Can manipulation of gut microbiota really be transformed into an intervention strategy for cardiovascular disease management?

. 2021 Dec ; 66 (6) : 897-916. [epub] 20211026

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34699042
Odkazy

PubMed 34699042
DOI 10.1007/s12223-021-00926-5
PII: 10.1007/s12223-021-00926-5
Knihovny.cz E-zdroje

Recent advancement in manipulation techniques of gut microbiota either ex vivo or in situ has broadened its plausible applicability for treating various diseases including cardiovascular disease. Several reports suggested that altering gut microbiota composition is an effective way to deal with issues associated with managing cardiovascular diseases. However, actual translation of gut microbiota manipulation-based techniques into cardiovascular-therapeutic approach is still questionable. This review summarized the evidence on challenges, opportunities, recent development, and future prospects of gut microbiota manipulation for targeting cardiovascular diseases. Initially, issues associated with current cardiovascular diseases treatment strategy, association of gut microbiota with cardiovascular disease, and its influence on cardiovascular drugs were discussed, followed by applicability of gut microbiota manipulation as a cardiovascular disease intervention strategy along with its challenges and future prospects. Despite the fact that the gut microbiota is rugged, interventions like probiotics, prebiotics, synbiotics, fecal microbiota transplantation, fecal virome transplantation, antibiotics, diet changes, and exercises could manipulate it. Advanced techniques like administration of engineered bacteriophages and bacteria could also be employed. Intensive exploration revealed that if sufficiently controlled approach and proper monitoring were applied, gut microbiota could provide a compelling answer for cardiovascular therapy.

Zobrazit více v PubMed

Abegunde DO, Mathers CD, Adam T et al (2007) The burden and costs of chronic diseases in low-income and middleincome countries. Lancet 370(9603):1929–1938. https://doi.org/10.1016/S0140-6736(07)61696-1 PubMed DOI

Adar T, Ben Ya’acov A, Lalazar G et al (2012) Oral administration of immunoglobulin G-enhanced colostrum alleviates insulin resistance and liver injury and is associated with alterations in natural killer T cells. Clin Exp Immunol 167:252–260 PubMed DOI PMC

Adusumalli S, Ferd P, Murray S et al (2016) Development of a novel electronic preventative cardiology decision aid [abstract 143]. Circ Cardiovasc Qual Outcomes 9(suppl 2):A143

Alexander JL, Wilson ID, Teare J et al (2017) Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 14:356–365. https://doi.org/10.1038/nrgastro.2017.20 PubMed DOI

Aljuraiban GS, Griep LM, Chan Q et al (2015) Total, insoluble and soluble dietary fibre intake in relation to blood pressure: the INTERMAP Study. Br J Nutr 114:1480–1486. https://doi.org/10.1136/bmj.f6879 PubMed DOI PMC

Allen JM, Mailing LJ, Cohrs J et al (2018a) Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut Microbes 9:115–130 PubMed DOI

Allen JM, Mailing LJ, Niemiro GM et al (2018b) Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc 50:747–757 PubMed DOI

Anhê FF, Roy D, Pilon G et al (2015) A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64:872–883. https://doi.org/10.1136/gutjnl-2014-307142 PubMed DOI

Ashrafian H, Li JV, Spagou K et al (2014) Bariatric surgery modulates circulating and cardiac metabolites. J Proteome Res 13:570–580 PubMed DOI

Azad MB, Konya T, Maughan H et al (2013) Gut microbiota of healthy canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 185:385–394. https://doi.org/10.1503/cmaj.121189 PubMed DOI PMC

Badal V, Wright D, Kastis Y et al (2019) Challenges in the construction of knowledge bases for human microbiome-disease associations. Microbiome 7:129–215. https://doi.org/10.1186/s40168-019-0742-2 PubMed DOI PMC

Bai J, Hu Y, Bruner DW (2019) Composition of gut microbiota and its association with body mass index and lifestyle factors in a cohort of 7–18 years old children from the American gut project. Pediatr Obes 14:e12480. https://doi.org/10.1111/ijpo.12480 PubMed DOI

Bartolomaeus H, Balogh A, Yakoub M et al (2019) Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation 139:1407–1421. https://doi.org/10.1161/CIRCULATIONAHA.118.036652 PubMed DOI

Battistoni A, Ammendola S, Chiancone E et al (2017) A novel antimicrobial approach based on the inhibition of zinc uptake in Salmonella enterica. Future Med Chem 9:899–910. https://doi.org/10.4155/fmc-2017-0042 PubMed DOI

Beaglehole R, Bonita R (2008) Global public health: a scorecard. Lancet 372(9654):1988–1996. https://doi.org/10.1016/S0140-6736(08)61558-5 PubMed DOI

Brodala N, Merricks EP, Bellinger DA et al (2005) Porphyromonas gingivalis bacteremia induces coronary and aortic atherosclerosis in normocholesterolemic and hypercholesterolemic Pigs. Arterioscler Thromb Vasc Biol 25:1446–1451. https://doi.org/10.1161/01.ATV.0000167525.69400.9c PubMed DOI

Brown JM, Hazen SL (2015) The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu Rev Med 66:343–359. https://doi.org/10.1146/annurev-med-060513-093205 PubMed DOI PMC

Brown JM, Hazen SL (2018) Microbial modulation of cardiovascular disease. Nat Rev Microbiol 16:171–181 PubMed DOI PMC

Buffie CG, Bucci V, Stein RR et al (2015) Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517:205–208. https://doi.org/10.1038/nature13828 PubMed DOI

Butel M, Suau A, Campeotto F et al (2007) Conditions of bifidobacterial colonization in preterm infants: a prospective analysis. J Pediatr Gastroenterol Nutr 44:577–582. https://doi.org/10.1097/MPG.0b013e3180406b20 PubMed DOI

Caesar R, Nygren H, Orešič M et al (2016) Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism. J Lipid Res 57:474–481. https://doi.org/10.1194/jlr.M065847 PubMed DOI PMC

Calandrini CA, Ribeiro AC, Gonnelli AC et al (2014) Microbial composition of atherosclerotic plaques. Oral Dis 20:e128–e134. https://doi.org/10.1111/odi.12205 PubMed DOI

Cani PD (2018) Current insights and challenges when studying the human gut microbiome. Gut Microbiota for Health.  https://www.gutmicrobiotaforhealth.com/en/current-insights-and-challengeswhenstudying-the-human-gut-microbiome/ . Accessed September 18, 2020.

