CRAC channel opening is determined by a series of Orai1 gating checkpoints in the transmembrane and cytosolic regions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
W 1250
Austrian Science Fund FWF - Austria
P 32851
Austrian Science Fund FWF - Austria
P 30567
Austrian Science Fund FWF - Austria
P 32947
Austrian Science Fund FWF - Austria
P 28701
Austrian Science Fund FWF - Austria
P 32075
Austrian Science Fund FWF - Austria
P 27641
Austrian Science Fund FWF - Austria
PubMed
33361160
PubMed Central
PMC7948504
DOI
10.1074/jbc.ra120.015548
PII: S0021-9258(20)00339-7
Knihovny.cz E-zdroje
- Klíčová slova
- AND-gate, CRAC channel, Electrophysiology, Gating, Gating checkpoints, Opening-permissive conformation, Orai1, STIM1, Signal propagation,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- fosfatidylcholiny chemie metabolismus MeSH
- gating iontového kanálu genetika MeSH
- genetické vektory chemie metabolismus MeSH
- HEK293 buňky MeSH
- interakční proteinové domény a motivy MeSH
- konformace proteinů, alfa-helix MeSH
- konformace proteinů, beta-řetězec MeSH
- lidé MeSH
- liposomy chemie metabolismus MeSH
- luminescentní proteiny genetika metabolismus MeSH
- metoda terčíkového zámku MeSH
- mutace MeSH
- nádorové proteiny chemie genetika metabolismus MeSH
- protein ORAI1 chemie genetika metabolismus MeSH
- protein STIM1 chemie genetika metabolismus MeSH
- regulace genové exprese MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- reportérové geny MeSH
- simulace molekulární dynamiky MeSH
- substituce aminokyselin MeSH
- vápník metabolismus MeSH
- vápníková signalizace * MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-palmitoyl-2-oleoylphosphatidylcholine MeSH Prohlížeč
- bakteriální proteiny MeSH
- enhanced cyan fluorescent protein MeSH Prohlížeč
- fosfatidylcholiny MeSH
- liposomy MeSH
- luminescentní proteiny MeSH
- nádorové proteiny MeSH
- ORAI1 protein, human MeSH Prohlížeč
- protein ORAI1 MeSH
- protein STIM1 MeSH
- rekombinantní proteiny MeSH
- STIM1 protein, human MeSH Prohlížeč
- vápník MeSH
- yellow fluorescent protein, Bacteria MeSH Prohlížeč
- zelené fluorescenční proteiny MeSH
The initial activation step in the gating of ubiquitously expressed Orai1 calcium (Ca2+) ion channels represents the activation of the Ca2+-sensor protein STIM1 upon Ca2+ store depletion of the endoplasmic reticulum. Previous studies using constitutively active Orai1 mutants gave rise to, but did not directly test, the hypothesis that STIM1-mediated Orai1 pore opening is accompanied by a global conformational change of all Orai transmembrane domain (TM) helices within the channel complex. We prove that a local conformational change spreads omnidirectionally within the Orai1 complex. Our results demonstrate that these locally induced global, opening-permissive TM motions are indispensable for pore opening and require clearance of a series of Orai1 gating checkpoints. We discovered these gating checkpoints in the middle and cytosolic extended TM domain regions. Our findings are based on a library of double point mutants that contain each one loss-of-function with one gain-of-function point mutation in a series of possible combinations. We demonstrated that an array of loss-of-function mutations are dominant over most gain-of-function mutations within the same as well as of an adjacent Orai subunit. We further identified inter- and intramolecular salt-bridge interactions of Orai subunits as a core element of an opening-permissive Orai channel architecture. Collectively, clearance and synergistic action of all these gating checkpoints are required to allow STIM1 coupling and Orai1 pore opening. Our results unravel novel insights in the preconditions of the unique fingerprint of CRAC channel activation, provide a valuable source for future structural resolutions, and help to understand the molecular basis of disease-causing mutations.
