Nanotechnology Interventions in the Management of COVID-19: Prevention, Diagnosis and Virus-Like Particle Vaccines
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
Excellence project
UHK
CEP Register
Excellence Project PrF
UHK
CEP Register
PubMed
34696237
PubMed Central
PMC8537718
DOI
10.3390/vaccines9101129
PII: vaccines9101129
Knihovny.cz E-resources
- Keywords
- COVID-19, SARS-CoV-2, diagnosis, prevention, virus-like particle vaccines,
- Publication type
- Journal Article MeSH
- Review MeSH
SARS-CoV-2 claimed numerous lives and put nations on high alert. The lack of antiviral medications and the small number of approved vaccines, as well as the recurrence of adverse effects, necessitates the development of novel treatment ways to combat COVID-19. In this context, using databases such as PubMed, Google Scholar, and Science Direct, we gathered information about nanotechnology's involvement in the prevention, diagnosis and virus-like particle vaccine development. This review revealed that various nanomaterials like gold, polymeric, graphene and poly amino ester with carboxyl group coated magnetic nanoparticles have been explored for the fast detection of SARS-CoV-2. Personal protective equipment fabricated with nanoparticles, such as gloves, masks, clothes, surfactants, and Ag, TiO2 based disinfectants played an essential role in halting COVID-19 transmission. Nanoparticles are used not only in vaccine delivery, such as lipid nanoparticles mediated transport of mRNA-based Pfizer and Moderna vaccines, but also in the development of vaccine as the virus-like particles elicit an immune response. There are now 18 virus-like particle vaccines in pre-clinical development, with one of them, developed by Novavax, reported being in phase 3 trials. Due to the probability of upcoming COVID-19 waves, and the rise of new diseases, the future relevance of virus-like particles is imperative. Furthermore, psychosocial variables linked to vaccine reluctance constitute a critical problem that must be addressed immediately to avert pandemic.
Department of Allied Sciences University of Patanjali Haridwar 249405 India
Department of Physics Career Point University Hamirpur 177001 India
Patanjali Herbal Research Department Patanjali Research Institute Haridwar 249405 India
See more in PubMed
Wang J., Shen J., Ye D., Yan X., Zhang Y., Yang W., Li X., Wang J., Zhang L., Pan L. Disinfection technology of hospital wastes and wastewater: Suggestions for disinfection strategy during coronavirus Disease 2019 (COVID-19) pandemic in China. Environ. Pollut. 2020;262:114665. doi: 10.1016/j.envpol.2020.114665. PubMed DOI PMC
Malik J.A., Mulla A.H., Farooqi T., Pottoo F.H., Anwar S., Rengasamy K.R. Targets and strategies for vaccine development against SARS-CoV-2. Biol. Pharmacol. 2021;137:111254. PubMed PMC
Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. PubMed DOI PMC
Wu A., Peng Y., Huang B., Ding X., Wang X., Niu P., Meng J., Zhu Z., Zhang Z., Wang J., et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. 2020;27:325–328. doi: 10.1016/j.chom.2020.02.001. PubMed DOI PMC
Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020;382:727–733. doi: 10.1056/NEJMoa2001017. PubMed DOI PMC
Lai C.C., Shih T.P., Ko W.C., Tang H.J., Hsueh P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents. 2020;55:105924. doi: 10.1016/j.ijantimicag.2020.105924. PubMed DOI PMC
Campos E.V.R., Pereira A.E.S., De Oliveira J.L., Carvalho L., Guilger-Casagrande M., De Lima R., Fraceto L.F. How can nanotechnology help to combat COVID-19? Opportunities and urgent need. J. Nanobiotechnology. 2020;18:125. doi: 10.1186/s12951-020-00685-4. PubMed DOI PMC
Wouters O.J., Shadlen K.C., Salcher-Konrad M., Pollard A.J., Larson H.J., Teerawattananon Y., Jit M. Challenges in en-suring global access to COVID-19 vaccines: Production, affordability, allocation, and deployment. Lancet. 2021;397:1023–1034. doi: 10.1016/S0140-6736(21)00306-8. PubMed DOI PMC
Block P., Hoffman M., Raabe I.J., Dowd J.B., Rahal C., Kashyap R., Mills M.C. Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. Nat. Hum. Behav. 2020;4:588–596. doi: 10.1038/s41562-020-0898-6. PubMed DOI
Zumla P.S.A., Hui D.S., Azhar E., A Memish Z., Maeurer M. Reducing mortality from 2019-nCoV: Host-directed therapies should be an option. Lancet. 2020;395:e35–e36. doi: 10.1016/S0140-6736(20)30305-6. PubMed DOI PMC
Chan J.W., Kok K.H., Zhu Z., Chu H., To K.K.W., Yuan S., Yuen K.Y. Genomic characterization of the 2019 novel hu-man-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microb. Infect. 2020;9:221–236. doi: 10.1080/22221751.2020.1719902. PubMed DOI PMC
Vellingiri B., Jayaramayya K., Iyer M., Narayanasamy A., Govindasamy V., Giridharan B., Ganesan S., Venugopal A., Venkatesan D., Ganesan H., et al. COVID-19: A promising cure for the global panic. Sci. Total Environ. 2020;725:138277. doi: 10.1016/j.scitotenv.2020.138277. PubMed DOI PMC
Tyo K.M., Lasnik A.B., Zhang L., Mahmoud M., Jenson A.B., Fuqua J.L., Palmer K.E., Steinbach-Rankins J.M. Sustained-release Griffithsin nanoparticle-fiber composites against HIV-1 and HSV-2 infections. J. Control. Release. 2020;321:84–99. doi: 10.1016/j.jconrel.2020.02.006. PubMed DOI PMC
Mainardes R.M., Diedrich C. The potential role of nanomedicine on COVID-19 therapeutics. Ther. Deliv. 2020;11:411–414. doi: 10.4155/tde-2020-0069. PubMed DOI PMC
Anu, Thakur N., Kumar K., Sharma K.K. Application of Co-doped copper oxide nanoparticles against different multidrug resistance bacteria. Inorg. Nano-Met. Chem. 2020;50:933–943. doi: 10.1080/24701556.2020.1728554. DOI
Thakur N., Anu, Kumar K., Kumar A. Effect of (Ag, Zn) co-doping on structural, optical and bactericidal properties of CuO nanoparticles synthesized by a microwave-assisted method. Dalton Trans. 2021;50:6188–6203. doi: 10.1039/D0DT04405A. PubMed DOI
Thakur B., Kumar A., Kumar D. Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity. S. Afr. J. Bot. 2019;124:223–227. doi: 10.1016/j.sajb.2019.05.024. DOI
Kumar A., Singh S., Kumar D. Evaluation of antimicrobial potential of cadmium sulphide nanoparticles against bacterial pathogens. Int. J. Pharm. Sci. Rev. Res. 2014;24:202–206.
