Hybrid Closed-Loop Systems for the Treatment of Type 1 Diabetes: A Collaborative, Expert Group Position Statement for Clinical Use in Central and Eastern Europe

. 2021 Dec ; 12 (12) : 3107-3135. [epub] 20211025

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34694585
Odkazy

PubMed 34694585
PubMed Central PMC8586062
DOI 10.1007/s13300-021-01160-5
PII: 10.1007/s13300-021-01160-5
Knihovny.cz E-zdroje

In both pediatric and adult populations with type 1 diabetes (T1D), technologies such as continuous subcutaneous insulin infusion (CSII), continuous glucose monitoring (CGM), or sensor-augmented pumps (SAP) can consistently improve glycemic control [measured as glycated hemoglobin (HbA1c) and time in range (TIR)] while reducing the risk of hypoglycemia. Use of technologies can thereby improve quality of life and reduce the burden of diabetes management compared with self-injection of multiple daily insulin doses (MDI). Novel hybrid closed-loop (HCL) systems represent the latest treatment modality for T1D, combining modern glucose sensors and insulin pumps with a linked control algorithm to offer automated insulin delivery in response to blood glucose levels and trends. HCL systems have been associated with increased TIR, improved HbA1c, and fewer hypoglycemic events compared with CSII, SAP, and MDI, thereby potentially improving quality of life for people with diabetes (PwD) while reducing the costs of treating short- and long-term diabetes-related complications. However, many barriers to their use and regional inequalities remain in Central and Eastern Europe (CEE). Published data suggest that access to diabetes technologies is hindered by lack of funding, underdeveloped health technology assessment (HTA) bodies and guidelines, unfamiliarity with novel therapies, and inadequacies in healthcare system capacities. To optimize the use of diabetes technologies in CEE, an international meeting comprising experts in the field of diabetes was held to map the current regional access, to present the current national reimbursement guidelines, and to recommend solutions to overcome uptake barriers. Recommendations included regional and national development of HTA bodies, efficient allocation of resources, and structured education programs for healthcare professionals and PwD. The responsibility of the healthcare community to ensure that all individuals with T1D gain access to modern technologies in a timely and economically responsible manner, thereby improving health outcomes, was emphasized, particularly for interventions that are cost-effective.

3rd Department of Internal Medicine 1st Faculty of Medicine Charles University and General Faculty Hospital Prague Czechia

Department of Children and Adolescents Jessenius Faculty of Medicine Comenius University Bratislava Martin Slovakia

Department of Diabetes Nutrition and Metabolic Diseases Carol Davila University of Medicine and Pharmacy Bucharest Romania

Department of Endocrinology Diabetes and Metabolic Diseases University Medical Center Ljubljana Zaloska 7 1000 Ljubljana Slovenia

Department of Endocrinology Medical University of Sofia Sofia Bulgaria

Department of Medicine and Oncology Semmelweis University Budapest Budapest Hungary

Department of Metabolic Diseases Jagiellonian University Medical College Krakow Poland

Faculty of Medicine of the University of Belgrade Clinic for Endocrinology Diabetes and Metabolic Diseases Clinical Center of Serbia Belgrade Serbia

Faculty of Medicine University of Ljubljana Ljubljana Slovenia

Pediatric Department National Institute of Endocrinology and Diabetology Ľubochňa Slovakia

School of Medicine Josip Juraj Strossmayer University of Osijek Osijek Croatia

School of Medicine University of Zagreb Zagreb Croatia

Ukrainian Scientific and Practical Center of Endocrine Surgery Transplantation of Endocrine Organs and Tissues of the Ministry of Health of Ukraine Kyiv Ukraine

University Hospital Kraków Poland

University Medical Center Ljubljana Ljubljana Slovenia

Vuk Vrhovac University Clinic for Diabetes Endocrinology and Metabolic Diseases Merkur University Hospital Zagreb Croatia

Zobrazit více v PubMed

International Diabetes Federation. Diabetes Atlas–9th Edition. 2019. https://diabetesatlas.org/data/en/world/. Accessed 08 Dec 2020.