Gottfried Schatz Research Center Medical University of Graz Graz Austria
Institute of Biophysics JKU Life Science Center Johannes Kepler University Linz Linz Austria
Zobrazit více v PubMed
Berridge M.J., Bootman M.D., Roderick H.L. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 2003;4:517–529. PubMed
Berridge M.J., Lipp P., Bootman M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000;1:11–21. PubMed
Lee K.P., Yuan J.P., Hong J.H., So I., Worley P.F., Muallem S. An endoplasmic reticulum/plasma membrane junction: STIM1/Orai1/TRPCs. FEBS Lett. 2010;584:2022–2027. PubMed PMC
Parekh A.B. Store-operated channels: mechanisms and function. J. Physiol. 2008;586:3033. PubMed PMC
Feske S., Gwack Y., Prakriya M., Srikanth S., Puppel S.H., Tanasa B., Hogan P.G., Lewis R.S., Daly M., Rao A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441:179–185. PubMed
Liou J., Kim M.L., Heo W.D., Jones J.T., Myers J.W., Ferrell J.E., Jr., Meyer T. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 2005;15:1235–1241. PubMed PMC
Zhang S.L., Yu Y., Roos J., Kozak J.A., Deerinck T.J., Ellisman M.H., Stauderman K.A., Cahalan M.D. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature. 2005;437:902–905. PubMed PMC
Zhang S.L., Yeromin A.V., Zhang X.H.F., Yu Y., Safrina O., Penna A., Roos J., Stauderman K.A., Cahalan M.D. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc. Natl. Acad. Sci. U. S. A. 2006;103:902–905. PubMed PMC
Cahalan M.D., Chandy K.G. The functional network of ion channels in T lymphocytes. Immunol. Rev. 2009;231:59–87. PubMed PMC
Mercer J.C., Dehaven W.I., Smyth J.T., Wedel B., Boyles R.R., Bird G.S., Putney J.W., Jr. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J. Biol. Chem. 2006;281:24979–24990. PubMed PMC
Peinelt C., Vig M., Koomoa D.L., Beck A., Nadler M.J., Koblan-Huberson M., Lis A., Fleig A., Penner R., Kinet J.P. Amplification of CRAC current by STIM1 and CRACM1 (Orai1) Nat. Cell Biol. 2006;8:771–773. PubMed PMC
Soboloff J., Spassova M.A., Tang X.D., Hewavitharana T., Xu W., Gill D.L. Orai1 and STIM reconstitute store-operated calcium channel function. J. Biol. Chem. 2006;281:20661–20665. PubMed
Spassova M.A., Soboloff J., He L.P., Xu W., Dziadek M.A., Gill D.L. STIM1 has a plasma membrane role in the activation of store-operated Ca(2+) channels. Proc. Natl. Acad. Sci. U. S. A. 2006;103:4040–4045. PubMed PMC
Prakriya M., Feske S., Gwack Y., Srikanth S., Rao A., Hogan P.G. Orai1 is an essential pore subunit of the CRAC channel. Nature. 2006;443:230–233. PubMed
Yeromin A.V., Zhang S.L., Jiang W., Yu Y., Safrina O., Cahalan M.D. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature. 2006;443:226–229. PubMed PMC
Wu M.M., Buchanan J., Luik R.M., Lewis R.S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 2006;174:803–813. PubMed PMC
Vig M., Peinelt C., Beck A., Koomoa D.L., Rabah D., Koblan-Huberson M., Kraft S., Turner H., Fleig A., Penner R., Kinet J.P. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science. 2006;312:1220–1223. PubMed PMC
Calloway N., Vig M., Kinet J.P., Holowka D., Baird B. Molecular clustering of STIM1 with Orai1/CRACM1 at the plasma membrane depends dynamically on depletion of Ca2+ stores and on electrostatic interactions. Mol. Biol. Cell. 2009;20:389–399. PubMed PMC
Barr V.A., Bernot K.M., Srikanth S., Gwack Y., Balagopalan L., Regan C.K., Helman D.J., Sommers C.L. Dynamic movement of the calcium sensor STIM1 and the calcium channel Orai1 in activated T-cells: puncta and distal caps. Mol. Biol. Cell. 2008;19:2802–2817. PubMed PMC
