Take a seed! Revealing Neolithic landscape and agricultural development in the Carpathian Basin through multivariate statistics and environmental modelling

. 2021 ; 16 (10) : e0258206. [epub] 20211029

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34714837

The Carpathian Basin represents the cradle of human agricultural development during the Neolithic period, when large parts were transformed into 'cultural landscapes' by first farmers from the Balkans. It is assumed that an Early Neolithic subsistence economy established along the hydrologic systems and on Chernozem soil patches, which developed from loess deposits. However, recent results from soil chemistry and geoarchaeological analyses raised the hypothesis that extensive Chernozem coverage developed from increased land-use activity and that Early Neolithic 'cultural' groups were not restricted to loess-covered surfaces but rather preferred hydromorphic soils that formed in the floodplains. This article performs multivariable statistics from large datasets of Neolithic sites in Hungary and allows tracing Early to Late Neolithic site preferences from digital environmental data. Quantitative analyses reveal a strong preference for hydromorphic soils, a significant avoidance of loess-covered areas, and no preference for Chernozem soils throughout the Early Neolithic followed by a strong transformation of site preferences during the Late Neolithic period. These results align with socio-cultural developments, large-scale mobility patterns, and land-use and surface transformation, which shaped the Carpathian Basin and paved the way for the agricultural revolution across Europe.

Zobrazit více v PubMed

Bickle P, Whittle A, editors. The first farmers of central Europe. Diversity in LBK lifeways. Oxford, Oakville CT: Oxbow Books and the David Brown Book Company; 2013.

Whittle AWR, Bickle P, editors. Early farmers. The view from archaeology and science. Oxford: Oxford Univ. Press; 2014.

Kreuz A, Pomázi P, Bánffy E. Hungarian Neolithic landscapes, crops and diet–Signs of cultural decisions. Quaternary International. 2020; 560–561:102–18. doi: 10.1016/j.quaint.2020.06.008 DOI

Bánffy E. First Farmers of the Carpathian Basin. Changing patterns in subsistence, ritual and monumental figurines. Oxford, Philadelphia: Oxbow books; 2019.

Sümegi P, Kertész R. Palaeogeographic Characteristic of The Carpathian Basin: An Ecological Trap During The Early Neolithic. In: Kertész R, Makkay J, editors. From the Mesolithic to the Neolithic. Proceedings of the International Archaeological Conference held in the Damjanich Museum of Szolnok, September 22–27, 1996. Budapest: Archaeolingua Alapítvány; 2001. pp. 405–16.

Bánffy E, Juhász I, Sümegi P. A prelude to the Neolithic in the Balaton region–new results to an old problem. In: Spataro M, Biagi P, editors. A short walk through the Balkans: the first farmers of the Carpathian Basin and adjacent regions. Proceedings of the Conference held at the Institute of Archaeology (UCL) on June 20-22nd, 2005. Atti della Società per la Preistoria e Protostoria della Regione Friuli-Venezia Giulia, XVI. Trieste; 2008. pp. 223–37.

Raczky P, Sümegi P, Bartosiewicz L, Gál E, Kaczanowska M, Kozłowski JK, et al. Ecological Barrier versus Mental Marginal Zone? Problems of the Northernmost Körös Culture Settlements in the Great Hungarian Plain. In: Gronenborn D, Petrasch J, editors. Die Neolithisierung Mitteleuropas. Internationale Tagung, Mainz 24. bis 26. Juni 2005 = The Spread of the Neolithic to Central Europe; International Symposium, Mainz 24 June-26 June 2005. 1st ed. Mainz: Verlag des Römisch-Germanischen Zentralmuseums; 2010. pp. 147–73.

Bánffy E. The 6th Millennium BC boundary in Western Transdanubia and its role in the Central European transition (The Szentgyörgyvölgy-Pityerdomb settlement). Budapest; 2004.

Anders A, Siklósi Z, editors. The Körös culture in eastern Hungary. Oxford: Archaeopress; 2012.

Bánffy E. The Early Neolithic in the Danube-Tisza Interfluve. Oxford: Archaeopress; 2013.

