Embryo movement is more frequent in avian brood parasites than birds with parental reproductive strategies
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34702076
PubMed Central
PMC8548802
DOI
10.1098/rspb.2021.1137
Knihovny.cz E-resources
- Keywords
- avian brood parasites, co-evolutionary arms race, embryonic development, muscle development,
- MeSH
- Biological Evolution MeSH
- Adaptation, Physiological MeSH
- Nesting Behavior MeSH
- Host-Parasite Interactions MeSH
- Parasites * MeSH
- Birds parasitology MeSH
- Reproduction MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Movement of the embryo is essential for musculoskeletal development in vertebrates, yet little is known about whether, and why, species vary. Avian brood parasites exhibit feats of strength in early life as adaptations to exploit the hosts that rear them. We hypothesized that an increase in embryonic movement could allow brood parasites to develop the required musculature for these demands. We measured embryo movement across incubation for multiple brood-parasitic and non-parasitic bird species. Using a phylogenetically controlled analysis, we found that brood parasites exhibited significantly increased muscular movement during incubation compared to non-parasites. This suggests that increased embryo movement may facilitate the development of the stronger musculoskeletal system required for the demanding tasks undertaken by young brood parasites.
American Museum of Natural History New York NY 10024 USA
c o Musumanene Farm PO Box 630038 Choma Zambia
Coucal Project PO Box 26 Chimala Tanzania
Department of Biology University of Dodoma PO Box 338 Dodoma Tanzania
Department of Zoology University of Cambridge Downing Street Cambridge CB2 3EJ UK
The Czech Academy of Sciences Institute of Vertebrate Biology Květná 8 603 65 Brno Czech Republic
See more in PubMed
Müller GB. 2003. Embryonic motility: environmental influences and evolutionary innovation. Evol. Dev. 5, 56-60. (10.1046/j.1525-142X.2003.03009.x) PubMed DOI
Pitsillides AA. 2006. Early effects of embryonic movement: ‘a shot out of the dark.’ J. Anat. 208, 417-431. (10.1111/j.1469-7580.2006.00556.x) PubMed DOI PMC
Heywood JLL, McEntee GMM, Stickland NCC. 2005. In ovo neuromuscular stimulation alters the skeletal muscle phenotype of the chick. J. Muscle Res. Cell Motil. 26, 49-56. (10.1007/s10974-005-9007-8) PubMed DOI
Nowlan NC, Sharpe J, Roddy KA, Prendergast PJ, Murphy P. 2010. Mechanobiology of embryonic skeletal development: insights from animal models. Birth Defects Res. Part C Embryo Today Rev. 90, 203-213. (10.1002/bdrc.20184) PubMed DOI PMC
Hall BK, Herring SW. 1990. Paralysis and growth of the musculoskeletal system in the embryonic chick. J. Morphol. 206, 45-56. (10.1002/jmor.1052060105) PubMed DOI
Hosseini A, Hogg DA. 1991. The effects of paralysis on skeletal development in the chick embryo. II. Effects on histogenesis of the tibia. J. Anat. 177, 169-178. PubMed PMC
Felsenthal N, Zelzer E. 2017. Mechanical regulation of musculoskeletal system development. Development 144, 4271-4283. (10.1242/dev.151266) PubMed DOI PMC
Lemke SB, Schnorrer F. 2017. Mechanical forces during muscle development. Mech. Dev. 144, 92-101. (10.1016/j.mod.2016.11.003) PubMed DOI
Soler M. 2014. Long-term coevolution between avian brood parasites and their hosts. Biol. Rev. 89, 688-704. (10.1111/brv.12075) PubMed DOI
Stevens M. 2013. Bird brood parasitism. Curr. Biol. 23, 909-913. (10.1016/j.cub.2013.08.025) PubMed DOI
Davies NB, Nicholas B, Quinn D. 2000. Cuckoos, cowbirds and other cheats. London, UK: T & A D Poyser.