Park C.Y., Hoover P.J., Mullins F.M., Bachhawat P., Covington E.D., Raunser S., Walz T., Garcia K.C., Dolmetsch R.E., Lewis R.S. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell. 2009;136:876–890. PubMed PMC
Cahalan M.D. STIMulating store-operated Ca(2+) entry. Nat. Cell Biol. 2009;11:669–677. PubMed PMC
Gudlur A., Quintana A., Zhou Y., Hirve N., Mahapatra S., Hogan P.G. STIM1 triggers a gating rearrangement at the extracellular mouth of the ORAI1 channel. Nat. Commun. 2014;5:5164. PubMed PMC
Zhou Y., Srinivasan P., Razavi S., Seymour S., Meraner P., Gudlur A., Stathopulos P.B., Ikura M., Rao A., Hogan P.G. Initial activation of STIM1, the regulator of store-operated calcium entry. Nat. Struct. Mol. Biol. 2013;20:973–981. PubMed PMC
Srikanth S., Gwack Y. Molecular regulation of the pore component of CRAC channels, Orai1. Curr. Top. Membr. 2013;71:181–207. PubMed
Sallinger M., Tiffner A., Schmidt T., Bonhenry D., Waldherr L., Frischauf I., Lunz V., Derler I., Schober R., Schindl R. Luminal STIM1 mutants that cause tubular aggregate myopathy promote autophagic processes. Int. J. Mol. Sci. 2020;21:4410. PubMed PMC
Schober R., Bonhenry D., Lunz V., Zhu J., Krizova A., Frischauf I., Fahrner M., Zhang M., Waldherr L., Schmidt T., Derler I., Stathopulos P.B., Romanin C., Ettrich R.H., Schindl R. Sequential activation of STIM1 links Ca(2+) with luminal domain unfolding. Sci. Signal. 2019;12 PubMed
Muik M., Frischauf I., Derler I., Fahrner M., Bergsmann J., Eder P., Schindl R., Hesch C., Polzinger B., Fritsch R., Kahr H., Madl J., Gruber H., Groschner K., Romanin C. Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J. Biol. Chem. 2008;283:8014–8022. PubMed
Muik M., Fahrner M., Schindl R., Stathopulos P., Frischauf I., Derler I., Plenk P., Lackner B., Groschner K., Ikura M., Romanin C. STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. EMBO J. 2011;30:1678–1689. PubMed PMC
Zhou Y., Cai X., Nwokonko R.M., Loktionova N.A., Wang Y., Gill D.L. The STIM-Orai coupling interface and gating of the Orai1 channel. Cell Calcium. 2017;63:8–13. PubMed PMC
Stathopulos P.B., Schindl R., Fahrner M., Zheng L., Gasmi-Seabrook G.M., Muik M., Romanin C., Ikura M. STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat. Commun. 2013;4:2963. PubMed PMC
Palty R., Fu Z., Isacoff E.Y. Sequential steps of CRAC channel activation. Cell Rep. 2017;19:1929–1939. PubMed PMC
Hoth M., Niemeyer B.A. The neglected CRAC proteins: Orai2, Orai3, and STIM2. Curr. Top. Membr. 2013;71:237–271. PubMed
Feske S., Skolnik E.Y., Prakriya M. Ion channels and transporters in lymphocyte function and immunity. Nat. Rev. Immunol. 2012;12:532–547. PubMed PMC
Li Z., Lu J., Xu P., Xie X., Chen L., Xu T. Mapping the interacting domains of STIM1 and Orai1 in Ca2+ release-activated Ca2+ channel activation. J. Biol. Chem. 2007;282:29448–29456. PubMed
McNally B.A., Somasundaram A., Jairaman A., Yamashita M., Prakriya M. The C- and N-terminal STIM1 binding sites on Orai1 are required for both trapping and gating CRAC channels. J. Physiol. 2013;591:2833–2850. PubMed PMC
Palty R., Isacoff E.Y. Cooperative binding of stromal interaction molecule 1 (STIM1) to the N and C termini of calcium release-activated calcium modulator 1 (Orai1) J. Biol. Chem. 2016;291:334–341. PubMed PMC