The Diabetes Control and Complications Trial Research Group The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–986. PubMed

Nathan DM. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care. 2014;37(1):9–16. PubMed PMC

The DCCT/EDIC Research Group Intensive diabetes treatment and cardiovascular outcomes in type 1 diabetes: the DCCT/EDIC study 30-year follow-up NIH external link. Diabetes Care. 2016;39(5):686–693. PubMed PMC

Stedman M, Lunt M, Davies M, et al. Cost of hospital treatment of type 1 diabetes (T1DM) and type 2 diabetes (T2DM) compared to the non-diabetes population: a detailed economic evaluation. BMJ Open. 2020;10:e033231. PubMed PMC

Smith-Palmer J, Bae JP, Boye KS, Norrbacka K, Hunt B, Valentine WJ. Evaluating health-related quality of life in type 1 diabetes: a systematic literature review of utilities for adults with type 1 diabetes. Clinicoecon Outcomes Res. 2016;8:559–571. PubMed PMC

Nielsen HB, Ovesen LL, Mortensen LH, Lau CJ, Joensen LE. Type 1 diabetes, quality of life, occupational status and education level: a comparative population-based study. Diabetes Res Clin Pract. 2016;121:62–68. PubMed

Mameli C, Mazzantini S, Nasr MB, Fiorina P, Scaramuzza AE, Zuccotti GV. Explaining the increased mortality in type 1 diabetes. World J Diabetes. 2015;6(7):889–895. PubMed PMC

Stettler C, Allemann S, Jüni P, et al. Glycemic control and macrovascular disease in types 1 and 2 diabetes mellitus: meta-analysis of randomized trials. Am Heart J. 2006;152(1):27–38. PubMed

Runge AS, Kennedy L, Brown AS. Does time-in-range matter? Perspectives from people with diabetes on the success of current therapies and the drivers of improved outcomes. Clin Diabetes. 2018;36(2):112–119. PubMed PMC

López-Bastida J, López-Siguero JP, Oliva-Moreno J, et al. Social economic costs of type 1 diabetes mellitus in pediatric patients in Spain: CHRYSTAL observational study. Diabetes Res Clin Pract. 2017;127:59–69. PubMed

Bogdanović R. Diabetic nephropathy in children and adolescents. Pediatr Nephrol. 2008;23(4):507–525. PubMed

McKnight JA, Wild SH, Lamb MJE, et al. Glycaemic control of type 1 diabetes in clinical practice early in the 21st century: an international comparison. Diabet Med. 2015;32(8):1036–1050. PubMed

McCrimmon RJ, Frier BM. Hypoglycaemia, the most feared complication of insulin therapy. Diabetes Metab. 1994;20(6):503–512. PubMed

McCrimmon RJ, Frier BM, Deary IJ. Appraisal of mood and personality during hypoglycaemia in human subjects. Physiol Behav. 1999;67(1):27–33. PubMed

McCrimmon RJ, Sherwin RS. Hypoglycemia in type 1 diabetes. Diabetes. 2010;59(10):2333–2339. PubMed PMC

Martín-Timón I, del Cañizo-Gómez FJ. Mechanisms of hypoglycemia unawareness and implications in diabetic patients. World J Diabetes. 2015;6(7):912–926. PubMed PMC

Czyzewska K, Czerniawska E, Szadkowska A. Prevalence of hypoglycemia unawareness in patients with type 1 diabetes. Pediatr Diabet. 2012;13(Suppl 17):77.