Carmody RN, Turnbaugh PJ (2014) Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J Clin Invest 124:4173–4181. https://doi.org/10.1172/JCI72335 PubMed DOI PMC

Centers for Disease Control and Prevention (2016) High blood pressure fact sheet. https://www.cdc.gov/dhdsp/data_statistics/fact_sheets/fs_bloodpressure . htm. Accessed September 8, 2020

Centers for Medicare & Medicaid Services (2018) Million Hearts®: cardiovascular disease risk reduction model. https://innovation.cms.gov/initiatives/Million-Hearts-CVDRRM/ . (accessed September 8, 2020)

Cerasi M, Ammendola S, Battistoni A (2013) Competition for zinc binding in the host-pathogen interaction. Front Cell Infect Microbiol 3:108 PubMed DOI PMC

Cerdo TA, Ruiz JA, Acuna I et al (2018) Gut microbial functional maturation and succession during human early life. Environ Microbiol 20:2160–2177. https://doi.org/10.1111/1462-2920.14235

Chan YK, Brar MS, Kirjavainen PV et al (2016) High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE(-/-) mice. BMC Microbiol 16:264. https://doi.org/10.1186/s12866-016-0883-4 PubMed DOI PMC

Charach G, Rabinovich A, Argov O et al (2012) The role of bile acid excretion in atherosclerotic coronary artery disease. Int J Vasc Med:949672. https://doi.org/10.1155/2012/949672

Chen K, Zheng X, Feng M et al (2017) Gut microbiota-dependent metabolite trimethylamine N-oxide contributes to cardiac dysfunction in western diet-induced obese mice. Front Physiol 8:139. https://doi.org/10.3389/fphys.2017.00139 PubMed DOI PMC

Chen Z, Guo L, Zhnag Y et al (2014) Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest 124:3391–3406. https://doi.org/10.1172/JCI72517 PubMed DOI PMC

Cho I, Yamanishi S, Cox L et al (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nat 488:621–626. https://doi.org/10.1038/nature11400 DOI

Cicero AFG, Colletti A, Bajraktari G et al (2017) Lipid-lowering nutraceuticals in clinical practice: position paper from an international lipid expert panel. Nutr Rev 75:731–767. https://doi.org/10.5114/aoms.2017.69326 PubMed DOI

Clemente JC, Ursell LK, Parfrey LW et al (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270. https://doi.org/10.1016/j.cell.2012.01.035 PubMed DOI PMC

Coker OO, Nakatsu G, Dai RZ et al (2019) Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut 68:654–662. https://doi.org/10.1136/gutjnl-2018-317178 PubMed DOI

Connolly ML, Tuohy KM, Lovegrove JA (2012) Wholegrain oat-based cereals have prebiotic potential and low glycaemic index. Br J Nutr 108:2198–2206. https://doi.org/10.1017/S0007114512000281 PubMed DOI

Conraads VM, Jorens PG, De Clerck LS et al (2004) Selective intestinal decontamination in advanced chronic heart failure: a pilot trial. Eur J Heart Fail 6(4):483–491 PubMed DOI

Costea PI, Zeller G, Sunagawa S et al (2017) Towards standards for human fecal sample processing in metagenomic studies. Nat Biotechnol 35:1069–1076. https://doi.org/10.1038/nbt.3960 PubMed DOI

Cullen KA, Ambrose BK, Gentzke AS et al (2018) Notes from the field: use of electronic cigarettes and any tobacco product among middle and high school students-United States, 2011–2018. MMWR 67:1276–1277. https://doi.org/10.15585/mmwr.mm6745a5

Danaei G, Ding EL, Mozaffarian D et al (2009) The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med 6:e1000058. https://doi.org/10.1371/journal.pmed.1000058 PubMed DOI PMC

David L, Materna AC, Friedman J et al (2014) Host lifestyle affects human microbiota on daily timescales. Genome Biol 15:R89. https://doi.org/10.1186/gb-2014-15-7-r89 PubMed DOI PMC

De Santis S, Cavalcanti E, Mastronardi M et al (2015) Nutritional keys for intestinal barrier modulation. Front Immunol 6:612. https://doi.org/10.3389/fimmu.2015.00612 PubMed DOI PMC

Dethlefsen L, Huse S, Sogin ML et al (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:2383–2400 DOI

Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 108:4554–4561 PubMed DOI

Donia MS, Fischbach MA (2015) HUMAN MICROBIOTA. Small molecules from the human microbiota. Science 349:1254766. https://doi.org/10.1126/science.1254766

Doursout M-F, Horton H, Hoang L et al (2013) Lactoferrin moderates LPS induced hypotensive response and gut injury in rats. Int Immunopharmacol 15:227–231 PubMed DOI

Balogh EP, Miller BT, Ball JR (2015) National Academies of Sciences, Engineering, and Medicine. Improving diagnosis in health care. Washington, DC: National Academies Press. https://doi.org/10.17226/21794

Einstein AJ, Berman DS, Min JK et al (2014) Patient-centered imaging: shared decision making for cardiac imaging procedures with exposure to ionizing radiation. J Am Coll Cardiol 63:1480–1489. https://doi.org/10.1016/j.jacc.2013.10.092 PubMed DOI PMC

ElRakaiby M, Dutilh BE, Rizkallah MR et al (2014) Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics. OMICS 18:402–414. https://doi.org/10.1089/omi.2014.0018 PubMed DOI PMC

Estruch R, Ros E, Salas-Salvado J et al (2018) Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 378:e34. https://doi.org/10.1056/NEJMoa1800389 PubMed DOI

Ettinger G, MacDonald K, Reid G et al (2014) The influence of the human microbiome and probiotics on cardiovascular health. Gut Microbes 5:719–728. https://doi.org/10.4161/19490976.2014.983775 PubMed DOI PMC

Fava F, Lovegrove JA, Gitau R et al (2006) The gut microbiota and lipid metabolism: implications for human health and coronary heart disease. Curr Med Chem 13:3005–3021. https://doi.org/10.2174/092986706778521814 PubMed DOI