Derler I., Plenk P., Fahrner M., Muik M., Jardin I., Schindl R., Gruber H.J., Groschner K., Romanin C. The extended transmembrane Orai1 N-terminal (ETON) region combines binding interface and gate for Orai1 activation by STIM1. J. Biol. Chem. 2013;288:29025–29034. PubMed PMC
Zheng H., Zhou M.H., Hu C., Kuo E., Peng X., Hu J., Kuo L., Zhang S.L. Differential roles of the C and N termini of Orai1 protein in interacting with stromal interaction molecule 1 (STIM1) for Ca2+ release-activated Ca2+ (CRAC) channel activation. J. Biol. Chem. 2013;288:11263–11272. PubMed PMC
Fahrner M., Pandey S.K., Muik M., Traxler L., Butorac C., Stadlbauer M., Zayats V., Krizova A., Plenk P., Frischauf I., Schindl R., Gruber H.J., Hinterdorfer P., Ettrich R., Romanin C. Communication between N terminus and loop2 tunes Orai activation. J. Biol. Chem. 2018;293:1271–1285. PubMed PMC
Butorac C., Muik M., Derler I., Stadlbauer M., Lunz V., Krizova A., Lindinger S., Schober R., Frischauf I., Bhardwaj R., Hediger M.A., Groschner K., Romanin C. A novel STIM1-Orai1 gating interface essential for CRAC channel activation. Cell Calcium. 2019;79:57–67. PubMed
Derler I., Butorac C., Krizova A., Stadlbauer M., Muik M., Fahrner M., Frischauf I., Romanin C. Authentic CRAC channel activity requires STIM1 and the conserved portion of the Orai N terminus. J. Biol. Chem. 2018;293:1259–1270. PubMed PMC
Hou X., Pedi L., Diver M.M., Long S.B. Crystal structure of the calcium release-activated calcium channel Orai. Science. 2012;338:1308–1313. PubMed PMC
Liu X., Wu G., Yu Y., Chen X., Ji R., Lu J., Li X., Zhang X., Yang X., Shen Y. Molecular understanding of calcium permeation through the open Orai channel. PLoS Biol. 2019;17 PubMed PMC
Hou X., Burstein S.R., Long S.B. Structures reveal opening of the store-operated calcium channel Orai. Elife. 2018;7 PubMed PMC
Hou X., Outhwaite I.R., Pedi L., Long S.B. Cryo-EM structure of the calcium release-activated calcium channel Orai in an open conformation. Elife. 2020;7 PubMed PMC
Palty R., Stanley C., Isacoff E.Y. Critical role for Orai1 C-terminal domain and TM4 in CRAC channel gating. Cell Res. 2015;25:963–980. PubMed PMC
Zhang S.L., Yeromin A.V., Hu J., Amcheslavsky A., Zheng H., Cahalan M.D. Mutations in Orai1 transmembrane segment 1 cause STIM1-independent activation of Orai1 channels at glycine 98 and channel closure at arginine 91. Proc. Natl. Acad. Sci. U. S. A. 2011;108:17838–17843. PubMed PMC
McNally B.A., Somasundaram A., Yamashita M., Prakriya M. Gated regulation of CRAC channel ion selectivity by STIM1. Nature. 2012;482:241–245. PubMed PMC
Derler I., Jardin I., Romanin C. The molecular mechanisms of STIM/orai communications. A review in the theme: STIM and orai proteins in calcium signaling. Am. J. Physiol. Cell Physiol. 2016;310:C643–C662. PubMed PMC
Bohm J., Bulla M., Urquhart J.E., Malfatti E., Williams S.G., O'Sullivan J., Szlauer A., Koch C., Baranello G., Mora M., Ripolone M., Violano R., Moggio M., Kingston H., Dawson T. ORAI1 mutations with distinct channel gating defects in tubular aggregate myopathy. Hum. Mutat. 2017;38:426–438. PubMed
Frischauf I., Litvinukova M., Schober R., Zayats V., Svobodova B., Bonhenry D., Lunz V., Cappello S., Tociu L., Reha D., Stallinger A., Hochreiter A., Pammer T., Butorac C., Muik Transmembrane helix connectivity in Orai1 controls two gates for calcium-dependent transcription. Sci. Signal. 2017;10 PubMed PMC