Pelaz B., Alexiou C., Alvarez-Puebla R.A., Alves F., Andrews A.M., Ashraf S., Balogh L.P., Ballerini L., Bestetti A., Brendel C., et al. Diverse Applications of Nanomedicine. ACS Nano. 2017;11:2313–2381. doi: 10.1021/acsnano.6b06040. PubMed DOI PMC
Balasubramaniam B., Prateek, Ranjan S., Saraf M., Kar P., Singh S.P., Thakur V.K., Singh A., Gupta R.K. Antibacterial and antiviral functional materials: Chemistry and biological activity toward tackling COVID-19-like pandemics. ACS Pharmacol. Transl. Sci. 2020;4:8–54. doi: 10.1021/acsptsci.0c00174. PubMed DOI PMC
Chen L., Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater. Sci. Eng. C. 2020;112:110924. doi: 10.1016/j.msec.2020.110924. PubMed DOI PMC
Rupp R., Rosenthal S.L., Stanberry L.R. VivaGel™ (SPL7013 Gel): A candidate dendrimer—microbicide for the prevention of HIV and HSV infection. Int. J. Nanomed. 2007;2:561–566. PubMed PMC
Liu Z., Shang C., Ma H., You M. An upconversion nanoparticle-based photostable FRET system for long-chain DNA sequence detection. Nanotechnology. 2020;31:235501. doi: 10.1088/1361-6528/ab776d. PubMed DOI
Joe Y.H., Woo K., Hwang J. Fabrication of an anti-viral air filter with SiO2–Ag nanoparticles and performance evaluation in a continuous airflow condition. J. Hazard. Mater. 2014;280:356–363. doi: 10.1016/j.jhazmat.2014.08.013. PubMed DOI PMC
Le T.S., Dao T.H., Nguyen D.C., Nguyen H.C., Balikhin I. Air purification equipment combining a filter coated by silver nanoparticles with a nano-TiO2 photocatalyst for use in hospitals. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015;6:015016. doi: 10.1088/2043-6262/6/1/015016. DOI
Adams J.G., Walls R.M. Supporting the Health Care Workforce During the COVID-19 Global Epidemic. JAMA. 2020;323:1439. doi: 10.1001/jama.2020.3972. PubMed DOI
Mejía-Salazar J., Oliveira O.N., Jr. Plasmonic biosensing: Focus review. Chem. Rev. 2018;118:10617–10625. doi: 10.1021/acs.chemrev.8b00359. PubMed DOI
Park J.-E., Kim K., Jung Y., Kim J.-H., Nam J.-M. Metal Nanoparticles for Virus Detection. ChemNanoMat. 2016;2:927–936. doi: 10.1002/cnma.201600165. DOI
Mokhtarzadeh A., Eivazzadeh-Keihan R., Pashazadeh P., Hejazi M., Gharaatifar N., Hasanzadeh M., Baradaran B., de la Guardia M. Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Trends Anal. Chem. 2017;97:445–457. doi: 10.1016/j.trac.2017.10.005. PubMed DOI PMC
Medhi R., Srinoi P., Ngo N., Tran H.-V., Lee T.R. Nanoparticle-Based Strategies to Combat COVID-19. ACS Appl. Nano Mater. 2020;3:8557–8580. doi: 10.1021/acsanm.0c01978. PubMed DOI
Demento S.L., Cui W., Criscione J.M., Stern E., Tulipan J., Kaech S.M., Fahmy T.M. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials. 2012;33:4957–4964. doi: 10.1016/j.biomaterials.2012.03.041. PubMed DOI PMC
Gregory A.E., Titball R., Williamson D. Vaccine delivery using nanoparticles. Front. Cell. Infect. Microbiol. 2013;3:13. doi: 10.3389/fcimb.2013.00013. PubMed DOI PMC
Kim M.-G., Park J.Y., Shon Y., Kim G., Shim G., Oh Y.-K. Nanotechnology and vaccine development. Asian J. Pharm. Sci. 2014;9:227–235. doi: 10.1016/j.ajps.2014.06.002. DOI
Jia H.Y., Liu Y., Zhang X.J., Han L., Du L.B., Tian Q., Xu Y.C. Potential oxidative stress of gold nanoparticles by induced-NO releasing in serum. J. Am. Chem. Soc. 2009;131:40–41. doi: 10.1021/ja808033w. PubMed DOI
Durocher S., Rezaee A., Hamm C., Rangan C., Mittler S., Mutus B. Disulfide-Linked, Gold Nanoparticle Based Reagent for Detecting Small Molecular Weight Thiols. J. Am. Chem. Soc. 2009;131:2475–2477. doi: 10.1021/ja808548x. PubMed DOI
Kirchner C., Liedl T., Kudera S., Pellegrino T., Muñoz Javier A., Gaub H.E., Stölzle S., Fertig N., Parak W.J. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 2005;5:331–338. doi: 10.1021/nl047996m. PubMed DOI
Bai B., Hu Q., Hu H., Zhou P., Shi Z., Meng J., Lu B., Huang Y., Mao P., Wang H. Virus-Like Particles of SARS-Like Coronavirus Formed by Membrane Proteins from Different Origins Demonstrate Stimulating Activity in Human Dendritic Cells. PLoS ONE. 2008;3:e2685. doi: 10.1371/journal.pone.0002685. PubMed DOI PMC
Balke I., Zeltins A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv. Drug Deliv. Rev. 2018;145:119–129. doi: 10.1016/j.addr.2018.08.007. PubMed DOI
Chroboczek J., Szurgot I., Szolajska E. Virus-like particles as vaccine. Acta Biochim. Pol. 2014;61:531–539. doi: 10.18388/abp.2014_1875. PubMed DOI
Jain N.K., Sahni N., Kumru O.S., Joshi S.B., Volkin D.B., Middaugh C.R. Formulation and stabilization of recombinant protein based virus-like particle vaccines. Adv. Drug Deliv. Rev. 2014;93:42–55. doi: 10.1016/j.addr.2014.10.023. PubMed DOI
WHO . WHO Draft Landscape of COVID-19 Candidate Vaccines. WHO; Geneva, Switzerland: 2021.
