their bioactive compounds as green preservatives against fungal and mycotoxin contamination of food commodities with special reference to their nanoencapsulation. Environ. Sci. Pollut. Res. 2019;26:25414–25431. doi: 10.1007/s11356-019-05932-2. PubMed DOI
Edwards S.G., O’Callaghan J., Dobson A.D.W. PCR-based detection and quantification of mycotoxigenic fungi. Mycol. Res. 2002;106:1005–1025. doi: 10.1017/S0953756202006354. DOI
Gubbins P.O., Heldenbrand S. Clinically relevant drug interactions of current antifungal agents. Mycoses. 2010;53:95–113. doi: 10.1111/j.1439-0507.2009.01820.x. PubMed DOI
Benelli G., Romano D. Mosquito vectors of Zika virus. Entomol. Gen. 2017;36:309–318. doi: 10.1127/entomologia/2017/0496. DOI
Van Den Hurk A.F., Hall-Mendelin S., Jansen C.C., Higgs S. Zika virus and Culex quinquefasciatus mosquitoes: A tenuous link. Lancet Infect. Dis. 2017;17:1014–1016. doi: 10.1016/S1473-3099(17)30518-2. PubMed DOI
Babushok V.I., Linstrom P.J., Zenkevich I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data. 2011;40:1–47. doi: 10.1063/1.3653552. DOI
Mondello L., Zappia G., Cotroneo A., Bonaccorsi I., Chowdhury J.U., Yusuf M., Dugo G. Studies on the essential oil-bearing plants of Bangladesh; Part VIII: Composition of some Ocimum oils O. basilicum L. var. purpurascens; O. sanctum L. green; O. sanctum L. purple; O. americanum L., citral type; O. americanum L., camphor type. Flavour Fragr. J. 2002;17:335–340. doi: 10.1002/ffj.1108. DOI
Khan A., Ahmad A., Akhtar F., Yousuf S., Xess I., Khan L.A., Manzoor N. Ocimum sanctum essential oil and its active prin-ciples exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Res. Microbiol. 2010;161:816–823. doi: 10.1016/j.resmic.2010.09.008. PubMed DOI
Ijaz B., Hanif M.A., Mushtaq Z., Khan M.M., Bhatti I.A., Jilani M.J. Isolation of bioactive fractions from Ocimum sanctum essential oil. Oxid. Commun. 2017;40:158–167.
Stefan M., Zamfirache M.M., Padurariu C., Trută E., Gostin I. The composition and antibacterial activity of essential oils in three Ocimum species growing in Romania. Cent. Eur. J. Biol. 2013;8:600–608. doi: 10.2478/s11535-013-0171-8. DOI
Gradinariu V., Cioanca O., Hritcu L., Trifan A., Gille E., Hancianu M. Comparative efficacy of Ocimum sanctum L. and Ocimum basilicum L. essential oils against amyloid beta (1–42)-induced anxiety and depression in laboratory rats. Phytochem. Rev. 2015;14:567–575. doi: 10.1007/s11101-014-9389-6. DOI
Zabka M., Pavela R., Slezakova L. Antifungal effect of Pimenta dioica essential oil against dangerous pathogenic and toxinogenic fungi. Indian Crop. Prod. 2009;30:250–253. doi: 10.1016/j.indcrop.2009.04.002. DOI
Zabka M., Pavela R. Effectiveness of environmentally safe food additives and food supplements in an In vitro growth inhibition of significant Fusarium, Aspergillus and Penicillium species. Plant Prot. Sci. 2018;54:163–173. doi: 10.17221/86/2017-pps. DOI
Lima M.I.D., de Medeiros A.C.A., Silva K.V.S., Cardoso G.N., Lima E.D., Pereira F.D. Investigation of the antifungal potential of linalool against clinical isolates of fluconazole resistant Trichophyton rubrum. J. Mycol. Med. 2017;27:195–202. doi: 10.1016/j.mycmed.2017.01.011. PubMed DOI
Khalil A.A., Rahman U.U., Khan M.R., Sahar A., Mehmood T., Khan M. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC Adv. 2017;7:32669–32681. doi: 10.1039/C7RA04803C. DOI
Bassole I.H.N., Juliani H.R. Essential Oils in Combination and Their Antimicrobial Properties. Molecules. 2012;17:3989–4006. doi: 10.3390/molecules17043989. PubMed DOI PMC
Vieira P.R.N., de Morais S.M., Bezerra F.H.Q., Ferreira P.A.T., Oliveira I.R., Silva M.G.V. Chemical composition and antifungal activity of essential oils from Ocimum species. Indian Crop. Prod. 2014;55:267–271. doi: 10.1016/j.indcrop.2014.02.032. DOI
Cheng S.S., Liu J.Y., Chang E.H., Chang S.T. Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresour. Technol. 2008;99:5145–5149. doi: 10.1016/j.biortech.2007.09.013. PubMed DOI
Zabka M., Pavela R. Review Chapter: Fusarium genus and essential oils. In: Merillon J.M., Riviere C., editors. Natural Antimicrobial Agents. Springer, Cham; New York, NY, USA: 2018. pp. 95–120. DOI