Igic B, Braganza K, Hyland MM, Silyn-Roberts H, Cassey P, Grim T, Rutila J, Moskát C, Hauber ME. 2011. Alternative mechanisms of increased eggshell hardness of avian brood parasites relative to host species. J. R. Soc. Interface 8, 1654-1664. (10.1098/rsif.2011.0207) PubMed DOI PMC
Rees JA, Cranston K. 2017. Automated assembly of a reference taxonomy for phylogenetic data synthesis. Biodivers. Data J. 5, 12581. (10.3897/BDJ.5.e12581) PubMed DOI PMC
Michonneau F, Brown JW, Winter DJ. 2016. ‘rotl’ : an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476-1481. (10.1111/2041-210X.12593) DOI
Hauber ME, Moskát C. 2008. Shared parental care is costly for nestlings of common cuckoos and their great reed warbler hosts. Behav. Ecol. 19, 79-86. (10.1093/beheco/arm108) DOI
Kilner RM, Madden JR, Hauber ME. 2004. Broad parasitic cowbird nestlings use host young to procure resources. Science 305, 877-879. (10.1126/science.1098487) PubMed DOI
Lichtenstein G, Sealy SG. 1998. Nestling competition, rather than supernormal stimulus, explains the success of parasitic brown-headed cowbird chicks in yellow warbler nests. Proc. R. Soc. B 265, 249-254. (10.1098/rspb.1998.0289) DOI
Bortolato T, Gloag R, Reboreda JC, Fiorini VD. 2019. Size matters: shiny cowbirds secure more food than host nestmates thanks to their larger size, not signal exaggeration. Anim. Behav. 157, 201-207. (10.1016/j.anbehav.2019.09.009) DOI
Kilner RM. 2005. The evolution of virulence in brood parasites. Ornithol. Sci. 4, 55-64. (10.2326/osj.4.55) DOI
Honza M, Vošlajerová K, Moskát C. 2007. Eviction behaviour of the common cuckoo Cuculus canorus chicks. Commun. J. Avian Biol. 38, 385-389. (10.1111/j.2007.0908-8857.03901.x) DOI
Hauber ME. 2003. Hatching asynchrony, nestling competition, and the cost of interspecific brood parasitism. Behav. Ecol. 14, 227-235. (10.1093/beheco/14.2.227) DOI
Radin EL. 1986. Role of muscles in protecting athletes from injury. Acta Med. Scand. 220, 143-147. (10.1111/j.0954-6820.1986.tb08943.x) PubMed DOI
Suominen H. 2006. Muscle training for bone strength. Aging Clin. Exp. Res. 18, 85-93. (10.1007/BF03327422) PubMed DOI
Honza M, Feikusová K, Procházka P, Picman J. 2015. How to hatch from the common cuckoo (Cuculus canorus) egg: implications of strong eggshells for the hatching muscle (musculus complexus). J. Ornithol. 156, 679-685. (10.1007/s10336-015-1163-z) DOI
Antonov A, Stokke BG, Fossøy F, Liang W, Moksnes A, Røskaft E, Yang C, Møller AP. 2012. Why do brood parasitic birds lay strong-shelled eggs? Chinese Birds 3, 245-258. (10.5122/cbirds.2012.0039) DOI
Honza M, Picman J, Grim T, Novák V, Čapek M Jr, Mrlík V. 2001. How to hatch from an egg of great structural strength. A study of the common cuckoo. J. Avian Biol. 32, 249-255. (10.1111/j.0908-8857.2001.320307.x) DOI
Lipar JL, Ketterson ED. 2000. Maternally derived yolk testosterone enhances the development of the hatching muscle in the red-winged blackbird Agelaius phoeniceus. Proc. R. Soc. B 267, 2005-2010. (10.1098/rspb.2000.1242) PubMed DOI PMC
Dearborn DC, MacDade LS, Robinson S, Dowling Fink AD, Fink ML. 2009. Offspring development mode and the evolution of brood parasitism. Behav. Ecol. 20, 517-524. (10.1093/beheco/arp026) DOI
Soler M, Soler JJ, Martínez JG, Moreno J. 1999. Begging behaviour and its energetic cost in great spotted cuckoo and magpie host chicks. Can. J. Zool. 77, 1794-1800. (10.1139/z99-128) DOI
Spottiswoode CN, Koorevaar J. 2012. A stab in the dark: chick killing by brood parasitic honeyguides. Biol. Lett. 8, 241-244. (10.1098/rsbl.2011.0739) PubMed DOI PMC
Spottiswoode CN, Stryjewski KF, Quader S, Colebrook-Robjent JFR, Sorenson MD. 2011. Ancient host specificity within a single species of brood parasitic bird. Proc. Natl Acad. Sci. USA 108, 17 738-17 742. (10.1073/pnas.1109630108) PubMed DOI PMC
Spottiswoode CN, Colebrook-Robjent JFRR. 2007. Egg puncturing by the brood parasitic greater honeyguide and potential host counteradaptations. Behav. Ecol. 18, 792-799. (10.1093/beheco/arm025) DOI
Short LL, Horne JFM. 2001. Toucans, barbets, and honeyguides: Ramphastidae, Capitonidae, and Indicatoridae. New York, NY: Oxford University Press.