Khan S., Liu J., Xue M. Transmission of SARS-CoV-2, Required Developments in Research and Associated Public Health Concerns. Front. Med. 2020;7:310. doi: 10.3389/fmed.2020.00310. PubMed DOI PMC
Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N., et al. Genomic characterization and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020;395:565–574. doi: 10.1016/S0140-6736(20)30251-8. PubMed DOI PMC
Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol. 2020;94:e00127-20. doi: 10.1128/JVI.00127-20. PubMed DOI PMC
Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7. PubMed DOI PMC
Worldometers-Countries where COVID-19 has Spread. [(accessed on 14 July 2021)]. Available online: www.worldometers.info.
Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., Ren R., Leung K.S.M., Lau E.H.Y., Wong J.Y., et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 2020;382:1199–1207. doi: 10.1056/NEJMoa2001316. PubMed DOI PMC
Liu Y., Gayle A.A., Wilder-Smith A., Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 2020;27:taaa021. doi: 10.1093/jtm/taaa021. PubMed DOI PMC
Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7. PubMed DOI PMC
Hua J., Wang G., Huang M., Hua S., Yang S. A visual approach for the SARS (severe acute respiratory syndrome) out-break data analysis. Int. J. Environ. Res. Public Health. 2020;17:3973. doi: 10.3390/ijerph17113973. PubMed DOI PMC
Wang C., Horby P.W., Hayden F.G., Gao G.F. A novel coronavirus outbreak of global health concern. Lancet. 2020;395:470–473. doi: 10.1016/S0140-6736(20)30185-9. PubMed DOI PMC
Chan J.F.W., Yuan S., Kok K.H., To K.K.W., Chu H., Yang J., Xing F., Liu J., Yip C.C.Y., Poon R.W.S., et al. A fa-milial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet. 2020;395:514–523. doi: 10.1016/S0140-6736(20)30154-9. PubMed DOI PMC
Pandey V., Singh A., Siddiqui S., Raikwar A., Gond A.K., Ali S., Yadav M., Datta A., Singh A. COVID 19: An update of current knowledge. World Acad. Sci. J. 2021;3:1–8. doi: 10.3892/wasj.2021.86. DOI
Huang H., Fan C., Li M., Nie H.-L., Wang F.-B., Wang H., Wang R., Xia J., Zheng X., Zuo X., et al. COVID-19: A Call for Physical Scientists and Engineers. ACS Nano. 2020;14:3747–3754. doi: 10.1021/acsnano.0c02618. PubMed DOI
Lovato A., De Filippis C. Clinical presentation of COVID-19: A systematic review focusing on upper airway symptoms. Ear Nose Throat J. 2020;99:569–576. doi: 10.1177/0145561320920762. PubMed DOI
Bai Y., Yao L., Wei T., Tian F., Jin D.-Y., Chen L., Wang M. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA. 2020;323:1406. doi: 10.1001/jama.2020.2565. PubMed DOI PMC
Florindo H.F., Kleiner R., Vaskovich-Koubi D., Acúrcio R.C., Carreira B., Yeini E., Tiram G., Liubomirski Y., Satchi-Fainaro R. Immune-mediated approaches against COVID-19. Nat. Nanotechnol. 2020;15:630–645. doi: 10.1038/s41565-020-0732-3. PubMed DOI PMC
Astuti I., Ysrafil Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab. Syndr. 2020;14:407–412. doi: 10.1016/j.dsx.2020.04.020. PubMed DOI PMC
Cao Y.-C., Deng Q.-X., Dai S.-X. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med. Infect. Dis. 2020;35:101647. doi: 10.1016/j.tmaid.2020.101647. PubMed DOI PMC
Jiang S., Hillyer C., Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol. 2020;41:355–359. doi: 10.1016/j.it.2020.03.007. PubMed DOI PMC
Li H., Liu S.M., Yu X.H., Tang S.L., Tang C.K. Coronavirus disease 2019 (COVID-19): Current status and future perspectives. Int. J. Antimicrob. Agents. 2020;55:105951. doi: 10.1016/j.ijantimicag.2020.105951. PubMed DOI PMC
Shereen M.A., Khan S., Kazmi A., Bashir N., Siddique R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J. Adv. Res. 2020;24:91–98. doi: 10.1016/j.jare.2020.03.005. PubMed DOI PMC
Zeng Q., Langereis M., van Vliet A.L.W., Huizinga E.G., de Groot R.J. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proc. Natl. Acad. Sci. USA. 2008;105:9065–9069. doi: 10.1073/pnas.0800502105. PubMed DOI PMC
Jha N., Jeyaraman M., Rachamalla M., Ojha S., Dua K., Chellappan D., Muthu S., Sharma A., Jha S., Jain R., et al. Current Understanding of Novel Coronavirus: Molecular Pathogenesis, Diagnosis, and Treatment Approaches. Immuno. 2021;1:4. doi: 10.3390/immuno1010004. DOI
V’kovski P., Kratzel A., Steiner S., Stalder H., Thiel V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021;19:155–170. doi: 10.1038/s41579-020-00468-6. PubMed DOI PMC