Ferguson JF, Allayee H, Gerszten RE, et al (2016) American Heart Association Council on Functional Genomics and Translational Biology, Council on Epidemiology and Prevention, and Stroke Council. Nutrigenomics, the microbiome, and gene-environment interactions: new directions in cardiovascular disease research, prevention, and treatment: a scientific statement from the American Heart Association. Circ Cardiovasc Genet 9:291–313. https://doi.org/10.1161/HCG.0000000000000030

Fox MA, Peterson S, Fabri BM et al (1991) Selective decontamination of the digestive tract in cardiac surgical patients. Crit Care Med 19(12):1486–1490 PubMed DOI

Franzen KF, Willig J, Talavera SC et al (2018) E-cigarettes and cigarettes worsen peripheral and central hemodynamics as well as arterial stiffness: a randomized, double-blinded pilot study. Vasc Med 23:419–425. https://doi.org/10.1177/1358863X18779694) PubMed DOI

Fu J, Bonder MJ, Cenit MC et al (2015) The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res 117:817–824. https://doi.org/10.1161/CIRCRESAHA.115.306807 PubMed DOI PMC

Fu ZD, Cui JY, Klaassen CD et al (2014) Atorvastatin induces bile acid-synthetic enzyme Cyp7a1 by suppressing FXR signaling in both liver and intestine in mice. J Lipid Res 55:2576–2586. https://doi.org/10.1194/jlr.M053124 PubMed DOI PMC

Fujii H, Nishijima F, Goto S et al (2009) Oral charcoal adsorbent (AST-120) prevents progression of cardiac damage in chronic kidney disease through suppression of oxidative stress. Nephrol Dial Transplant 24:2089–2095 PubMed DOI

Gallo A, Passaro G, Gasbarrini A et al (2016) Modulation of microbiota as treatment for intestinal inflammatory disorders: an uptodate. World J Gastroenterol 22:7186–7202. https://doi.org/10.3748/wjg.v22.i32.7186 PubMed DOI PMC

Gan XT, Ettinger G, Huang CX et al (2014) Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail 7:491–499. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000978 PubMed DOI

Gaulke CA, Rolshoven J, Wong CP et al (2018) Marginal zinc deficiency and environmentally relevant concentrations of arsenic elicit combined effects on the gut microbiome. mSphere 3:e00521–18. https://doi.org/10.1128/mSphere.00521-18

Givens RC, Dardas T, Clerkin KJ et al (2015) Outcomes of multiple listing for adult heart transplantation in the United States. JACC Heart Fail 3:933–941. https://doi.org/10.1016/j.jchf.2015.07.012 PubMed DOI PMC

Government Accountability Office (2018) Access to Health Care for Low-Income Adults in States With and Without Expanded Eligibility. Washington, DC: Government Accountability Office. https://www.gao.gov/assets/700/694489.pdf . Accessed September 8, 2020

Grice EA, Segre JA (2012) The human microbiome: our second genome. Annu Rev Genomics Hum Genet 13:151–170. https://doi.org/10.1146/annurev-genom-090711-163814 PubMed DOI PMC

Haghikia A, Li XS, Liman TG et al (2018) Gut Microbiota-dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol 38:2225–2235. https://doi.org/10.1161/ATVBAHA.118.311023 PubMed DOI PMC

Haiser HJ, Gootenberg DB, Chatman K et al (2013) Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341:295–298. https://doi.org/10.1126/science.1235872 PubMed DOI PMC

Haiser HJ, Turnbaugh PJ (2013) Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res 69:21–31. https://doi.org/10.1016/j.phrs.2012.07.009 PubMed DOI

Halkjær SI, Christensen AH, Lo BZS et al (2018) Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study. Gut 67:2107–2115. https://doi.org/10.1136/gutjnl-2018-316434 PubMed DOI

Hayanga AJ, Aboagye J, Kaiser HE et al (2014) (2014) Racial disparities in wait-list outcomes for heart re-trans-plantation in the United States. J Am Coll Surgeons 219:e69. https://doi.org/10.1016/j.jamcollsurg.2014.07.566 DOI

He M, Shi B (2017) Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci 7:54. https://doi.org/10.1186/s13578-017-0183-1 PubMed DOI PMC

Hendijani F, Akbari V (2018) Probiotic supplementation for management of cardiovascular risk factors in adults with type II diabetes: a systematic review and meta-analysis. Clin Nutr 37:532–541. https://doi.org/10.1016/j.clnu.2017.02.015 PubMed DOI

Himmelfarb CRD, Koirala B, Coke LA (2018) Shared decision making: partnering with patients to improve cardiovascular care and outcomes. J Cardiovasc Nurs 33:301–303. https://doi.org/10.1097/JCN.0000000000000506 DOI

Holbrook AM, Pereira JA, Labiris R et al (2005) Systematic overview of warfarin and its drug and food interactions. Arch Intern Med 165:1095–1106. https://doi.org/10.1001/archinte.165.10.1095 PubMed DOI

Hsu BB, Plant IN, Lyon L et al (2020) In situ reprogramming of gut bacteria by oral delivery. Nat Commun 11:5030. https://doi.org/10.1038/s41467-020-18614-2 PubMed DOI PMC

Hu XF, Zhang WY, Wen Q et al (2019) Fecal microbiota transplantation alleviates myocardial damage in myocarditis by restoring the microbiota composition. Pharmacol Res 139:412–421. https://doi.org/10.1016/j.phrs.2018.11.042 PubMed DOI

Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207 DOI

Ilan Y (2012) Leaky gut and the liver: a role for bacterial translocation in nonalcoholic steatohepatitis. WJG 18:2609–2618 PubMed DOI PMC

Dalen JE, Alpert JS, Goldberg RJ et al (2014) The epidemic of the 20(th) century: coronary heart disease. Am J Med 127:807–812. https://doi.org/10.1016/j.amjmed.2014.04.015 PubMed DOI

Hibbard JH, Greene J (2013) What the evidence shows about patient activation: better health outcomes and care experiences; fewer data on costs. Health Aff (millwood) 32:207–214. https://doi.org/10.1377/hlthaff.2012.1061 DOI

Jackevicius CA, Li P, Tu JV (2008) Prevalence, predictors, and outcomes of primary nonadherence after acute myocardial infarction. Circulation 117:1028–1036. https://doi.org/10.1161/CIRCULATIONAHA.107.706820 PubMed DOI