Benz BW, Robbins MB, Peterson AT. 2006. Evolutionary history of woodpeckers and allies (Aves: Picidae): placing key taxa on the phylogenetic tree. Mol. Phylogenet. Evol. 40, 389-399. (10.1016/j.ympev.2006.02.021) PubMed DOI
Yang C, Huang Q, Wang L, Du WG, Liang W, Møller AP. 2018. Keeping eggs warm: thermal and developmental advantages for parasitic cuckoos of laying unusually thick-shelled eggs. Sci. Nat. 105, 10. (10.1007/s00114-017-1532-y) PubMed DOI
Gil D. 2003. Golden eggs: maternal manipulation of offspring phenotype by egg androgen in birds. Ardeola 50, 281-294.
Groothuis TGG, Schwabl H. 2008. Hormone-mediated maternal effects in birds: mechanisms matter but what do we know of them? Phil. Trans. R. Soc. B 363, 1647-1661. (10.1098/rstb.2007.0007) PubMed DOI PMC
Frésard L, Morisson M, Brun JM, Collin A, Pain B, Minvielle F, Pitel F. 2013. Epigenetics and phenotypic variability: some interesting insights from birds. Genet. Sel. Evol. 45, 1-12. (10.1186/1297-9686-45-16) PubMed DOI PMC
Payne RB. 2005. The cuckoos. Bird Families of the World. Oxford, UK: Oxford University Press.
Sorenson MD, Payne RB. 2002. Molecular genetic perspectives on avian brood parasitism. Integr. Comp. Biol. 42, 388-400. (10.1093/icb/42.2.388) PubMed DOI
McClelland SC, Jamie GA, Waters K, Caldas L, Spottiswoode CN, Portugal SJ. 2019. Convergent evolution of reduced eggshell conductance in avian brood parasites. Phil. Trans. R. Soc. B 374, 20180194. (10.1098/rstb.2018.0194) PubMed DOI PMC
Riehl C. 2016. Infanticide and within-clutch competition select for reproductive synchrony in a cooperative bird. Evolution 70, 1760-1769. (10.1111/evo.12993) PubMed DOI
Bryant DM, Tatner P. 1990. Hatching asynchrony, sibling competition and siblicide in nestling birds: studies of swiftlets and bee-eaters. Anim. Behav. 39, 657-671. (10.1016/S0003-3472(05)80377-X) DOI
Pollard AS, Pitsillides AA, Portugal SJ. 2016. Validating a noninvasive technique for monitoring embryo movement in ovo. Physiol. Biochem. Zool. 89, 331-339. (10.1086/687228) PubMed DOI
Angilletta MJ, Zelic MH, Adrian GJ, Hurliman AM, Smith CD. 2013. Heat tolerance during embryonic development has not diverged among populations of a widespread species (Sceloporus undulatus). Conserv. Physiol. 1, cot018. (10.1093/conphys/cot018) PubMed DOI PMC
Sheldon EL, McCowan LSC, McDiarmid CS, Griffith SC. 2018. Measuring the embryonic heart rate of wild birds: an opportunity to take the pulse on early development. Auk 135, 71-82. (10.1642/AUK-17-111.1) DOI
Colombelli-Négrel D, Hauber ME, Kleindorfer S. 2014. Prenatal learning in an Australian songbird: habituation and individual discrimination in superb fairy-wren embryos. Proc. R. Soc. B 281, 20141154. (10.1098/rspb.2014.1154) PubMed DOI PMC
Murray JR, Varian-Ramos CW, Welch ZS, Saha MS. 2013. Embryological staging of the Zebra Finch, Taeniopygia guttata. J. Morphol. 274, 1090-1110. (10.1002/jmor.20165) PubMed DOI PMC
Lokemoen JT, Koford RR. 1996. Using candlers to determine the incubation stage of passerine eggs. J. F. Ornithol. 67, 660-668.