Anselmo A.C., Mitragotri S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019;4:e10143. doi: 10.1002/btm2.10143. PubMed DOI PMC
Kerry R.G., Malik S., Redda Y.T., Sahoo S., Patra J.K., Majhi S. Nano-based approach to combat emerging viral (NIPAH virus) infection. Nanomed. Nanotechnol. Biol. Med. 2019;18:196–220. doi: 10.1016/j.nano.2019.03.004. PubMed DOI PMC
Comparetti E.J., Pedrosa V., Kaneno R. Carbon Nanotube as a Tool for Fighting Cancer. Bioconjugate Chem. 2017;29:709–718. doi: 10.1021/acs.bioconjchem.7b00563. PubMed DOI
Alidori S., Bowman R.L., Yarilin D., Romin Y., Barlas A., Mulvey J.J., Fujisawa S., Xu K., Ruggiero A., Riabov V., et al. Deconvoluting hepatic processing of carbon nanotubes. Nat. Commun. 2016;7:12343. doi: 10.1038/ncomms12343. PubMed DOI PMC
Mukherjee S., Ray S., Thakur R. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci. 2009;71:349–358. doi: 10.4103/0250-474X.57282. PubMed DOI PMC
Makwana V., Jain R., Patel K., Nivsarkar M., Joshi A. Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: Elucidation of mechanism of uptake using chylomicron flow blocking approach. Int. J. Pharm. 2015;495:439–446. doi: 10.1016/j.ijpharm.2015.09.014. PubMed DOI
Vyas T.K., Shahiwala A., Amiji M.M. Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int. J. Pharm. 2008;347:93–101. doi: 10.1016/j.ijpharm.2007.06.016. PubMed DOI PMC
Zielińska A., Carreiró F., Oliveira A., Neves A., Pires B., Venkatesh D., Durazzo A., Lucarini M., Eder P., Silva A., et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules. 2020;25:3731. doi: 10.3390/molecules25163731. PubMed DOI PMC
Soppimath K.S., Aminabhavi T.M., Kulkarni A.R., Rudzinski W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release. 2001;70:1–20. doi: 10.1016/S0168-3659(00)00339-4. PubMed DOI
Owens D.E., Peppas N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006;307:93–102. doi: 10.1016/j.ijpharm.2005.10.010. PubMed DOI
Chiappetta D.A., Hocht C., Taira C., Sosnik A. Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharma-cotherapy with significantly higher oral bioavailability. Nanomedicine. 2010;5:11–23. doi: 10.2217/nnm.09.90. PubMed DOI
Li Q., Du Y.-Z., Yuan H., Zhang X.-G., Miao J., Cui F.-D., Hu F.-Q. Synthesis of Lamivudine stearate and antiviral activity of stearic acid-g-chitosan oligosaccharide polymeric micelles delivery system. Eur. J. Pharm. Sci. 2010;41:498–507. doi: 10.1016/j.ejps.2010.08.004. PubMed DOI
Varshosaz J., Taymouri S., Jafari E., Jahanian-Najafabadi A., Taheri A. Formulation and characterization of cellulose ace-tate butyrate nanoparticles loaded with nevirapine for HIV treatment. J. Drug Deliv. Sci. Technol. 2018;48:9–20. doi: 10.1016/j.jddst.2018.08.020. DOI
Chen X., Chen X., Chen W., Ma X., Huang J., Chen R. Extended peginterferon alfa-2a (Pegasys) therapy in Chinese pa-tients with HBeAg-negative chronic hepatitis B. J. Med. Virol. 2014;86:1705–1713. doi: 10.1002/jmv.24013. PubMed DOI
Wani T.U., Raza S.N., Khan N.A. Nanoparticle opsonization: Forces involved and protection by long chain polymers. Polym. Bull. 2019;77:3865–3889. doi: 10.1007/s00289-019-02924-7. DOI
Nooraei S., Bahrulolum H., Hoseini Z.S., Katalani C., Hajizade A., Easton A.J., Ahmadian G. Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnology. 2021;19:59. doi: 10.1186/s12951-021-00806-7. PubMed DOI PMC
Centers for Disease Control and Prevention (CDC) Coronavirus Disease 2019 (COVID-19)—Transmission. CDC; Atlanta, GA, USA: 2020.
Matthew C. A Facemask having One or More Nanofiber Layers. WO2014143039A1. European Patent. 2014 September 18;
Francois L. Nanofiber Filtering Material for Disposable/Reusable Respirators. US9446547B2. US Patent. 2016 September 20;
Elston D.M. Occupational skin disease among health care workers during the coronavirus (COVID-19) epidemic. J. Am. Acad. Dermatol. 2020;82:1085–1086. doi: 10.1016/j.jaad.2020.03.012. PubMed DOI PMC
Mechael K. Antimicrobial fabric materials for use in safety masks and personal protection clothing. WO2016125173A1. European Patent. 2016 November 8;
NBIC-Reusable Graphene Mask Sterilizes Itself Against Coronavirus with Electrical Charge. [(accessed on 16 May 2020)]. Available online: https://statnano.com/news/67559/Reusable-Graphene-Mask-Sterilises-Itself-against-Coronavirus-with-Electrical-Charge.