Endo Y., Noguchi S., Hara Y., Hayashi Y.K., Motomura K., Miyatake S., Murakami N., Tanaka S., Yamashita S., Kizu R., Bamba M., Goto Y., Matsumoto N., Nonaka I., Nishino I. Dominant mutations in ORAI1 cause tubular aggregate myopathy with hypocalcemia via constitutive activation of store-operated Ca(2)(+) channels. Hum. Mol. Genet. 2015;24:637–648. PubMed
Srikanth S., Yee M.K., Gwack Y., Ribalet B. The third transmembrane segment of orai1 protein modulates Ca2+ release-activated Ca2+ (CRAC) channel gating and permeation properties. J. Biol. Chem. 2011;286:35318–35328. PubMed PMC
Zhou Y., Cai X., Loktionova N.A., Wang X., Nwokonko R.M., Wang X., Wang Y., Rothberg B.S., Trebak M., Gill D.L. The STIM1-binding site nexus remotely controls Orai1 channel gating. Nat. Commun. 2016;7:13725. PubMed PMC
Bulla M., Gyimesi G., Kim J.H., Bhardwaj R., Hediger M.A., Frieden M., Demaurex N. ORAI1 channel gating and selectivity is differentially altered by natural mutations in the first or third transmembrane domain. J. Physiol. 2019;597:561–582. PubMed PMC
Yeung P.S., Ing C.E., Yamashita M., Pomes R., Prakriya M. A sulfur-aromatic gate latch is essential for opening of the Orai1 channel pore. eLife. 2020;9 PubMed PMC
Yeung P.S., Yamashita M., Ing C.E., Pomes R., Freymann D.M., Prakriya M. Mapping the functional anatomy of Orai1 transmembrane domains for CRAC channel gating. Proc. Natl. Acad. Sci. U. S. A. 2018;115:E5193–E5202. PubMed PMC
Yamashita M., Yeung P.S., Ing C.E., McNally B.A., Pomes R., Prakriya M. STIM1 activates CRAC channels through rotation of the pore helix to open a hydrophobic gate. Nat. Commun. 2017;8:14512. PubMed PMC
Yamashita M., Ing C.E., Yeung P.S., Maneshi M.M., Pomes R., Prakriya M. The basic residues in the Orai1 channel inner pore promote opening of the outer hydrophobic gate. J. Gen. Physiol. 2020;152 PubMed PMC
Dong H., Zhang Y., Song R., Xu J., Yuan Y., Liu J., Li J., Zheng S., Liu T., Lu B., Wang Y., Klein M.L. Toward a model for activation of Orai channel. iScience. 2019;16:356–367. PubMed PMC
Krizova A., Maltan L., Derler I. Critical parameters maintaining authentic CRAC channel hallmarks. Eur. Biophys. J. 2019;48:425–445. PubMed PMC
Butorac C., Krizova A., Derler I. Review: structure and activation mechanisms of CRAC channels. Adv. Exp. Med. Biol. 2020;1131:547–604. PubMed
Frischauf I., Zayats V., Deix M., Hochreiter A., Jardin I., Muik M., Lackner B., Svobodova B., Pammer T., Litvinukova M., Sridhar A.A., Derler I., Bogeski I., Romanin C., Ettrich R.H. A calcium-accumulating region, CAR, in the channel Orai1 enhances Ca2+ permeation and SOCE-induced gene transcription. Sci. Signal. 2015;8:ra131. PubMed PMC
Fujiwara K., Toda H., Ikeguchi M. Dependence of alpha-helical and beta-sheet amino acid propensities on the overall protein fold type. BMC Struct. Biol. 2012;12:18. PubMed PMC
Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982;157:105–132. PubMed
Lis A., Zierler S., Peinelt C., Fleig A., Penner R. A single lysine in the N-terminal region of store-operated channels is critical for STIM1-mediated gating. J. Gen. Physiol. 2010;136:673–686. PubMed PMC
Srikanth S., Jung H.J., Ribalet B., Gwack Y. The intracellular loop of Orai1 plays a central role in fast inactivation of Ca2+ release-activated Ca2+ channels. J. Biol. Chem. 2010;285:5066–5075. PubMed PMC
Cai X., Nwokonko R.M., Loktionova N.A., Abdulqadir R., Baraniak J.H., Jr., Wang Y., Trebak M., Zhou Y., Gill D.L. Pore properties of Orai1 calcium channel dimers and their activation by the STIM1 ER calcium sensor. J. Biol. Chem. 2018;293:12962–12974. PubMed PMC