Choudhary P, Geddes J, Freeman JV, Emery CJ, Heller SR, Frier BM. Frequency of biochemical hypoglycaemia in adults with type 1 diabetes with and without impaired awareness of hypoglycaemia: no identifiable differences using continuous glucose monitoring. Diabetes Med. 2010;27(6):666–672. PubMed

Gold AE, MacLeod KM, Frier BM. Frequency of severe hypoglycemia in patients with type I diabetes with impaired awareness of hypoglycemia. Diabetes Care. 1994;17(7):697–703. PubMed

Fidler C, Christensen TE, Gillard S. Hypoglycemia: an overview of fear of hypoglycemia, quality-of-life, and impact on costs. J Med Econ. 2011;14(5):646–655. PubMed

Kadish AH. Automation control of blood sugar a servomechanism for glucose monitoring and control. Trans Am Soc Artif Intern Organs. 1963;9:363–367. PubMed

Burckhardt M-A, Smith GJ, Cooper MN, Jones TW, Davis EA. Real-world outcomes of insulin pump compared to injection therapy in a population-based sample of children with type 1 diabetes. Pediatr Diabetes. 2018;19(8):1459–1466. PubMed

Moreno-Ferández J, García-Seco JA, Herrera-Moraleda M, Seco AM, Muñoz-Rodríguez JR. Real-world outcomes of insulin pump compared to multiple daily injection therapy in adult type 1 diabetes mellitus patients in a Mediterranean scenario. Int J Diabetes Dev Ctries. 2020 doi: 10.1007/s13410-020-00887-4. DOI

McGill JB, Ahmann A. Continuous glucose monitoring with multiple daily insulin treatment: outcome studies. Diabetes Technol Ther. 2017;19(Suppl 3):S3–S12. PubMed PMC

Ahmadi SS, Westman K, Pivodic A, et al. The association between HbA1c and time in hypoglycemia during CGM and self-monitoring of blood glucose in people with type 1 diabetes and multiple daily insulin injections: a randomized clinical trial (GOLD-4) Diabetes Care. 2020;43(9):2017–2024. PubMed PMC

Beck RW, Riddlesworth T, Ruedy K, et al. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: the DIAMOND randomized clinical trial. JAMA. 2017;317(4):371–378. PubMed

Hirsch IB, Bode BW, Garg S, et al. Continuous subcutaneous insulin infusion (CSII) of insulin aspart versus multiple daily injection of insulin aspart/insulin glargine in type 1 diabetic patients previously treated with CSII. Diabetes Care. 2005;28(3):533–538. PubMed

National Institute for Health and Care Excellence (NICE). Type 1 diabetes in adults: diagnosis and management–NICE guideline [NG17]. 2020. https://www.nice.org.uk/guidance/ng17. Accessed 01 Feb 2021.

Peters AL, Ahmann AJ, Hirsch IB, Raymond JK. Advances in glucose monitoring and automated insulin delivery: supplement to Endocrine Society clinical practice guidelines. J Endocr Soc. 2018;2(11):1214–1225. PubMed PMC

Danne T, Nimri R, Battelino T, et al. International consensus on use of continuous glucose monitoring. Diabetes Care. 2017;40(12):1631–1640. PubMed PMC

Hoogma RPLM, Hammond PJ, Gomis R, et al. Comparison of the effects of continuous subcutaneous insulin infusion (CSII) and NPH-based multiple daily insulin injections (MDI) on glycaemic control and quality of life: results of the 5-nations trial. Diabet Med. 2006;23(2):141–147. PubMed

American Diabetes Association 7. Diabetes technology: standards of medical care in diabetes—2021. Diabetes Care. 2021;44(Suppl. 1):S85–S99. PubMed

Grunberger G, Sherr J, Allende M, et al. American Association of Clinical Endocrinology clinical practice guideline: the use of advanced technology in the management of persons with diabetes mellitus. Endocr Pract. 2021;27(6):505–537. PubMed

Peters AL, Ahmann AJ, Battelino T, et al. Diabetes technology-continuous subcutaneous insulin infusion therapy and continuous glucose monitoring in adults: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(11):3922–3937. PubMed

Cohen O, Vigersky RA, Lee SW, Cordero TL, Kaufman FR. Letter to the editor: automated insulin delivery system nomenclature. Diabetes Technol Ther. 2017;19(6):379–380. PubMed

Steineck I, Ranjan A, Nørgaard K, Schmidt S. Sensor-augmented insulin pumps and hypoglycemia prevention in type 1 diabetes. J Diabetes Sci Technol. 2017;11(1):50–58. PubMed PMC

