Parasitic fish embryos do a "front-flip" on the yolk to resist expulsion from the host

. 2024 Feb 27 ; 121 (9) : e2310082121. [epub] 20240220

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38377205

Grantová podpora
201406760046 China Scholarship Council (CSC)
21-00788X Czech Science Foundation

Embryonic development is often considered shielded from the effects of natural selection, being selected primarily for reliable development. However, embryos sometimes represent virulent parasites, triggering a coevolutionary "arms race" with their host. We have examined embryonic adaptations to a parasitic lifestyle in the bitterling fish. Bitterlings are brood parasites that lay their eggs in the gill chamber of host mussels. Bitterling eggs and embryos have adaptations to resist being flushed out by the mussel. These include a pair of projections from the yolk sac that act as an anchor. Furthermore, bitterling eggs all adopt a head-down position in the mussel gills which further increases their chances of survival. To examine these adaptations in detail, we have studied development in the rosy bitterling (Rhodeus ocellatus) using molecular markers, X-ray tomography, and time-lapse imaging. We describe a suite of developmental adaptations to brood parasitism in this species. We show that the mechanism underlying these adaptions is a modified pattern of blastokinesis-a process unique, among fish, to bitterlings. Tissue movements during blastokinesis cause the embryo to do an extraordinary "front-flip" on the yolk. We suggest that this movement determines the spatial orientation of the other developmental adaptations to parasitism, ensuring that they are optimally positioned to help resist the ejection of the embryo from the mussel. Our study supports the notion that natural selection can drive the evolution of a suite of adaptations, both embryonic and extra-embryonic, via modifications in early development.

Zobrazit více v PubMed

Davies N., Cuckoo: Cheating by Nature (Bloomsbury, 2015).

McClelland S. C., et al. , Embryo movement is more frequent in avian brood parasites than birds with parental reproductive strategies. Proc. Biol. Sci. 288, 20211137 (2021). PubMed PMC

Cohen M. S., Hawkins M. B., Stock D. W., Cruz A., Early life-history features associated with brood parasitism in the cuckoo catfish, Synodontis multipunctatus (Siluriformes: Mochokidae). Philos. Trans. R. Soc. B Biol. Sci. 374, 20180205 (2019). PubMed PMC

Richardson M. K., Theories, laws, and models in evo-devo. J. Exp. Zool. B Mol. Dev. Evol. 338, 36–61 (2022). PubMed PMC

Chang C.-H., et al. , Phylogenetic relationships of Acheilognathidae (Cypriniformes: Cyprinoidea) as revealed from evidence of both nuclear and mitochondrial gene sequence variation: Evidence for necessary taxonomic revision in the family and the identification of cryptic spec. Mol. Phylogenet. Evol. 81, 182–194 (2014). PubMed

Smith C., Reichard M., Jurajda P., Przybylski M., The reproductive ecology of the European bitterling (Rhodeus sericeus). J. Zool. 262, 107–124 (2004).

Mills S. C., Reynolds J. D., The bitterling-mussel interaction as a test case for co-evolution. J. Fish Biol. 63, 84–104 (2003).

Yi W., Rücklin M., Poelmann R. E., Aldridge D. C., Richardson M. K., Normal stages of embryonic development of a brood parasite, the rosy bitterling Rhodeus ocellatus (Teleostei: Cypriniformes). J. Morphol. 282, 783–819 (2021). PubMed PMC

Suzuki N., Hibiya T., Minute tubercles on the skin surface of larvae of Rhodeus (Cyprinidae). Jpn. J. Ichthyol. 31, 198–202 (1984).

Li F., et al. , Unusual egg shape diversity in bitterling fishes. Ecology 103, e3816 (2022). PubMed

Chang H. W., Life history of the common Chinese bitterling, Rhodeus ocellatus. Sinensia 19, 12–22 (1948).

Aldridge D. C., Development of European bitterling in the gills of freshwater mussels. J. Fish Biol. 54, 138–151 (1999).

Chang H. W., Wu H. W., On the blastokinesis occurring in the egg of the common Chinese Bitterling, Rhodeus ocellatus. Sinensia 17, 15–22 (1947).

Panfilio K. A., Extraembryonic development in insects and the acrobatics of blastokinesis. Dev. Biol. 313, 471–491 (2008). PubMed

Needham J., Biochemistry and Morphogenesis (University Press, 1942).