Khan A., Ahmad A., Manzoor N., Khan L.A. Antifungal activities of Ocimum sanctum essential oil and its lead molecules. Nat. Prod. Commun. 2010;5:345–349. doi: 10.1177/1934578X1000500235. PubMed DOI
Khan A., Ahmad A., Akhtar F., Yousuf S., Xess I., Khan L.A., Manzoor N. Induction of oxidative stress as a possible mechanism of the antifungal action of three phenylpropanoids. FEMS Yeast Res. 2011;11:114–122. doi: 10.1111/j.1567-1364.2010.00697.x. PubMed DOI
Marei G.I.K., Rasoul M.A.A., Abdelgaleil S.A.M. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pest. Biochem. Physiol. 2012;103:56–61. doi: 10.1016/j.pestbp.2012.03.004. DOI
Mahanta S., Khanikor B., Sarma R. Allium sativum (Liliales: Asparagales) essential oil-based combinations–a potential larvicide for Culex quinquefasciatus (Diptera: Culicidae) Int. J. Trop. Insect Sci. 2020;40:837–844. doi: 10.1007/s42690-020-00139-2. DOI
Fujiwara G.M., Annies V., de Oliveira C.F., Lara R.A., Gabriel M.M., Betim F.C.M., Nadal J.M., Farago P.V., Dias J.F.G., Miguel O.G., et al. Evaluation of larvicidal activity and ecotoxicity of linalool, methyl cinnamate and methyl cinnamate/linalool in combination against Aedes aegypti. Ecotox. Environ. Safe. 2017;139:238–244. doi: 10.1016/j.ecoenv.2017.01.046. PubMed DOI
Peterson C.J., Tsao R., Eggler A.L., Coates J.R. Insecticidal activity of cyanohydrin and monoterpenoid compounds. Molecules. 2000;5:648–654. doi: 10.3390/50400648. DOI
Zhang Z.L., Xie Y.J., Wang Y., Lin Z.F., Wang L.H., Li G.Y. Toxicities of monoterpenes against housefly, Musca domestica L. (Diptera: Muscidae) Environ. Sci. Pollut. Res. 2017;24:24708–24713. doi: 10.1007/s11356-017-0219-4. PubMed DOI
Wang C.F., Yang K., Zhang H.M., Cao J., Fang R., Liu Z.L., Du S.S., Wang Y.Y., Deng Z.W., Zhou L.G. Components and Insecticidal Activity against the Maize Weevils of Zanthoxylum schinifolium Fruits and Leaves. Molecules. 2011;16:3077–3088. doi: 10.3390/molecules16043077. PubMed DOI PMC
Wang Y., Zhang L.T., Feng Y.X., Guo S.S., Pang X., Zhang D., Geng Z.F., Du S.S. Insecticidal and repellent efficacy against stored-product insects of oxygenated monoterpenes and 2-dodecanone of the essential oil from Zanthoxylum planispinum var. dintanensis. Environ. Sci. Pollut. Res. 2019;26:24988–24997. doi: 10.1007/s11356-019-05765-z. PubMed DOI
Jankowska M., Rogalska J., Wyszkowska J., Stankiewicz M. Molecular Targets for Components of Essential Oils in the Insect Nervous System: A Review. Molecules. 2018;23:20. doi: 10.3390/molecules23010034. PubMed DOI PMC
Benelli G., Pavela R., Zorzetto C., Sanchez-Mateo C.C., Santini G., Canale A., Maggi F. Insecticidal activity of the essential oil from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Entomol. Gen. 2019;39:9–18. doi: 10.1127/entomologia/2019/0662. DOI
World Health Organization . Report of the WHO Informal Consultation on the Evaluation and Testing of Insecticides. World Health Organization; Geneva, Switzerland: 1996. Technical Report CTD/WHOPES/IC/96.1;
Pavela R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015;114:3835–3853. doi: 10.1007/s00436-015-4614-9. PubMed DOI
Pavela R., Maggi F., Cianfaglione K., Bruno M., Benelli G. Larvicidal activity of essential oils of five Apiaceae taxa and some of their main constituents against Culex quinquefasciatus. Chem. Biodivers. 2018;15:e1700382. doi: 10.1002/cbdv.201700382. PubMed DOI
Organization for Economic Co-operation and Development . Guideline for Testing of Chemicals No. 207. Earthworm, Acute Toxicity Tests, OECD—Guideline for Testing Chemicals. Organization for Economic Co-operation and Development; Paris, France: 1984.
Benelli G., Pavela R., Petrelli R., Cappellacci L., Bartolucci F., Canale A., Maggi F. Origanum syriacum subsp. syriacum: From an ingredient of Lebanese ‘manoushe’ to a source of effective and eco-friendly botanical insecticide. Indian Crop. Prod. 2019;134:26–32. doi: 10.1016/j.indcrop.2019.03.055. DOI
Abbott W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925;18:265–267. doi: 10.1093/jee/18.2.265a. PubMed DOI
Finney D.J. Probit Analysis. 3rd ed. Cambridge University Press; London, UK: 1971.