Zucchini S, Scipione M, Balsamo C, et al. Comparison between sensor-augmented insulin therapy with continuous subcutaneous insulin infusion or multiple daily injections in everyday life: 3-day analysis of glucose patterns and sensor accuracy in children. Diabetes Technol Ther. 2011;13(12):1187–1193. PubMed

Bosi E, Choudhary P, de Valk HW, et al. Efficacy and safety of suspend-before-low insulin pump technology in hypoglycaemia-prone adults with type 1 diabetes (SMILE): an open-label randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7:462–472. PubMed

Cherubini V, Gesuita R, Skrami E, et al. Optimal predictive low glucose management settings during physical exercise in adolescents with type 1 diabetes. Pediatr Diabetes. 2019;20(1):107–112. PubMed

Klupa T, Hohendorff J, Benbenek-Klupa T, Matejko B, Malecki MT. Insulin pump settings and glucose patterns during a 1008-km non-stop bicycle race in a patient with type 1 diabetes mellitus. Acta Diabetol. 2019;56:593–595. PubMed PMC

Abraham MB, Nicholas JA, Smith GJ, et al. Reduction in hypoglycemia with the predictive low-glucose management system: a long-term randomized controlled trial in adolescents with type 1 diabetes. Diabetes Care. 2018;41(2):303–310. PubMed

Forlenza GP, Li Z, Buckingham BA, et al. Predictive low-glucose suspend reduces hypoglycemia in adults, adolescents, and children with type 1 diabetes in an at-home randomized crossover study: results of the PROLOG trial. Diabetes Care. 2018;41:dc180771. PubMed

Sharifi A, De Bock MI, Jayawardene D, et al. Glycemia, treatment satisfaction, cognition, and sleep quality in adults and adolescents with type 1 diabetes when using a closed-loop system overnight versus sensor-augmented pump with low-glucose suspend function: a randomized crossover study. Diabetes Technol Ther. 2016;18:772–783. PubMed

Tauschmann M, Thabit H, Bally L, et al. Closed-loop insulin delivery in suboptimally controlled type 1 diabetes: a multicentre, 12-week randomised trial. Lancet. 2018;392:1321–1329. PubMed PMC

Bally L, Thabit H, Kojzar H, et al. Day-and-night glycaemic control with closed-loop insulin delivery versus conventional insulin pump therapy in free-living adults with well controlled type 1 diabetes: an open-label, randomised, crossover study. Lancet Diabetes Endocrinol. 2017;5:261–270. PubMed PMC

Garg SK, Weinzimer SA, Tamborlane WV, et al. Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol Ther. 2017;19(3):155–163. PubMed PMC

Brown SA, Kovatchev BP, Raghinaru D, et al. Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. N Engl J Med. 2019;381(18):1707–1717. PubMed PMC

Medtronic. Press release: Medtronic Presents U.S. Pivotal Trial Data for MiniMed™ 780G Advanced Hybrid Closed Loop System with Automated Correction Bolus Feature. 2020. https://newsroom.medtronic.com/news-releases/news-release-details/medtronic-presents-us-pivotal-trial-data-minimedtm-780g-advanced. Accessed 23 Feb 2021.

Barnard KD, Wysocki T, Ully V, et al. Closing the loop in adults, children and adolescents with suboptimally controlled type 1 diabetes under free living conditions: a psychosocial substudy. J Diabetes Sci Technol. 2017;11:1080–1088. PubMed PMC

Heinemann L, DeVries JH. Reimbursement for continuous glucose monitoring. Diabetes Technol Ther. 2016;18(Suppl 2):S248–S252. PubMed PMC

Khunti K, Cigrovski Berković M, Ludvik B, et al. Regional variations in definitions and rates of hypoglycaemia: findings from the global HAT observational study of 27 585 people with type 1 and insulin-treated type 2 diabetes mellitus. Diabetes Med. 2018;35(9):1232–1241. PubMed PMC