Panfilio K. A., Late extraembryonic morphogenesis and its zenRNAi-induced failure in the milkweed bug Oncopeltus fasciatus. Dev. Biol. 333, 297–311 (2009). PubMed

Dorey K., Amaya E., FGF signalling: Diverse roles during early vertebrate embryogenesis. Development 137, 3731–3742 (2010). PubMed PMC

Phillips B. T., et al. , Zebrafish msxB, msxC and msxE function together to refine the neural-nonneural border and regulate cranial placodes and neural crest development. Dev. Biol. 294, 376–390 (2006). PubMed

Eisenhoffer G. T., et al. , A toolbox to study epidermal cell types in zebrafish. J. Cell Sci. 130, 269–277 (2017). PubMed PMC

Imboden M., Goblet C., Korn H., Vriz S., Cytokeratin 8 is a suitable epidermal marker during zebrafish development. C. R. Acad. Sci. III 320, 689–700 (1997). PubMed

Vogel A. M., Gerster T., Expression of a zebrafish Cathepsin L gene in anterior mesendoderm and hatching gland. Dev. Genes Evol. 206, 477–479 (1997). PubMed

Virta V. C., Cooper M. S., Structural components and morphogenetic mechanics of the zebrafish yolk extension, a developmental module. J. Exp. Zool. B Mol. Dev. Evol. 316, 76–92 (2011). PubMed

Pinto C. S., et al. , Microridges are apical epithelial projections formed of F-actin networks that organize the glycan layer. Sci. Rep. 9, 12191 (2019). PubMed PMC

Suzuki N., Hibiya T., Development of eggs and larvae of two Bitterlings, Rhodeus atremius and R. suigensis (Cyprinidae). Jpn. J. Ichthyol. 31, 287–296 (1984).

Darwin C., On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (John Murray, ed. 1, 1859). PubMed PMC

Wolpert L., The evolutionary origin of development: Cycles, patterning, privilege and continuity. Development 120, 79–84 (1994). PubMed

van Thiel J., et al. , Convergent evolution of toxin resistance in animals. Biol. Rev. 97, 1823–1843 (2022). PubMed PMC

Suzuki R., Sperm activation and aggregation during fertilization in some fishes V. Sperm-stimulating factor on the vegetal pole. Annot. Zool. Jpn. 34, 18–23 (1961).

Medler S., Silverman H., Muscular alteration of gill geometry in vitro: Implications for bivalve pumping processes. Biol. Bull. 200, 77–86 (2001). PubMed

Medler S., Thompson C. C., Dietz T. H., Silverman H., Ionic effects on intrinsic gill muscles in the freshwater bivalve, Dreissena polymorpha. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 122, 163–172 (1999).

Bickelmann C., et al. , Transcriptional heterochrony in talpid mole autopods. Evodevo 3, 16 (2012). PubMed PMC

Richardson M. K., Vertebrate evolution: The developmental origins of adult variation. BioEssays 21, 604–613 (1999). PubMed

Elinson R. P., Beckham Y., Development in frogs with large eggs and the origin of amniotes. Zoology 105, 105–117 (2002). PubMed

Medina I., Langmore N. E., The evolution of host specialisation in avian brood parasites. Ecol. Lett. 19, 1110–1118 (2016). PubMed

Dawkins R., Krebs J. R., Arms races between and within species. Proc. R. Soc. London Biol. Sci. 205, 489–511 (1979). PubMed

Reichard M., et al. , The bitterling-mussel coevolutionary relationship in areas of recent and ancient sympatry. Evolution 64, 3047–3056 (2010). PubMed

Kimmel C. B., Ballard W. W., Kimmel S. R., Ullmann B., Schilling T. F., Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995). PubMed

Thisse B., et al. , Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol. 77, 505–519 (2004). PubMed

Schindelin J., et al. , Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). PubMed PMC

Thielicke W., Sonntag R., Particle image velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. J. Open Res. Softw. 9, 1–14 (2021).

Yi W., Reichard M., Rücklin M., Richardson M. K., Data for: Parasitic fish embryos do a ‘Front-flip’ on the yolk to resist expulsion from the host [Dataset]. Dryad. 10.5061/dryad.qv9s4mwk3. Deposited 15 December 2023. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...