Widdowson N. New Mask Material Can Remove Virus-Size Nanoparticles. [(accessed on 18 May 2021)]. Available online: https://phys.org/news/2020-04-mask-material-virus-size-nanoparticles.html.
Balagna C., Perero S., Percivalle E., Nepita E.V., Ferraris M. Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceram. 2020;1:100006. doi: 10.1016/j.oceram.2020.100006. DOI
Nanotechnology in Battle Against Coronavirus. [(accessed on 26 May 2021)]. Available online: https://statnano.com/nanotechnology-in-battle-against-coronavirus.
Liu J., Chamakura K., Perez-Ballestero R., Bashir S. Nanomaterials for Biomedicine. American Chemical Society; Washington, DC, USA: 2012. Historical Overview of the First Two Waves of Bactericidal Agents and Development of the Third Wave of Potent Disinfectants; pp. 129–154. DOI
Shahzadi S., Zafar N., Sharif R. Antibacterial activity of metallic nanoparticles. In: Kırmusaoğlu S., editor. Bacterial Pathogenesis and Antibacterial Control. IntechOpen; London, UK: 2018. pp. 51–72.
Sportelli M.C., Izzi M., Kukushkina E.A., Hossain S.I., Picca R.A., Ditaranto N., Cioffi N. Can nanotechnology and ma-terials science help the fight against SARS-CoV-2? Nanomaterials. 2020;10:802. doi: 10.3390/nano10040802. PubMed DOI PMC
Talebian S., Wallace G.G., Schroeder A., Stellacci F., Conde J. Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nat. Nanotechnol. 2020;15:618–621. doi: 10.1038/s41565-020-0751-0. PubMed DOI
Alpdagtas S., Ilhan E., Uysal E., Sengor M., Ustundag C.B., Gunduz O. Evaluation of current diagnostic methods for COVID-19. APL Bioeng. 2020;4:041506. doi: 10.1063/5.0021554. PubMed DOI PMC
FIND-Find Evaluations of SARS-COV-2 Assays. 2021. [(accessed on 15 June 2021)]. Available online: https://www.finddx.org/covid-19/sarscov2-eval/
WHO . WHO Standard Q Covid-19 Ag Test. WHO; Geneva, Switzerland: 2021.
Chaimayo C., Kaewnaphan B., Tanlieng N., Athipanyasilp N., Sirijatuphat R., Chayakulkeeree M., Angkasekwinai N., Sutthent R., Puangpunngam N., Tharmviboonsri T., et al. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virol. J. 2020;17:177. doi: 10.1186/s12985-020-01452-5. PubMed DOI PMC
Sheridan C. Fast, portable tests come online to curb coronavirus pandemic. Nat. Biotechnol. 2020;38:515–518. doi: 10.1038/d41587-020-00010-2. PubMed DOI
Ramdas K., Darzi A., Jain S. ‘Test, re-test, re-test’:using inaccurate tests to greatly increase the accuracy of COVID-19 testing. Nat. Med. 2020;26:807–812. doi: 10.1038/s41591-020-0891-7. PubMed DOI PMC
Liu R., Han H., Liu F., Lv Z., Wu K., Liu Y., Feng Y., Zhu C. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from January to February 2020. Clin. Chim. Acta. 2020;505:172–175. doi: 10.1016/j.cca.2020.03.009. PubMed DOI PMC
Huang C., Wen T., Shi F.J., Zeng X.Y., Jiao Y.J. Rapid detection of IgM antibodies against the SARS-CoV-2 virus via colloidal gold nanoparticle-based lateral-flow assay. ACS Omega. 2020;5:12550–12556. doi: 10.1021/acsomega.0c01554. PubMed DOI PMC
Kircher M.F., Mahmood U., King R.S., Weissleder R., Josephson L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 2003;63:8122–8125. PubMed
Nam J.-M., Stoeva S.I., Mirkin C.A. Bio-Bar-Code-Based DNA Detection with PCR-like Sensitivity. J. Am. Chem. Soc. 2004;126:5932–5933. doi: 10.1021/ja049384+. PubMed DOI
Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer. 2005;5:161–171. doi: 10.1038/nrc1566. PubMed DOI
Neuwelt E.A., Várallyay P., Bagó A.G., Muldoon L.L., Nesbit G., Nixon R. Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours. Neuropathol. Appl. Neurobiol. 2004;30:456–471. doi: 10.1111/j.1365-2990.2004.00557.x. PubMed DOI
Jamieson T., Bakhshi R., Petrova D., Pocock R., Imani M., Seifalian A. Biological applications of quantum dots. Biomaterials. 2007;28:4717–4732. doi: 10.1016/j.biomaterials.2007.07.014. PubMed DOI
Mansuriya B., Altintas Z. Applications of Graphene Quantum Dots in Biomedical Sensors. Sensors. 2020;20:1072. doi: 10.3390/s20041072. PubMed DOI PMC
Stringer R.C., Schommer S., Hoehn D., Grant S.A. Development of an optical biosensor using gold nanoparticles and quantum dots for the detection of Porcine Reproductive and Respiratory Syndrome Virus. Sens. Actuators B Chem. 2008;134:427–431. doi: 10.1016/j.snb.2008.05.018. DOI
Nikaeen G., Abbaszadeh S., Yousefinejad S. Application of nanomaterials in treatment, anti-infection and detection of coronaviruses. Nanomedicine. 2020;15:1501–1512. doi: 10.2217/nnm-2020-0117. PubMed DOI PMC