Tauschmann M, Hermann JM, Freiberg C, et al. Reduction in diabetic ketoacidosis and severe hypoglycemia in pediatric type 1 diabetes during the first year of continuous glucose monitoring: a multicenter analysis of 3553 subjects from the DPV registry. Diabetes Care. 2020;43:dc191358. PubMed

DeSalvo DJ, Miller KM, Hermann JM, et al. Continuous glucose monitoring and glycemic control among youth with type 1 diabetes: International comparison from the T1D Exchange and DPV Initiative. Pediatr Diabetes. 2018;19(7):1271–1275. PubMed PMC

Haциoнaлнa Здpaвнoocигypитeлнa Кaca [Bulgarian National Health Insurance Fund]. Изиcквaния нa HЗOК зa пpeдпиcвaнe нa мeдицинcки издeлия зa пpилoжeниe c инcyлинoви пoмпи пpи зaxapeн диaбeт тип 1 в извънбoлничнaтa пoмoщ [Requirements of the National Health Insurance Fund for prescribing medical devices for use with insulin pumps in type 1 diabetes mellitus in outpatient care]. 2020. https://www.nhif.bg/page/207. Accessed 23 Feb 2021.

Hrvatski zavod za zdravstveno osiguranje [Croatian Health Insurance Fund]. Medicinski proizvodi [Medical products]. Osnovna lista pomagala [List of reimbursed diabetes medical devices in Croatia]. 2020. https://hzzo.hr/zdravstvena-zastita/medicinski-proizvodi. Accessed 23 Feb 2021.

Státní ústav pro kontrolu léčiv [Czech State Institute for Drug Control]. Seznam zdravotnických prostředků hrazených na poukaz [List of reimbursed medical devices]. 2021. https://www.sukl.cz/sukl/seznam-zdravotnickych-prostredku-hrazenych-na-poukaz. Accessed 23 Feb 2021.

Nemzeti Egészségbiztosítási Alapkezelő [Hungarian National Health Insurance Fund]. Végleges publikus gyógyászatisegédeszköz-törzs [Final public medical device list]. 2020. http://neak.gov.hu/felso_menu/szakmai_oldalak/gyogyszer_segedeszkoz_gyogyfurdo_tamogatas/egeszsegugyi_vallalkozasoknak/puphag/Vegleges_PUPHAG.html. Accessed 23 Feb 2021.

Narodowy Fundusz Zdrowia [Polish National Health Fund]. Załączniki do zarządzenia Prezesa NFZ, z dnia 29 listopada 2019 r. Nr 167/2019/DSOZ [Attachments to the order of the President of the National Health Fund of November 29, 2019 No. 167/2019 / DSOZ]. Katalog zakresów w rodzaju świadczenia zdrowotne kontraktowane odrębnie [Catalogue of contracted health services]. 2019. http://sipdata.lex.pl/dane/urzedowe/2019/2294786/1.pdf?_ga=2.100035097.626621916.1611055805-1360556567.1611055805. Accessed 23 Feb 2021.

Narodowy Fundusz Zdrowia [Polish National Health Fund]. w sprawie ogłoszenia jednolitego tekstu rozporządzenia Ministra Zdrowia w sprawie wykazu wyrobów medycznych [Regulation of medical devices]. 2019. http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20190001267/O/D20191267.pdf. Accessed 23 Feb 2021.

Casa Naţională de Asigurări de Sănătate [Romanian National Health Insurance House]. Programul naţional de diabet zaharat [National Diabetes Program]. 2021. http://www.cnas.ro/page/programul-national-de-diabet-zaharat.html. Accessed 23 Feb 2021.

Peпyблички фoнд зa здpaвcтвeнo ocигypae [Serbian Public Health Insurance Fund]. ЛИCTA ПOMAГAЛA [Help list]. 2021. https://www.rfzo.rs/download/pravilnici/pomagala/Lista%20pomagala.pdf. Accessed 23 Feb 2021.