Szécsényi-Nagy A, Keerl V, Jakucs J, Brandt G, Bánffy E, Alt KW. Ancient DNA supports a homogeneous maternal gene pool in the 6th millennium BC Hungary and in Central European LBK. In: Whittle AWR, Bickle P, editors. Early farmers. The view from archaeology and science. Oxford: Oxford Univ. Press; 2014. pp. 71–93. doi: 10.1016/j.jhevol.2014.06.017 DOI

Szécsényi-Nagy A, Brandt G, Haak W, Keerl V, Jakucs J, Möller-Rieker S, et al.. Tracing the genetic origin of Europe’s first farmers reveals insights into their social organization. Proc Biol Sci. 2015; 282. doi: 10.1098/rspb.2015.0339 PubMed DOI PMC

Bánffy E, editor. The environmental history of the prehistoric Sárköz Region in southern Hungary. Langenweißbach: Verlag Beier & Beran, Archäologische Fachliteratur; 2020.

Bánffy E. South Western Körös culture settlement in the Danube-Tisza interfluve: Szakmár-Kisülés. In: Anders A, Siklósi Z, editors. The Körös culture in eastern Hungary. Oxford: Archaeopress; 2012. pp. 53–68. doi: 10.1038/jhg.2012.36 DOI

Depaermentier MLC, Osztás A, Bánffy E, Alt KW, Kempf M. Neolithic land-use, subsistence, and mobility patterns in Transdanubia: A multiproxy isotope and environmental analysis from Alsónyék–Bátaszék and Mórágy–Tűzkődomb. Journal of Archaeological Science: Reports. 2020; 33. doi: 10.1016/j.jasrep.2020.102529 DOI

Depaermentier MLC, Kempf M, Bánffy E, Alt KW. Tracing mobility patterns through the 6th-5th millennia BC in the Carpathian Basin with strontium and oxygen stable isotope analyses. PLoS ONE. 2020. doi: 10.1371/journal.pone.0242745 PubMed DOI PMC

Depaermentier MLC, Kempf M, Bánffy E, Alt KW. Modelling a scale-based strontium isotope baseline for Hungary. in preparation. doi: 10.1371/journal.pone.0242745 PubMed DOI PMC

Mörseburg A, Fecher M, Jakucs , J., Szécsényi-Nagy A., Keerl V, Jahn J, et al.. Change and continuity in human dietary patterns across the Hungarian Neolithic. (in preparation). 2021. doi: 10.1038/s41591-021-01349-y PubMed DOI PMC

Whittle AWR, editor. The Early Neolithic on the Great Hungarian Plain. Investigations of the Körös culture site of Ecsegfalva 23, County Békés. Budapest: Archaeological Inst. of the HAS; 2007.

Sielmann B. Die frühneolithische Besiedlung Mitteleuropas. In: Schwabedissen H, editor. Die Anfänge des Neolithikums vom Orient bis Nordeuropa Westliches Mitteleuropa. Köln: Böhlau; 1972. pp. 1–65.

Hedges R, Bentley RA, Bickle P, Cullen P, Dale C, Fibiger L, et al.. The supra-regional perspective. In: Bickle P, Whittle A, editors. The first farmers of central Europe. Diversity in LBK lifeways. Oxford, Oakville CT: Oxbow Books and the David Brown Book Company; 2013.

Garnett A. The Loess Regions of Central Europe in Prehistoric Times. The Geographical Journal. 1945; 106:132–43.

Kreuz A. Closed forest or open woodland as natural vegetation in the surroundings of Linearbandkeramik settlements. Veget Hist Archaeobot. 2007; 17:51–64. doi: 10.1007/s00334-007-0110-1 DOI

Vysloužilová B, Ertlen D, Šefrna L, Novák T, Virágh K, Rué M, et al.. Investigation of vegetation history of buried chernozem soils using near-infrared spectroscopy (NIRS). Quaternary International. 2015; 365:203–11. doi: 10.1016/j.quaint.2014.07.035 DOI