Jackson MA, Verdi S, Maxan ME et al (2018) Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat Commun 9:2655. https://doi.org/10.1038/s41467-018-05184-7 PubMed DOI PMC

Jakobsson HE, Jernberg C, Andersson AF et al (2010) Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE 5:e9836. https://doi.org/10.1371/journal.pone.0009836 PubMed DOI PMC

Jamal A, Phillips E, Gentzke AS et al (2018) Current cigarette smoking among adults-United States, 2016. MMWR 67:53–59. https://doi.org/10.15585/mmwr.mm6702a1

Jie Z, Xia H, Zhong SL et al (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8:845. https://doi.org/10.1038/s41467-017-00900-1

Jones BV, Begley M, Hill C et al (2008) Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci USA 105:13580–13585. https://doi.org/10.1073/pnas.0804437105 PubMed DOI PMC

Jones ML, Martoni CJ, Prakash S (2012) Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur J Clin Nutr 66:1234–1241. https://doi.org/10.1038/ejcn.2012.126 PubMed DOI

Joyce DL, Conte JV, Russell SD et al (2009) Disparities in access to left ventricular assist device therapy. J Surg Res 152:111–117. https://doi.org/10.1016/j.jss.2008.02.065 PubMed DOI

Joyce SA, MacSharry J, Casey PG et al (2014) Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci USA 111:7421–7426. https://doi.org/10.1073/pnas.1323599111 PubMed DOI PMC

Kaddurah-Daouk R, Baillie RA, Zhu H et al (2011) Enteric microbiome metabolites correlate with response to simvastatin treatment. PLoS ONE 6:e25482. https://doi.org/10.1371/journal.pone.0025482 PubMed DOI PMC

Kallio KAE, Hätönen KA, Lehto M et al (2015) Endotoxemia, nutrition, and cardiometabolic disorders. Acta Diabetol 52:395–404. https://doi.org/10.1007/s00592-014-0662-3 PubMed DOI

Karlsson FH, Fåk F, Nookaew I et al (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 1245:3. https://doi.org/10.1038/ncomms2266 DOI

Karlsson FH, Tremaroli V, Nookaew I et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103. https://doi.org/10.1038/nature12198 PubMed DOI

Kasahara K, Tanoue T, Yamashita T et al (2017) Commensal bacteria at the crossroad between cholesterol homeostasis and chronic inflammation in atherosclerosis. J Lipid Res 58:519–528. https://doi.org/10.1194/jlr.M072165 PubMed DOI PMC

Kassaian N, Feizi A, Aminorroaya A et al (2019) Probiotic and symbiotic supplementation could improve metabolic syndrome in prediabetic adults: a randomized controlled trial. Diabetes Metab Syndr 13(5):2991–2996. https://doi.org/10.1016/j.dsx.2018.07.016 PubMed DOI

Khan MY, Dirweesh A, Khurshid T et al (2018a) Comparing fecal microbiota transplantation to standard-of-care treatment for recurrent Clostridium difficile infection: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 30:1309–1317. 2018 Nov;30(11):1309–1317

Khan TJ, Ahmed YM, Zamzami MA et al (2018b) Atorvastatin treatment modulates the gut microbiota of the hypercholesterolemic patients. OMICS 22:154–163. https://doi.org/10.1089/omi.2017.0130 PubMed DOI

Khan TJ, Ahmed YM, Zamzami MA et al (2018c) Effect of atorvastatin on the gut microbiota of high fat diet-induced hypercholesterolemic rats. Sci Rep 8:662. https://doi.org/10.1038/s41598-017-19013-2 PubMed DOI PMC

Kiechl S, Willeit J (2019) In a nutshell: findings from the Bruneck study. Gerontology 65:9–19 PubMed DOI

Kim DH (2015) Gut microbiota-mediated drug-antibiotic interactions. Drug Metab Dispos 43:1581–1589. https://doi.org/10.1124/dmd.115.063867 PubMed DOI

Koeth RA, Wang Z, Levison BS et al (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585. https://doi.org/10.1038/nm.3145 PubMed DOI PMC

Konstantinov SR, Peppelenbosch MP (2013) Fecal microbiota transfer may increase irritable bowel syndrome and inflammatory bowel diseases–associated bacteria. Gastroenterology 144:e19–e20. https://doi.org/10.1053/j.gastro.2012.12.040 PubMed DOI

Kootte RS, Vrieze A, Holleman F et al (2012) The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diab Obes Metab 14:112–120. https://doi.org/10.1111/j.1463-1326.2011.01483.x DOI

Koren O, Spor A, Felin J et al (2011) Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA 108:(suppl 1)4592–4598. https://doi.org/10.1073/pnas.1011383107

Kramer CD, Simas AM, He X et al (2017) Distinct roles for dietary lipids and Porphyromonas gingivalis infection on atherosclerosis progression and the gut microbiota. Anaerobe 45:19–30. https://doi.org/10.1016/j.anaerobe.2017.04.011 PubMed DOI PMC

Lam V, Su J, Hsu A et al (2016) Intestinal microbiota metabolites are linked to severity of myocardial infarction in rats. PLoS ONE 11(8):e0160840. https://doi.org/10.1371/journal.pone.0160840 PubMed DOI PMC

Lam V, Su J, Koprowski S et al (2012) Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 26(4):1727–1735. https://doi.org/10.1096/fj.11-197921 PubMed DOI PMC

Lambert JE, Myslicki JP, Bomhof MR et al (2015) Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab 40:749–752 PubMed DOI

Lane MA, Zeringue A, McDonald JR et al (2014) Serious bleeding events due to warfarin and antibiotic co-prescription in a cohort of veterans. Am J Med 127:657-663.e2. https://doi.org/10.1016/j.amjmed.2014.01.044 PubMed DOI PMC

Lansberg P, Lee A, Lee ZV et al (2018) Nonadherence to statins: individualized intervention strategies outside the pill box. Vasc Health Risk Manag 14:91–102. https://doi.org/10.2147/VHRM.S158641 PubMed DOI PMC

Lanter BB, Sauer K, Davies DG (2014) Bacteria present in carotid arterial plaques are found as biofilm deposits which may contribute to enhanced risk of plaque rupture. Mbio 5:e01206–e01214. https://doi.org/10.1128/mBio.01206-14 PubMed DOI PMC