Peпyблички фoнд зa здpaвcтвeнo ocигypae [Serbian Public Health Insurance Fund]. Hajвиши изнocи нaкнaдa зa oдpeeнa мeдицинcкo-тexничкa пoмaгaлa кoja ce издajy пpeкo aпoтeкe [Highest fees for medical devices issued through pharmacies]. 2021. https://www.rfzo.rs/download/pravilnici/pomagala/Prilog%20o%20naknadi%20troskova%20MTP%201.pdf. Accessed 23 Feb 2021.

Peпyблички фoнд зa здpaвcтвeнo ocигypae [Serbian Public Health Insurance Fund]. Hajвиши изнocи нaкнaдa зa мeдицинcкo-тexничкa пoмaгaлa кoja ce oбeзбeyjy из cpeдcтaвa oбaвeзнoг здpaвcтвeнoг ocигypaa пpeкo иcпopyчилaцa пoмaгaлa [Highest fees for medical devices issued through mandatory health insurance]. 2021. https://www.rfzo.rs/download/pravilnici/pomagala/Prilog%202._izmena.pdf. Accessed 23 Feb 2021.

Ministerstvo Zdravotníctva Slovenskej Republiky [Ministry of Health of the Slovak Republic]. Zoznam kategorizovaných zdravotníckych pomôcok [List of categorized medical devices]. 2021. https://www.health.gov.sk/?zoznam-kategorizovanych-zdravotnickych-pomocok. Accessed 23 Feb 2021.

Zavod za zdravstveno zavarovanje Slovenije [Health Insurance Institute of Slovenia]. Elektronska Gradiva [Electronic materials]. Seznam medicinskih pripomočkov s šifrantom, medicinskimi kriteriji, pooblastili, postopki in cenovnimi standardi [List of medical devices with code list, medical criteria, authorizations, procedures and pricing]. 2021. https://www.zzzs.si/?id=126&detail=DFDC914987E44E2AC1257353003EC73A. Accessed 12 July 2021.

Jakovljevic MB. Resource allocation strategies in Southeastern European health policy. Eur J Health Econ. 2013;14:153–159. PubMed

Kaló Z, Gheorghe A, Huic M, Csanádi M, Kristensen FB. HTA implementation roadmap in Central and Eastern European countries. Health Econ. 2016;25:179–192. PubMed PMC

Huic M, Hacek RT, Svajger I. Health technology assessment in Central, Eastern, and South European countries: Croatia. Int J Technol Assess Health Care. 2017;33(3):376–383. PubMed

Atanasijevic D, Zah V. Health technology assessment in Serbia. Int J Technol Assess Health Care. 2017;33(3):384–389. PubMed

Csanádi M, Inotai A, Oleshchuk O, et al. Health technology assessment implementation in Ukraine: current status and future perspectives. Int J Tech Assess Health Care. 2019;35(5):393–400. PubMed

Rais C, Kaló Z, Csanádi M, Negulescu V. Current and future perspectives for the implementation of health technology assessment in Romania. Health Policy Technol. 2020;9(1):45–52.

Malinowski KP, Kawalec P, Trąbka W, et al. Health technology assessment and reimbursement policy for oncology orphan drugs in Central and Eastern Europe. Orphanet J Rare Dis. 2020;15:277. PubMed PMC

Godman B, Hill A, Simoens S, et al. Potential approaches for the pricing of cancer medicines across Europe to enhance the sustainability of healthcare systems and the implications. Expert Rev Pharmacoecon Outcomes Res. 2021;21(4):527–540. PubMed

Cohen D. Cancer drugs: high price, uncertain value. BMJ. 2017;359:j4543. PubMed PMC

Luzzatto L, Hyry HI, Schieppati A, et al. Outrageous prices of orphan drugs: a call for collaboration. Lancet. 2018;392:791–794. PubMed

Németh B, Goettsch W, Kristensen FB, et al. The transferability of health technology assessment - the European perspective with focus on central and Eastern European countries. Exp Rev Pharmacoecon Outcomes Res. 2020;20(4):321–330. PubMed

Stumetz KS, Yi-Frazier JP, Mitrovich C, Early KB. Quality of care in rural youth with type 1 diabetes: a cross-sectional pilot assessment. BMJ Open Diabetes Res Care. 2016;4:e000300. PubMed PMC

Massey CN, Appel SJ, Buchanan KL, Cherrington AL. Improving diabetes care in rural communities: an overview of current initiatives and a call for renewed efforts. Clin Diabetes. 2010;28(1):20–27.