Hemmings N, Birkhead TR. 2016. Consistency of passerine embryo development and the use of embryonic staging in studies of hatching failure. Ibis (Lond. 1859) 158, 43-50. (10.1111/ibi.12336) DOI
Spottiswoode CN. 2013. A brood parasite selects for its own egg traits. Biol. Lett. 9, 20130573. (10.1098/rsbl.2013.0573) PubMed DOI PMC
Hoover JP, Hauber ME. 2007. Individual patterns of habitat and nest-site use by hosts promote transgenerational transmission of avian brood parasitism status. J. Anim. Ecol. 76, 1208-1214. (10.1111/j.1365-2656.2007.01291.x) PubMed DOI
Goymann W, Makomba M, Urasa F, Schwabl I. 2015. Social monogamy vs. polyandry: ecological factors associated with sex roles in two closely related birds within the same habitat. J. Evol. Biol. 28, 1335-1353. (10.1111/jeb.12657) PubMed DOI
Goymann W, Safari I, Muck C, Schwabl I.. 2016. Sex roles, parental care and offspring growth in two contrasting coucal species. R. Soc. Open Sci. 3, 160463. (10.1098/rsos.160463) PubMed DOI PMC
Portugal SJ, Ricketts RL, Chappell J, White CR, Shepard EL, Biro D. 2017. Boldness traits, not dominance, predict exploratory flight range and homing behaviour in homing pigeons. Phil. Trans. R. Soc. B 372, 20160234. (10.1098/rstb.2016.0234) PubMed DOI PMC
R Core Team. 2020. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See https://www.R-project.org/.
RStudio Team. 2020. RStudio: integrated development for R. Boston, MA: RStudio, PBC. See http://www.rstudio.com/.
White CR, Alton LA, Crispin TS, Halsey LG. 2016. Phylogenetic comparisons of pedestrian locomotion costs: confirmations and new insights. Ecol. Evol. 6, 6712-6720. (10.1002/ece3.2267) PubMed DOI PMC
Guigueno MF, Shoji A, Elliott KH, Aris-Brosou S. 2019. Flight costs in volant vertebrates: a phylogenetically-controlled meta-analysis of birds and bats. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 235, 193-201. (10.1016/j.cbpa.2019.06.003) PubMed DOI
Krüger O, Davies NB. 2002. The evolution of cuckoo parasitism: a comparative analysis. Proc. R. Soc. B 269, 375-381. (10.1098/rspb.2001.1887) PubMed DOI PMC
Sorenson MD, Payne RB. 2001. A single ancient origin of brood parasitism in African finches: implications for host–parasite coevolution. Evolution 55, 2550-2567. (10.1111/j.0014-3820.2001.tb00768.x) PubMed DOI
Garamszegi LZ. 2014. Modern phylogenetic comparative methods and their application in evolutionary biology, 1st edn. London, UK: Springer.
Covarrubias-Pazaran G. 2018. Software update: moving the R package sommer to multivariate mixed models for genome-assisted prediction. bioRxiv, 354639. (10.1101/354639) DOI
Hadfield JD, Nakagawa S. 2010. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494-508. (10.1111/j.1420-9101.2009.01915.x) PubMed DOI
Lenth R. 2020. emmeans: estimated marginal means, aka least-squares means. R package version 1.4.6.
Orme CDL, et al. 2006. Global patterns of geographic range size in birds. PLoS Biol. 4, 1276-1283. (10.1371/journal.pbio.0040208) PubMed DOI PMC
Kuznetsova A, Brockhoff PB, Christensen RHB. 2017. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1-26. (10.18637/jss.v082.i13) DOI
McClelland SC, et al. . 2021. Embryo movement is more frequent in avian brood parasites than birds with parental reproductive strategies. Figshare. PubMed PMC
Parasitic fish embryos do a "front-flip" on the yolk to resist expulsion from the host
figshare
10.6084/m9.figshare.c.5662340