LaPointe J (2018) Palliative care reduces hospital costs by over $3k per patient. RevCycleIntelligence. https://revcycleintelligence.com/news/palliativecare-reduces-hospital-costs-by-over-3k-per-patient . Accessed September 18, 2020

Larsson E, Tremaroli V, Lee YS et al (2012) Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut 61:1124–1131. https://doi.org/10.1136/gutjnl-2011-301104 PubMed DOI

LeBlanc JG, Chain F, Martín R et al (2017) Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact 16:79. https://doi.org/10.1186/s12934-017-0691-z PubMed DOI PMC

Li L, Zhong S, Cheng B et al (2020) Cross-Talk between Gut Microbiota and the Heart: A New Target for the Herbal Medicine Treatment of Heart Failure? Evid Based Complement Alternat Med 2020:9097821. https://doi.org/10.1155/2020/9097821 PubMed DOI PMC

Li XS, Obeid S, Klingenberg R et al (2017) Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 38:814–824. https://doi.org/10.1093/eurheartj/ehw582 PubMed DOI PMC

Liang X, Bittinger K, Li X et al (2015) Bidirectional interactions between indomethacin and the murine intestinal microbiota. Elife 4:e08973. https://doi.org/10.7554/eLife.08973 PubMed DOI PMC

Lin GA, Fagerlin A (2014) Shared decision making: state of the science. Circ Cardiovasc Qual Outcomes 7:328–334. https://doi.org/10.1161/CIRCOUTCOMES.113.000322 PubMed DOI

Lindenbaum J, Rund DG, Butler VP Jr et al (1981) Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med 305:789–794. https://doi.org/10.1056/NEJM198110013051403 PubMed DOI

Lira FS, Rosa JC, Pimentel GD et al (2010) Endotoxin levels correlate positively with a sedentary lifestyle and negatively with highly trained subjects. Lipids Health Dis 9:82 PubMed DOI PMC

Liu Y, Song X, Zhou H et al (2018) Gut microbiome associates with lipid-lowering effect of rosuvastatin in vivo. Front Microbiol 9:530. https://doi.org/10.3389/fmicb.2018.00530 PubMed DOI PMC

Liu Z, Liu HY, Zhou H et al (2017) Moderate-intensity exercise affects gut microbiome composition and influences cardiac function in myocardial infarction mice. Front Microbiol 8:1687 PubMed DOI PMC

Lopez AD, Mathers CD, Ezzati M et al (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367(9524):1747–1757. https://doi.org/10.1016/S0140-6736(06)68770-9 PubMed DOI

Lozupone CA, Stombaugh JI, Gordon JI et al (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230. https://doi.org/10.1038/nature11550

Lu L, Wu Y, Zuo L et al (2014) Intestinal microbiome and digoxin inactivation: meal plan for digoxin users. World J Microbiol Biotechnol 30:791–799 PubMed DOI

Lu Y, Feskens EJ, Boer JM et al (2010) The potential influence of genetic variants in genes along bile acid and bile metabolic pathway on blood cholesterol levels in the population. Atherosclerosis 210:14–27. https://doi.org/10.1016/j.atherosclerosis.2009.10.035 PubMed DOI

Mao Z, Lin H, Su W et al (2019) Deficiency of ZnT8 promotes adiposity and metabolic dysfunction by increasing peripheral serotonin production. Diabetes 68:1197–1209. https://doi.org/10.2337/db18-1321 PubMed DOI

Marchbank T, Davison G, Oakes JR et al (2011) The nutriceutical bovine colostrum truncates the increase in gut permeability caused by heavy exercise in athletes. Am J Physiol Gastrointest Liver Physiol 300:G477–G484 PubMed DOI

Marques FZ, Mackay CR, Kaye DM (2018) Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol 15:20–32. https://doi.org/10.1038/nrcardio.2017.120 PubMed DOI

Marques FZ, Nelson E, Chu P-Y et al (2017) High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135:964–977. https://doi.org/10.1161/CIRCULATIONAHA.116.024545 PubMed DOI

Mayr M, Kiechl S, Tsimikas S et al (2006) Oxidized low-density lipoprotein autoantibodies, chronic infections, and carotid atherosclerosis in a population-based study. J Am Coll Cardiol 47:2436–2443. https://doi.org/10.1016/j.jacc.2006.03.024 PubMed DOI

May-Zhang LS, Chen Z, Dosoky NS et al (2019) Administration of N-acyl-phosphatidylethanolamine expressing bacteria to low density lipoprotein receptor-/- mice improves indices of cardiometabolic disease. Sci Rep 9:420. https://doi.org/10.1038/s41598-018-37373-1 PubMed DOI PMC

McClellan M, Brown N, Califf RM, Warner JJ (2019) Call to action: urgent challenges in cardiovascular disease. call to action: urgent challenges in cardiovascular disease: a presidential advisory from the American Heart Association. Circulation 139(9):e44–e54. https://doi.org/10.1161/CIR.0000000000000652

McMillan A, Hazen SL (2019) Gut microbiota involvement in ventricular remodeling post myocardial infarction. Circulation 139(5):660–662 PubMed DOI PMC

Mizrahi M, Shabat Y, Ben Ya’acov A et al (2012) Alleviation of insulin resistance and liver damage by oral administration of Imm124-E is mediated by increased Tregs and associated with increased serum GLP-1 and adiponectin: results of a phase I/II clinical trial in NASH. J Inflamm Res 5:141–150 PubMed PMC

Morshedi M, Saghafi-Asl M, Hosseinifard ES (2020) The potential therapeutic effects of the gut microbiome manipulation by synbiotic containing-Lactobacillus plantarum on neuropsychological performance of diabetic rats. J Transl Med 18:18. https://doi.org/10.1186/s12967-019-02169-y PubMed DOI PMC

Morton J, Sanders J, Quinn RA et al (2017) Balance trees reveal microbial niche differentiation. mSystems 2:e00162–16. https://doi.org/10.1128/mSystems.00162-16

Navar AM, Taylor B, Mulder H et al (2017) Association of prior authorization and out of-pocket costs with patient access to PCSK9 inhibitor therapy. JAMA Cardiol 2:1217–1225. https://doi.org/10.1001/jamacardio.2017.3451 PubMed DOI PMC