Liu I.L., Lin Y.C., Lin Y.C., Jian C.Z., Cheng I.C., Chen H.W. A novel immunochromatographic strip for antigen detec-tion of avian infectious bronchitis virus. Int. J. Mol. Sci. 2019;20:2216. doi: 10.3390/ijms20092216. PubMed DOI PMC
Teengam P., Siangproh W., Tuantranont A., Vilaivan T., Chailapakul O., Henry C.S. Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal. Chem. 2017;89:5428–5435. doi: 10.1021/acs.analchem.7b00255. PubMed DOI PMC
Roh C., Jo S.K. Quantitative and sensitive detection of SARS coronavirus nucleocapsid protein using quantum dots-conjugated RNA aptamer on chip. J. Chem. Technol. Biotechnol. 2011;86:1475–1479. doi: 10.1002/jctb.2721. PubMed DOI PMC
Layqah L.A., Eissa S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchim. Acta. 2019;186:224. doi: 10.1007/s00604-019-3345-5. PubMed DOI PMC
Xiang J., Yan M., Li H., Liu T., Lin C., Huang S., Shen C. Evaluation of Enzyme-Linked Immunoassay and Colloidal Gold-Immunochromatographic Assay Kit for Detection of Novel Coronavirus (SARS-Cov-2) Causing an Outbreak of Pneumonia (COVID-19) medRxiv. 2020 doi: 10.1101/2020.02.27.20028787. DOI
Seo G., Lee G., Kim M.J., Baek S.H., Choi M., Ku K.B., Lee C.S., Jun S., Park D., Kim H.G., et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal Swab specimens using field-effect transistor-based biosensor. ACS Nano. 2020;14:5135–5142. doi: 10.1021/acsnano.0c02823. PubMed DOI
Moitra P., Alafeef M., Dighe K., Frieman M.B., Pan D. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano. 2020;14:7617–7627. doi: 10.1021/acsnano.0c03822. PubMed DOI PMC
Zhu X., Wang X., Han L., Chen T., Wang L., Li H., Li S., He L., Fu X., Chen S., et al. Reverse transcription loop-mediated isothermal amplifcation combined with nanoparticles-based biosensor for diagnosis of COVID-19. Biosens. Bioelectron. 2020;166:112437. doi: 10.1016/j.bios.2020.112437. PubMed DOI PMC
Zhao Z., Cui H., Song W., Ru X., Zhou W., Yu X. A simple magnetic nano particles-based viral RNA extraction method for efcient detection of SARS-CoV-2. Mol. Biol. 2020:1–18. PubMed
Qiu G., Gai Z., Tao Y., Schmitt J., Kullak-Ublick G.A., Wang J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano. 2020;14:5268–5277. doi: 10.1021/acsnano.0c02439. PubMed DOI
Wang M., Fu A., Hu B., Tong Y., Liu R., Liu Z., Gu J., Xiang B., Liu J., Jiang W., et al. Nanopore Targeted Sequencing for the Accurate and Comprehensive Detection of SARS-CoV-2 and Other Respiratory Viruses. Small. 2020;16:e2002169. doi: 10.1002/smll.202002169. PubMed DOI PMC
Chauhan G., Madou M.J., Kalra S., Chopra V., Ghosh D., Martinez-Chapa S.O. Nanotechnology for COVID-19: Thera-peutics and vaccine research. ACS Nano. 2020;14:7760–7782. doi: 10.1021/acsnano.0c04006. PubMed DOI
Hanney S.R., Wooding S., Sussex J., Grant J. From COVID-19 research to vaccine application: Why might it take 17 months not 17 years and what are the wider lessons? Health Res Policy Syst. 2020;18:1–10. doi: 10.1186/s12961-020-00571-3. PubMed DOI PMC
Davis M.M., Butchart A.T., Wheeler J.R., Coleman M.S., Singer D.C., Freed G.L. Failure-to-success ratios, transition probabilities and phase lengths for prophylactic vaccines versus other pharmaceuticals in the development pipeline. Vaccine. 2011;29:9414–9416. doi: 10.1016/j.vaccine.2011.09.128. PubMed DOI
Pronker E.S., Weenen T.C., Commandeur H., Claassen E.H.J.H.M., Osterhaus A.D.M.E. Risk in vaccine research and de-velopment quantified. PLoS ONE. 2013;8:e57755. doi: 10.1371/journal.pone.0057755. PubMed DOI PMC
Struck M.-M. Vaccine R&D success rates and development times. Nat. Biotechnol. 1996;14:591–593. doi: 10.1038/nbt0596-591. PubMed DOI
Watanabe Y., Mendonça L., Allen E.R., Howe A., Lee M., Allen J.D., Chawla H., Pulido D., Donnellan F., Davies H., et al. Native-like SARS-CoV-2 Spike Glycoprotein Expressed by ChAdOx1 nCoV-19/AZD1222 Vaccine. ACS Central Sci. 2021;7:594–602. doi: 10.1021/acscentsci.1c00080. PubMed DOI PMC
European Medicine Agency . COVID-19 Vaccine AstraZeneca. European Medicine Agency; Amsterdam, The Netherlands: 2021.
Logunov D.Y., Dolzhikova I.V., Zubkova O.V., I Tukhvatullin A., Shcheblyakov D.V., Dzharullaeva A.S., Grousova D.M., Erokhova A.S., Kovyrshina A.V., Botikov A.G., et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396:887–897. doi: 10.1016/S0140-6736(20)31866-3. PubMed DOI PMC
Sputnik-The First Registered Vaccine Against COVID-19. [(accessed on 21 June 2021)]. Available online: https://sputnikvaccine.com/
WHO . Status of COVID-19 Vaccines within WHO EUL/PQ Evaluation Process. WHO; Geneva, Switzerland: 2021.