Strouhalová B, Gebhardt A, Ertlen D, Šefrna L, Flašarová K, Kolařík P, et al.. From Chernozem to Luvisol or from Luvisol to Chernozem? A discussion about the relationships and limits of the two types of soils. A case study of the soil catena of Hrušov, Czechia. Geografie. 2020; 125:473–500. doi: 10.37040/geografie2020125040473 DOI

Kempf M. Neolithic land-use, landscape development, and environmental dynamics in the Carpathian Basin. Journal of Archaeological Science: Reports. 2020; 34:102637. doi: 10.1016/j.jasrep.2020.102637 DOI

Eckmeier E, Gerlach R, Gehrt E, Schmidt MWI. Pedogenesis of Chernozems in Central Europe—A review. Geoderma. 2007; 139:288–99. doi: 10.1016/j.geoderma.2007.01.009 DOI

Gerlach R, Eckmeier E. Prehistoric Land Use and Its Impact on Soil Formation since Early Neolithic. Examples from the Lower Rhine Area. In: Bebermeier W, Hebenstreit R, Kaiser E, Krause J, editors. Landscape Archaeology Conference (LAC 2012). eTopoi. Berlin; 2012. pp. 11–6.

Schmidt MWI, Noack AG. Black Carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles. 2000; 14:777–93.

Schmidt MWI, Skjemstad JO, Gehrt E, Kögel-Knabner I. Charred organic carbon in German chernozemic soils. European Journal of Soil Science. 1999:351–65.

Fynn RWS, Haynes RJ, O’Connor TG. Burning causes long-term changes in soil organic matter content of a South African grassland. Soil Biology and Biochemistry. 2003; 35:677–87. doi: 10.1016/S0038-0717(03)00054-3 DOI

Ács F, Breuer H, Skarbit N. Climate of Hungary in the twentieth century according to Feddema. Theor Appl Climatol. 2015; 119:161–9. doi: 10.1007/s00704-014-1103-5 DOI

Demény A, Czuppon G, Siklósi Z, Leél-Őssy S, Lin K, Shen C-C, et al.. Mid-Holocene climate conditions and moisture source variations based on stable H, C and O isotope compositions of speleothems in Hungary. Quaternary International. 2013:150–6.

Jakab G, Majkut P, Juhász I, Gulyas S, Sümegi P, Töröcsik T. Palaeoclimatic signals and anthropogenic disturbances from the peatbog at Nagyba´rka´ny (North Hungary). In: Buczkó K, Korponai J, Padisák J, Starratt SW, editors. Palaeolimnological Proxies as Tools of Environmental Reconstruction in Fresh Water. Dordrecht: Springer Science+Business Media B.V; 2009. pp. 87–106.

Gardner AR. Neolithic to Copper Age woodland impacts in northeast Hungary? Evidence from the pollen and sediment chemistry records. The Holocene. 2002; 12:541–53. doi: 10.1191/0959683602hl561rp DOI

Novothny Á, Frechen M, Horváth E. Luminescence dating of periods of sand movement from the Gödöllő Hills, Hungary. Geomorphology. 2010; 122:254–63. doi: 10.1016/j.geomorph.2010.04.013 DOI

Willis KJ, Rudner E, Sümegi P. The Full-Glacial Forests of Central and Southeastern Europe. Quat res. 2000; 53:203–13. doi: 10.1006/qres.1999.2119 DOI

Magyari EK, Chapman JC, Passmore DG, Allen JRM, Huntley JP, Huntley B. Holocene persistence of wooded steppe in the Great Hungarian Plain. Journal of Biogeography. 2010; 37:915–35. doi: 10.1111/j.1365-2699.2009.02261.x DOI

Uj B, Nagy A, Saláta D, Laborczi A, Malatinszky Á, Bakó G, et al.. Wetland habitats of the Kis-Sárrét 1860–2008 (Körös-Maros National Park, Hungary). Journal of Maps. 2016; 12:211–21. doi: 10.1080/17445647.2014.1001799 DOI

Willis KJ, Braun M, Sümegi P, Tóth A. Does soil change cause vegetation change or vice versa? A temporal perspective from Hungary. Ecology. 1997; 78:740–50.