Nolan JA, Skuse P, Govindarajan K et al (2017) The influence of rosuvastatin on the gastrointestinal microbiota and host gene expression profiles. Am J Physiol Gastrointest Liver Physiol 312:G488–G497. https://doi.org/10.1152/ajpgi.00149.2016 PubMed DOI

Ordovas JM, Mooser V (2006) Metagenomics: The role of the microbiome in cardiovascular diseases. Curr Opin Lipidol 17:157–161. https://doi.org/10.1097/01.mol.0000217897.75068.ba PubMed DOI

Ott SJ, El Mokhtari NE, Musfeldt M et al (2006) Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 113:929–937. https://doi.org/10.1161/CIRCULATIONAHA.105.579979 PubMed DOI

Cani PD, Plovier H, Van Hul M et al (2016) Endocannabinoids–at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol 12:133–143. https://doi.org/10.1038/nrendo.2015.211 PubMed DOI

Panek M, Paljetak HČ, Barešić A et al (2018) Methodology challenges in studying human gut microbiota - effects of collection, storage, DNA extraction and next generation sequencing technologies. Sci Rep 8:5143–5213. https://doi.org/10.1038/s41598-018-23296-4 PubMed DOI PMC

Papadaki A, Martinez-Gonzalez MA, Alonso-Gomez A et al (2017) Mediterranean diet and risk of heart failure: results from the PREDIMED randomized controlled trial. Eur J Heart Fail 19:1179–1185. https://doi.org/10.1002/ejhf.750 PubMed DOI

Peterson E, Yancy CW (2009) Eliminating racial and ethnic disparities in cardiac care. N Engl J Med 360:1172–1174. https://doi.org/10.1056/NEJMp0810121 PubMed DOI

Petriz BA, Castro AP, Almeida JA et al (2014) Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genom 15:511 DOI

Piya MK, Harte AL, McTernan PG (2013) Metabolic endotoxaemia: is it more than just a gut feeling? Curr Opin Lipidol 24:78–85 PubMed DOI

Podany A, Rauchut J, Wu T et al (2019) Excess dietary zinc intake in neonatal mice causes oxidative stress and alters intestinal host-microbe interactions. Mol Nutr Food Res 63:e1800947. https://doi.org/10.1002/mnfr.201800947 PubMed DOI

Porez G, Prawitt J, Gross B et al (2012) Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J Lipid Res 53:1723–1737. https://doi.org/10.1194/jlr.R024794 PubMed DOI PMC

Prashant A (2017) Global challenges in cardiovascular drug discovery and clinical trials. Mol Biol Open Access 6:1–4. https://doi.org/10.4172/2168-9547.1000193 DOI

Qin J, Li R, Raes J et al (2016) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. https://doi.org/10.1038/nature08821 DOI

Ranjan R, Rani A, Metwally A et al (2016) Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 469:967–977. https://doi.org/10.1016/j.bbrc.2015.12.083 PubMed DOI

Rasmussen TS, Koefoed AK, Jakobsen RR et al (2020) Bacteriophage-mediated manipulation of the gut microbiome – promises and presents limitations. FEMS Microbiol Rev 44:507–521. https://doi.org/10.1093/femsre/fuaa020 PubMed DOI

Reed S, Neuman H, Moscovich S et al (2015) Chronic zinc deficiency alters chick gut microbiota composition and function. Nutrients 7:9768–9784. https://doi.org/10.3390/nu7125497 PubMed DOI PMC

Reyes A, Haynes M, Hanson N et al (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466:334–338. https://doi.org/10.1038/nature09199 PubMed DOI PMC

Riehl TE, Alvarado D, Ee X et al (2019) Lactobacillus rhamnosus GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells. Gut 68:1003–1013. https://doi.org/10.1136/gutjnl-2018-316226 PubMed DOI

Ripatti S, Tikkanen E, Orho-Melander M et al (2010) A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet 376:1393–1400. https://doi.org/10.1016/S0140-6736(10)61267-6 PubMed DOI PMC

Roberts AB, Gu X, Buffa JA et al (2018) Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 24:1407–1417. https://doi.org/10.1038/s41591-018-0128-1 PubMed DOI PMC

Rogers MAM, Aronoff DM (2016) The influence of non-steroidal anti-inflammatory drugs on the gut microbiome. Clin Microbiol Infect 22:178.e1-178.e9. https://doi.org/10.1016/j.cmi.2015.10.003 DOI

Rosenfeld ME, Campbell LA (2011) Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb Haemost 106:858–867. https://doi.org/10.1160/TH11-06-0392 PubMed DOI

Saha JR, Butler VP Jr, Neu HC et al (1983) Digoxin-inactivating bacteria: identification in human gut flora. Science 220:325–327. https://doi.org/10.1126/science.6836275 PubMed DOI

Saiful Islam KBM, Fukia S, Hagio M et al (2011) Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141:1773–1781. https://doi.org/10.1053/j.gastro.2011.07.046 DOI

Salami JA, Warraich H, Valero-Elizondo J et al (2017) National trends in statin use and expenditures in the US adult population from 2002 to 2013: insights from the Medical Expenditure Panel Survey. JAMA Cardiol 2:56–65. https://doi.org/10.1001/jamacardio.2016.4700 PubMed DOI

Salami JA, Warraich HJ, Valero-Elizondo J et al (2018) National trends in nonstatin use and expenditures among the US adult population from 2002 to 2013: insights from Medical Expenditure Panel Survey. J Am Heart Assoc 7:e007132. https://doi.org/10.1161/JAHA.117.007132 PubMed DOI PMC

Salminen S, Gibson GR, McCartney AL et al (2004) Influence of mode of delivery on gut microbiota composition in seven year old children. Gut 5:1388–1389. https://doi.org/10.1136/gut.2004.041640 DOI

Schiattarella GG, Sannino A, Toscano E et al (2017) Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J 38:2948–2956. https://doi.org/10.1093/eurheartj/ehx342 PubMed DOI

Schwarz M, Russell DW, Dietschy JM et al (1998) Marked reduction in bile acid synthesis in cholesterol 7alpha-hydroxylase-deficient mice does not lead to diminished tissue cholesterol turnover or to hypercholesterolemia. J Lipid Res 39:1833–1843 PubMed DOI

Selwyn FP, Cui JY, Klaassen CD (2015) RNA-Seq quantification of hepatic drug processing genes in germ-free mice. Drug Metab Dispos 43:1572–1580. https://doi.org/10.1124/dmd.115.063545 PubMed DOI PMC

Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533

Senthong V, Wang Z, Li XS et al (2016) Intestinal microbiota-generated metabolite trimethylamine-N-oxide and 5-year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a COURAGE-like patient cohort. J Am Heart Assoc 5:e002816. https://doi.org/10.1161/JAHA.115.002816 PubMed DOI PMC

Sharma A, Buschmann MM, Gilbert JA et al (2019) Pharmacomicrobiomics: the holy grail to variability in drug response? Clin Pharmacol Ther 106:317–328. https://doi.org/10.1002/cpt.1437 PubMed DOI

Shearer MJ, Newman P (2008) Metabolism and cell biology of vitamin K. Thromb Haemost 100:530–547 PubMed DOI

Shkoporov AN, Hill C (2019) Bacteriophages of the human gut: the “known unknown” of the microbiome. Cell Host Microbe 25:195–209. https://doi.org/10.1016/j.chom.2019.01.017 PubMed DOI

Sousa T, Paterson R, Moore V et al (2008) The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm 363:1–25. https://doi.org/10.1016/j.ijpharm.2008.07.009 PubMed DOI

Spanogiannopoulos P, Bess EN, Carmody RN et al (2016) The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol 14:273–287. https://doi.org/10.1038/nrmicro.2016.17 PubMed DOI PMC

Stepankova R, Tonar Z, Bartova J et al (2010) Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. J Atheroscler Thromb 17:796–804. https://doi.org/10.5551/jat.3285 PubMed DOI

Suzuki H, Kurihara Y, Takeya M et al (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386:292–296. https://doi.org/10.1038/386292a0 PubMed DOI

Takeuchi K, Satoh H (2015) NSAID-induced small intestinal damage–roles of various pathogenic factors. Digestion 91:218–232. https://doi.org/10.1159/00037410 PubMed DOI

Tamburini S, Shen N, Wu HC et al (2016) The microbiome in early life: implications for health outcomes. Nat Med 22:713–722 PubMed DOI

Tang TWH, Chen HC, Chen CY et al (2019a) Loss of gut microbiota alters immune system composition and cripples post infarction cardiac repair. Circulation 139(5):647–659. https://doi.org/10.1161/CIRCULATIONAHA.118.035235 PubMed DOI

Tang WHW, Li DY, Hazen SL et al (2019b) Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol 16:137–154. https://doi.org/10.1038/s41569-018-0108-7 PubMed DOI PMC

Tang WHW, Wang Z, Levison BS et al (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575–1584. https://doi.org/10.1056/NEJMoa1109400 PubMed DOI PMC

Teng Y, Ren Y, Sayed M et al (2018) Plant-derived exosomal Micro RNAs shape the gut microbiota. Cell Host Microbe 24:637-652.e638. https://doi.org/10.1016/j.chom.2018.10.001 PubMed DOI PMC

Threapleton DE, Greenwood DC, Evans CE et al (2013) Dietary fiber intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 347:f6879. https://doi.org/10.1136/bmj.f6879 PubMed DOI PMC

Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249. https://doi.org/10.1038/nature11552 PubMed DOI

Tremaroli V, Karlsson F, Werling M et al (2015) Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab 22:228–238. https://doi.org/10.1016/j.cmet.2015.07.009

Tuohy KM, Fava F, Viola R (2014) ‘The way to a man’s heart is through his gut microbiota’ – dietary pro- and prebiotics for the management of cardiovascular risk. Proc Nut Soc 73:172–185. https://doi.org/10.1017/S0029665113003911 DOI

Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature05414 PubMed DOI

Turnbaugh PJ, Ridaura VK, Faith JJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14. https://doi.org/10.1126/scitranslmed.3000322

Tuso P, Stoll SR, Li WW et al (2015) A plant-based diet, atherogenesis, and coronary artery disease prevention. Perm J 19:62–67. https://doi.org/10.7812/TPP/14-036 . Epub 2014 Nov 24.

US Food and Drug Administration (2017) Novel drug approvals for 2017. https://www.fda.gov/drugs/developmentapprovalprocess/druginnovation/ucm537040.htm . Accessed September 18, 2020.

van Nood E, Vrieze A, Nieuwdorp M et al (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–415. https://doi.org/10.1056/NEJMoa1205037 PubMed DOI

Vandeputte D, Kathagen G, D’hoe K, et al (2017) Quantitative microbiome profiling links gut community variation to microbial load. Nature 551:507–511. https://doi.org/10.1038/nature24460 PubMed DOI

Vasapolli R, Schütte K, Schulz C et al (2019) Analysis of transcriptionally active bacteria throughout the gastrointestinal tract of healthy individuals. Gastroenterology 157:1081–1092. https://doi.org/10.1053/j.gastro.2019.05.068 PubMed DOI

Voorhees PJ, Cruz-Teran C, Edelstein J et al (2020) Challenges & opportunities for phage-based in situ microbiome engineering in the gut. J Control Release 326:106–119. https://doi.org/10.1016/j.jconrel.2020.06.016 PubMed DOI

Wallace BD, Roberts AB, Pollet RM et al (2015) Structure and inhibition of microbiome beta-glucuronidases essential to the alleviation of cancer drug toxicity. Chem Biol 22:1238–1249. https://doi.org/10.1016/j.chembiol.2015.08.005 PubMed DOI PMC

Wallace BD, Wang H, Lane KT et al (2010) Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330:831–835. https://doi.org/10.1126/science.1191175 PubMed DOI PMC

Wang J, Wang P, Li D et al (2020) Beneficial effects of ginger on prevention of obesity through modulation of gut microbiota in mice. Eur J Nutr 59:699–718. https://doi.org/10.1007/s00394-019-01938-1 PubMed DOI

Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63. https://doi.org/10.1038/nature09922 PubMed DOI PMC

Wang Z, Roberts AB, Buffa JA et al (2015) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163:1585–1595. https://doi.org/10.1016/j.cell.2015.11.055 PubMed DOI PMC

Wang Z, Tang WH, Buffa JA et al (2014a) Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 35:904–910. https://doi.org/10.1093/eurheartj/ehu002 PubMed DOI PMC