USFDA . USFDA Fact Sheet for Recipients and Caregivers: Emergency Use Authorization (EUA) of the Moderna Covid-19 Vaccine to Prevent Coronavirus Disease 2019 (Covid-19) In Individuals 18 Years Of Age And Older. USFDA; Silver Spring, MD, USA: 2021.
WHO . COVID-19 Vaccine (Vero Cell), Inactivated (Sinopharm), COVID-19 Vaccine Explainer. WHO; Geneva, Switzerland: 2021.
Vijayan V., Mohapatra A., Uthaman S., Park I.-K. Recent Advances in Nanovaccines Using Biomimetic Immunomodulatory Materials. Pharmaceutics. 2019;11:534. doi: 10.3390/pharmaceutics11100534. PubMed DOI PMC
Lung P., Yang J., Li Q. Nanoparticle formulated vaccines: Opportunities and challenges. Nanoscale. 2020;12:5746–5763. doi: 10.1039/C9NR08958F. PubMed DOI
Espeseth A.S., Cejas P.J., Citron M.P., Wang D., DiStefano D.J., Callahan C., Donnell G.O., Galli J.D., Swoyer R., Touch S., et al. Modifed mRNA/lipid nanoparticle-based vaccines ex-pressing respira tory syncytial virus F protein variants are immunogenic and protective in rodent models of RSV infection. NPJ Vaccines. 2020;16:16. PubMed PMC
Sampat B.N., Shadlen K.C. The COVID-19 Innovation System. Health Aff. 2021;40:400–409. doi: 10.1377/hlthaff.2020.02097. PubMed DOI
CEPI (Coalition for Epidemic Preparedness Innovations) CEPI-Survey of Global Drug Substance and Drug Product Landscape June 2020. CEPI; Oslo, Norway: 2020.
Khamsi R. If a coronavirus vaccine arrives, can the world make enough? Nature. 2020;580:578–580. doi: 10.1038/d41586-020-01063-8. PubMed DOI
Hill B.D., Zak A., Khera E., Wen F., Hill A.Z.B.D. Engineering Virus-like Particles for Antigen and Drug Delivery. Curr. Protein Pept. Sci. 2017;19:112–127. doi: 10.2174/1389203718666161122113041. PubMed DOI
Pushko P., Pumpens P., Grens E. Development of Virus-Like Particle Technology from Small Highly Symmetric to Large Complex Virus-Like Particle Structures. Intervirology. 2013;56:141–165. doi: 10.1159/000346773. PubMed DOI
Bayer M.E., Blumberg B.S., Werner B. Particles associated with Australia Antigen in the Sera of Patients with Leukaemia, Down’s Syndrome and Hepatitis. Nature. 1968;218:1057–1059. doi: 10.1038/2181057a0. PubMed DOI
Mohsen M.O., Gomes A.C., Vogel M., Bachmann M.F. Interaction of Viral Capsid-Derived Virus-Like Particles (VLPs) with the Innate Immune System. Vaccines. 2018;6:37. doi: 10.3390/vaccines6030037. PubMed DOI PMC
Silva A.L., Peres C., Conniot J., de Matos A.I.N., Moura L., Carreira B., Sainz V., Scomparin A., Satchi-Fainaro R., Préat V., et al. Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Semin. Immunol. 2017;34:3–24. doi: 10.1016/j.smim.2017.09.003. PubMed DOI
Latham T., Galarza J.M. Formation of wild-type and chimeric infuenza virus-like particles following simultaneous expres-sion of only four structural proteins. J. Virol. 2001;75:6154–6165. doi: 10.1128/JVI.75.13.6154-6165.2001. PubMed DOI PMC
Sailaja G., Skountzou I., Quan F.-S., Compans R.W., Kang S.-M. Human immunodeficiency virus-like particles activate multiple types of immune cells. Virology. 2007;362:331–341. doi: 10.1016/j.virol.2006.12.014. PubMed DOI PMC
Le D.T., Radukic M.T., Müller K.M. Adeno-associated virus capsid protein expression in Escherichia coli and chemically defned capsid assembly. Sci. Rep. 2019;9:18631. doi: 10.1038/s41598-019-54928-y. PubMed DOI PMC
Joe C.C., Chatterjee S., Lovrecz G., Adams T.E., Thaysen-Andersen M., Walsh R., Locarnini S.A., Smooker P., Netter H.J. Glycoengineered hepatitis B virus-like particles with enhanced immunogenicity. Vaccine. 2020;38:3892–3901. doi: 10.1016/j.vaccine.2020.03.007. PubMed DOI
Zhai L., Yadav R., Kunda N.K., Anderson D., Bruckner E., Miller E.K., Basu R., Muttil P., Tumban E. Oral immunization with bacteriophage MS2-L2 VLPs protects against oral and genital infection with multiple HPV types associated with head & neck cancers and cervical cancer. Antivir. Res. 2019;166:56–65. doi: 10.1016/j.antiviral.2019.03.012. PubMed DOI PMC
Shiri F., Petersen K.E., Romanov V., Zou Q., Gale B.K. Characterization and differential retention of Q beta bacterio-phage virus-like particles using cyclical electrical field–flow fractionation and asymmetrical flow field– flow fractionation. Anal. Bioanal. Chem. 2020;412:1563–1572. doi: 10.1007/s00216-019-02383-z. PubMed DOI
Jeong H., Seong B.L. Exploiting virus-like particles as innovative vaccines against emerging viral infections. J. Microbiol. 2017;55:220–230. doi: 10.1007/s12275-017-7058-3. PubMed DOI PMC
Galaway F.A., Stockley P.G. MS2 Viruslike Particles: A Robust, Semisynthetic Targeted Drug Delivery Platform. Mol. Pharm. 2012;10:59–68. doi: 10.1021/mp3003368. PubMed DOI
Kato T., Yui M., Deo V.K., Park E.Y. Development of Rous sarcoma Virus-like Particles Displaying hCC49 scFv for Specific Targeted Drug Delivery to Human Colon Carcinoma Cells. Pharm. Res. 2015;32:3699–3707. doi: 10.1007/s11095-015-1730-2. PubMed DOI
Pang H.H., Chen P.Y., Wei K.C., Huang C.W., Shiue Y.L., Huang C.Y., Yang H.W. Convection-enhanced delivery of a vi-rus-like nanotherapeutic agent with dual-modal imaging for besiegement and eradication of brain tumors. Theranostics. 2019;9:1752–1763. doi: 10.7150/thno.30977. PubMed DOI PMC
Mohsen M.O., Zha L., Cabral-Miranda G., Bachmann M.F. Major findings and recent advances in virus–like particle (VLP)-based vaccines. Semin. Immunol. 2017;34:123–132. doi: 10.1016/j.smim.2017.08.014. PubMed DOI
Li Y.-D., Chi W.-Y., Su J.-H., Ferrall L., Hung C.-F., Wu T.-C. Coronavirus vaccine development: From SARS and MERS to COVID-19. J. Biomed. Sci. 2020;27:104. doi: 10.1186/s12929-020-00695-2. PubMed DOI PMC
Sarkar B., Islam S.S., Zohora U.S., Ullah M.A. Virus like particles—A recent advancement in vaccine development. Korean J. Microbiol. 2019;55:327–343.