Yen M., Lewis R.S. Physiological CRAC channel activation and pore properties require STIM1 binding to all six Orai1 subunits. J. Gen. Physiol. 2018;150:1373–1385. PubMed PMC
Yeung P.S., Yamashita M., Prakriya M. Molecular basis of allosteric Orai1 channel activation by STIM1. J. Physiol. 2020;98:1707–1723. PubMed PMC
Yeung P.S., Prakriya M. The exquisitely cooperative nature of Orai1 channel activation. J. Gen. Physiol. 2018;150:1352–1355. PubMed PMC
Derler I., Hofbauer M., Kahr H., Fritsch R., Muik M., Kepplinger K., Hack M.E., Moritz S., Schindl R., Groschner K., Romanin C. Dynamic but not constitutive association of calmodulin with rat TRPV6 channels enables fine tuning of Ca2+-dependent inactivation. J. Physiol. 2006;577:31–44. PubMed PMC
Singh A., Hamedinger D., Hoda J.C., Gebhart M., Koschak A., Romanin C., Striessnig J. C-terminal modulator controls Ca2+-dependent gating of Ca(v)1.4 L-type Ca2+ channels. Nat. Neurosci. 2006;9:1108–1116. PubMed
Jo S., Kim T., Iyer V.G., Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. PubMed
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935.
Huang J., MacKerell A.D., Jr. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 2013;34:2135–2145. PubMed PMC
Klauda J.B., Venable R.M., Freites J.A., O'Connor J.W., Tobias D.J., Mondragon-Ramirez C., Vorobyov I., MacKerell A.D., Jr., Pastor R.W. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B. 2010;114:7830–7843. PubMed PMC
Leontyev I., Stuchebrukhov A. Accounting for electronic polarization in non-polarizable force fields. Phys. Chem. Chem. Phys. 2011;13:2613–2626. PubMed
Pluharova E., Mason P.E., Jungwirth P. Ion pairing in aqueous lithium salt solutions with monovalent and divalent counter-anions. J. Phys. Chem. A. 2013;117:11766–11773. PubMed
Kann Z.R., Skinner J.L. A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions. J. Chem. Phys. 2014;141 PubMed
Duboue-Dijon E., Mason P.E., Fischer H.E., Jungwirth P. Hydration and ion pairing in aqueous Mg2+ and Zn2+ solutions: force-field description aided by neutron scattering experiments and Ab Initio molecular dynamics simulations. J. Phys. Chem. B. 2018;122:3296–3306. PubMed
Kohagen M., Mason P.E., Jungwirth P. Accurate description of calcium solvation in concentrated aqueous solutions. J. Phys. Chem. B. 2014;118:7902–7909. PubMed
Krieger E., Koraimann G., Vriend G. Increasing the precision of comparative models with YASARA NOVA - a self-parameterizing force field. Proteins. 2002;47:393–402. PubMed
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19–25.
Wu E.L., Cheng X., Jo S., Rui H., Song K.C., Davila-Contreras E.M., Qi Y.F., Lee J.M., Monje-Galvan V., Venable R.M., Klauda J.B., Im W. CHARMM-GUI membrane builder toward realistic biological membrane simulations. J. Comput. Chem. 2014;35:1997–2004. PubMed PMC
Lee J., Cheng X., Swails J.M., Yeom M.S., Eastman P.K., Lemkul J.A., Wei S., Buckner J., Jeong J.C., Qi Y.F., Jo S., Pande V.S., Case D.A., Brooks C.L., MacKerell A.D. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theor. Comput. 2016;12:405–413. PubMed PMC
Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J. Mol. Graph Model. 1996;14:33–38. PubMed
Michaud-Agrawal N., Denning E.J., Woolf T.B., Beckstein O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011;32:2319–2327. PubMed PMC
Hunter J.D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 2007;9:90–95.