Wang Z, Tang WH, Buffa JA et al (2014b) Trimethylamine-Noxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 17:49–60. https://doi.org/10.1016/j.cmet.2012.12.011 DOI

Warraich HJ, Hernandez AF, Allen LA (2017) Allen. How medicine has changed the end of life for patients with cardiovascular disease. J Am Coll Cardiol 70:1276–1289. https://doi.org/10.1016/j.jacc.2017.07.735 PubMed DOI

Warraich HJ, Salami JA, Khera R et al (2018a) Trends in use and expenditures of brand-name atorvastatin after introduction of generic atorvastatin. JAMA Intern Med 178:719–721. https://doi.org/10.1001/jamainternmed.2018.0990 PubMed DOI PMC

Warraich HJ, Xu H, DeVore AD et al (2018b) Trends in hospice discharge and relative outcomes among Medicare patients in the Get With The Guidelines-Heart Failure Registry. JAMA Cardiol 3:917–926. https://doi.org/10.1001/jamacardio.2018.2678 PubMed DOI PMC

Warrier M, Shih DM, Burrows AC et al (2015) The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep 10(3):326–338. https://doi.org/10.1016/j.celrep.2014.12.036 PubMed DOI PMC

Watanabe T, Tanigawa T, Nadatani Y et al (2013) Risk factors for severe nonsteroidal anti-inflammatory drug-induced small intestinal damage. Dig Liver Dis 45:390–395. https://doi.org/10.1016/j.dld.2012.12.005 PubMed DOI

Watson H, Mitra S, Croden FC et al (2018) A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 67:1974–1983. https://doi.org/10.1136/gutjnl-2017-314968 PubMed DOI

Wen L, Ley RE, Volchkov PY et al (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455:1109–1113. https://doi.org/10.1038/nature07336 PubMed DOI PMC

Whelton PK, Carey RM, Aronow WS et al (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [published correction appears in Hypertension. 2018;71:e140–e144]. Hypertension 71:e13–e115. https://doi.org/10.1161/HYP.0000000000000065 PubMed DOI

Wiedermann CJ, Kiechl S, Dunzendorfer S et al (1999) Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck study. J Am Coll Cardiol 34:1975–1981 PubMed DOI

Wiedermann CJ, Kiechl S, Schratzberger P et al (2001) The role of immune activation in endotoxin-induced atherogenesis. J Endotoxin Res 7:322–326. https://doi.org/10.1177/09680519010070040401 PubMed DOI

Wikoff WR, Anfora AT, Liu J et al (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106:3698–3703. https://doi.org/10.1073/pnas.0812874106 PubMed DOI PMC

Wilkinson GR (2005) Drug metabolism and variability among patients in drug response. N Engl J Med 352:2211–2221. https://doi.org/10.1056/NEJMra032424 PubMed DOI

Wong JMW, Esfahani A, Singh N et al (2012) Gut microbiota, diet, and heart disease. J AOAC Int 95:24–30 PubMed DOI

Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108. https://doi.org/10.1126/science.1208344 PubMed DOI PMC

Wu D, Tang X, Ding L et al (2019) Candesartan attenuates hypertension-associated pathophysiological alterations in the gut. Biomed Pharmacother 116:109040. https://doi.org/10.1016/j.biopha.2019.109040 PubMed DOI

Xue J, Zhou D, Poulsen O et al (2017) Intermittent hypoxia and hypercapnia accelerate atherosclerosis, partially via trimethylamine-Oxide. Am J Respir Cell Mol Biol 57:581–588 PubMed DOI PMC

Yokota A, Fukia S, Saiful Islam KBM et al (2012) Is bile acid a determinant of the gut microbiota on a high fat diet? Gut Microbes 3:455–459. https://doi.org/10.4161/gmic.21216 PubMed DOI

Yoo HH, Kim IS, Yoo DH et al (2016) Effects of orally administered antibiotics on the bioavailability of amlodipine: gut microbiota-mediated drug interaction. J Hypertens 34:156–162. https://doi.org/10.1097/HJH.0000000000000773 PubMed DOI

Yoo JY, Kim SS (2016) Probiotics and prebiotics: present status and future perspectives on metabolic disorders. Nutrients 8:173. https://doi.org/10.3390/nu8030173 PubMed DOI PMC

Young DR, Hivert MF, Alhassan S et al (2016) Physical Activity Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Clinical Cardiology; Council on Epidemiology and Prevention; Council on Functional Genomics and Translational Biology; and Stroke Council. Sedentary behavior and cardiovascular morbidity and mortality: a science advisory from the American Heart Association. Circulation 134:e262–e279. https://doi.org/10.1161/CIR.0000000000000440 PubMed DOI

Youngster I, Sauk J, Pindar C et al (2014) Fecal microbiota transplant for relapsing Clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clin Infect Dis 58:1515–1522. https://doi.org/10.1093/cid/ciu135 PubMed DOI PMC

Yus C, Gracia R, Larrea A et al (2019) Targeted release of probiotics from enteric microparticulated formulations. Polymers (basel) 11:1668. https://doi.org/10.3390/polym11101668 DOI

Yusuf S, Hawken S, Ounpuu S et al (2004) INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364:937–952. https://doi.org/10.1016/S0140-6736(04)17018-9 PubMed DOI

Zan S, Agboola S, Moore SA et al (2015) Patient engagement with a mobile web-based telemonitoring system for heart failure self-management: a pilot study. JMIR Mhealth Uhealth 3:e33. https://doi.org/10.2196/mhealth.3789 PubMed DOI PMC

Zheng DW, Dong X, Pan P et al (2019) Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat Biomed Eng 3:717–728. https://doi.org/10.1038/s41551-019-0423-2 PubMed DOI

Zhernakova A, Kurilshikov A, Bonder MJ et al (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352:565–569. https://doi.org/10.1126/science.aad3369 PubMed DOI PMC

Zhou X, Li J, Guo J et al (2018) Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome 6(1):66 PubMed DOI PMC

Zhu W, Gregory JC, Org E et al (2016) Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165:111–124. https://doi.org/10.1016/j.cell.2016.02.011 PubMed DOI PMC

Ziganshina EE, Sharifullina DM, Lozhkin AP et al (2016) Bacterial communities associated with atherosclerotic plaques from russian individuals with atherosclerosis. PLoS ONE 11:e0164836. https://doi.org/10.1371/journal.pone.0164836 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...