Qian C., Liu X., Xu Q., Wang Z., Chen J., Li T., Zheng Q., Yu H., Gu Y., Li S., et al. Recent Progress on the Versatility of Virus-Like Particles. Vaccines. 2020;8:139. doi: 10.3390/vaccines8010139. PubMed DOI PMC
Lokugamage K.G., Yoshikawa-Iwata N., Ito N., Watts D.M., Wyde P.R., Wang N., Newman P., Kent Tseng C.T., Peters C.J., Makino S. Chimeric coronavirus like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV. Vaccine. 2008;26:797–808. doi: 10.1016/j.vaccine.2007.11.092. PubMed DOI PMC
Liu Y.V., Massare M.J., Barnard D.L., Kort T., Nathan M., Wang L., Smith G. Chimeric severe acute respiratory syn-drome coronavirus (SARS-CoV) S glycoprotein and infuenza matrix 1 efficiently form virus-like particles (VLPs) that pro-tect mice against challenge with SARS-CoV. Vaccine. 2011;29:6606–6613. doi: 10.1016/j.vaccine.2011.06.111. PubMed DOI PMC
VBI VACCINES . VBI-2901: Pan-Coronavirus Vaccine Candidate Overview. VBI VACCINES; Cambridge, MA, USA: 2020.
Murphy J., Vallières F., Bentall R.P., Shevlin M., McBride O., Hartman T.K., McKay R., Bennett K., Mason L., Gibson-Miller J., et al. Psychological characteristics associated with COVID-19 vaccine hesitancy and resistance in Ireland and the United Kingdom. Nat. Commun. 2021;12:29. doi: 10.1038/s41467-020-20226-9. PubMed DOI PMC
Pomares T.D., Buttenheim A.M., Amin A.B., Joyce C.M., Porter R.M., Bednarczyk R.A., Omer S.B. Association of cogni-tive biases with human papillomavirus vaccine hesitancy: A cross-sectional study. Hum. Vaccines Immunother. 2020;16:1018–1023. doi: 10.1080/21645515.2019.1698243. PubMed DOI PMC
Wismans A., Thurik R., Baptista R., Dejardin M., Janssen F., Franken I. Psychological characteristics and the mediating role of the 5C Model in explaining students’ COVID-19 vaccination intention. PLoS ONE. 2021;16:e0255382. doi: 10.1371/journal.pone.0255382. PubMed DOI PMC
Sallam M. COVID-19 Vaccine Hesitancy Worldwide: A Concise Systematic Review of Vaccine Acceptance Rates. Vaccines. 2021;9:160. doi: 10.3390/vaccines9020160. PubMed DOI PMC
Ebrahimi O.V., Johnson M.S., Ebling S., Amundsen O.M., Halsøy O., Hoffart A., Skjerdingstad N., Johnson S.U. Risk, Trust, and Flawed Assumptions: Vaccine Hesitancy During the COVID-19 Pandemic. Front. Public Health. 2021;9:700213. doi: 10.3389/fpubh.2021.700213. PubMed DOI PMC
Guidry J.P., Laestadius L.I., Vraga E.K., Miller C.A., Perrin P.B., Burton C.W., Ryan M., Fuemmeler B.F., Carlyle K.E. Willingness to get the COVID-19 vaccine with and without emergency use authorization. Am. J. Infect. Control. 2020;49:137–142. doi: 10.1016/j.ajic.2020.11.018. PubMed DOI PMC
Solís Arce J.S., Warren S.S., Meriggi N.F., Scacco A., McMurry N., Voors M., Omer S.B. COVID-19 vaccine ac-ceptance and hesitancy in low-and middle-income countries. Nat. Med. 2021;27:1385–1394. doi: 10.1038/s41591-021-01454-y. PubMed DOI PMC
Xiao Q., Liu X., Wang R., Mao Y., Chen H., Li X., Liu X., Dai J., Gao J., Fu H., et al. Predictors of Willingness to Receive the COVID-19 Vaccine after Emergency Use Authorization: The Role of Coping Appraisal. Vaccines. 2021;9:967. doi: 10.3390/vaccines9090967. PubMed DOI PMC