Padala PR, Desouza CV, Almeida S, et al. The impact of apathy on glycemic control in diabetes: a cross-sectional study. Diabetes Res Clin Pract. 2008;79:37–41. PubMed

Vaportzis E, Clausen MG, Gow AJ. Older adults perceptions of technology and barriers to interacting with tablet computers: a focus group study. Front Psychol. 2017;8:1687. PubMed PMC

Tanenbaum ML, Hanes SJ, Miller KM, Naranjo D, Bensen R, Hood KK. Diabetes device use in adults with type 1 diabetes: barriers to uptake and potential intervention targets. Diabetes Care. 2017;40:181–187. PubMed PMC

Doničová V, Brož J, Sorin I. Health care provision for people with diabetes and postgraduate training of diabetes specialists in Eastern European countries. J Diabetes Sci Technol. 2011;5(5):1124–1136. PubMed PMC

Current status of health intervention and technology assessment in the Balkan region. Copenhagen: WHO Regional Office for Europe. 2020. https://apps.who.int/iris/bitstream/handle/10665/336228/WHO-EURO-2020-1303-41053-55733-eng.pdf. Accessed 01 Feb 2021.

Roze S, Buompensiere MI, Ozdemir Z, de Portu S, Cohen O. Cost-effectiveness of a novel hybrid closed-loop system compared with continuous subcutaneous insulin infusion in people with type 1 diabetes in the UK. J Med Econ. 2021;24:883–890. PubMed

Tsanova DK, Grancharova GG, Aleksandrova-Yankulovska SS, Vekov TJ. Diabetes in Bulgaria and the need for health technology assessment. Public Health. 2017;21:11–15.

American Diabetes Association Consensus Panel Guidelines for computer modeling of diabetes and its complications. Diabetes Care. 2004;27(9):2262–2265. PubMed

Jendle J, Pöhlmann J, de Portu S, Smith-Palmer J, Roze S. Cost-effectiveness analysis of the MiniMed 670G hybrid closed-loop system versus continuous subcutaneous insulin infusion for treatment of type 1 diabetes. Diabetes Technol Ther. 2019;21(3):110–118. PubMed

Pease A, Zomer E, Liew D, et al. Cost-effectiveness analysis of a hybrid closed-loop system versus multiple daily injections and capillary glucose testing for adults with type 1 diabetes. Diabetes Technol Ther. 2020;22(11):812–821. PubMed

Charleer S, Mathieu C, Nobels F, et al. Effect of continuous glucose monitoring on glycemic control, acute admissions, and quality of life: a real-world study. J Clin Endocrinol Metab. 2018;103(3):1224–1232. PubMed

Charleer S, De Block C, Nobels F, et al. Sustained impact of real-time continuous glucose monitoring in adults with type 1 diabetes on insulin pump therapy: results after the 24-month RESCUE study. Diabetes Care. 2020;43(12):3016–3023. PubMed

Podolakova K, Jancova BE, Stanik J, Podracka L. Increasing incidence of type 1 diabetes mellitus in young children in Slovakia. Bratislava Med J. 2020;121(2):129–132. PubMed

Pickup JC, Freeman SC, Sutton AJ. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data. BMJ. 2011;343:d3805. PubMed PMC

Seereiner S, Neeser K, Weber C, et al. Attitudes towards insulin pump therapy among adolescents and young people. Diabetes Technol Ther. 2010;12:89–94. PubMed

Scheiner G, Sobel RJ, Smith DE, et al. Insulin pump therapy guidelines for successful outcomes. Diabetes Educ. 2009;35:S29–41. PubMed

Liberman A, Barnard K. Diabetes technology and the human factor. Diabetes Technol Ther. 2018;20(Suppl 1):S128–S138. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...