Hertelendi E, Sümegi P, Szöör G. Geochronologic and Paleoclimatic Characterization of Quaternary Sediments in the Great Hungarian Plain. Radiocarbon. 1992; 34:833–9. doi: 10.1017/S0033822200064146 DOI

Magyari E, Sümegi P, Braun M, Jakab G, Molnár M. Retarded wetland succession: anthropogenic and climatic signals in a Holocene peat bog profile from north‐east Hungary. Journal of Ecology. 2001; 89:1019–32. doi: 10.1111/j.1365-2745.2001.00624.x DOI

Kercsmár Z, Budai T, Csillag G, Selmeczi I, Sztanó O, Olga p, editors. Surface geology of Hungary. Explanatory notes to the geological map of Hungary (1:500 000). Budapest: Geological and Geophysical Institute of Hungary; 2015.

Varga G. Similarities among the Plio-Pleistocene terrestrial aeolian dust deposits in the World and in Hungary. Quaternary International. 2011:98–108.

Kovács J, Raucsik B, Varga A, Újvári G, Varga G, Ottner F. Clay mineralogy of red clay deposits from the central Carpathian Basin (Hungary): implications for Plio-Pleistocene chemical weathering and palaeoclimate. Turkish Journal of Earth Sciences. 2013:414–26. doi: 10.3906/yer-1201-4 DOI

Timár G, Sümegi P, Horváth F. Late Quaternary dynamics of the Tisza River: Evidence of climatic and tectonic controls. Tectonophysics. 2005; 410:97–110. doi: 10.1016/j.tecto.2005.06.010 DOI

Moskal-del Hoyo M, Lityńska-Zając M, Raczky P, Anders A, Magyari EK. The character of the Atlantic oak woods of the Great Hungarian Plain. Quaternary International. 2018; 463:337–51. doi: 10.1016/j.quaint.2017.02.029 DOI

Kasse C, Bohncke SJP, Vandenberghe J, Gábris G. Fluvial style changes during the last glacial–interglacial transition in the middle Tisza valley (Hungary). Proceedings of the Geologists’ Association. 2010; 121:180–94. doi: 10.1016/j.pgeola.2010.02.005 DOI

Kiss T, Hernesz P, Sümeghy B, Györgyövics K, Sipos G. The evolution of the Great Hungarian Plain fluvial system–Fluvial processes in a subsiding area from the beginning of the Weichselian. Quaternary International. 2015; 388:142–55. doi: 10.1016/j.quaint.2014.05.050 DOI

Petrovszki J, Timár G. Channel sinuosity of the Körös River system, Hungary/Romania, as possible indicator of the neotectonic activity. Geomorphology. 2010; 122:223–30. doi: 10.1016/j.geomorph.2009.11.009 DOI

Kiss T, Sümeghy B, Sipos G. Late Quaternary paleodrainage reconstruction of the Maros River alluvial fan. Geomorphology. 2014; 204:49–60. doi: 10.1016/j.geomorph.2013.07.028 DOI

Micheli E, Fuchs M, Hegymegi P, Stefanovits P. Classification of the Major Soils of Hungary and their Correlation with the World Reference Base for Soil Resources (WRB). Agrokémia és Talajtan. 2006; 55:19–28. doi: 10.1556/Agrokem.55.2006.1.3 DOI

Krasilnikov PV, Michélí E. Soil Classification of Hungary. In: Krasilnikov PV, Martí J-JI, Arnold R, Shoba S, editors. A Handbook of Soil Terminology, Correlation and Classification. Sterling (USA): Earthscan; 2009. pp. 170–5.

Mádl-Szőnyi J, Tóth J, Pogácsás G. Soil and wetland salinization in the framework of the Danube-Tisza Interfluve hydrogeologic type section. Central European Geology. 2008; 51:203–17. doi: 10.1556/CEuGeol.51.2008.3.3 DOI

Nyári D, Kiss T, Sipos G. Investigation of Holocene blown-sand movement based on archaeological findings and OSL dating, Danube-Tisza Interfluve, Hungary. Journal of Maps. 2007; 3:46–57. doi: 10.1080/jom.2007.9711028 DOI

Bánffy E. The beginnings of salt exploitation in the Carpathian basin (6th-5th millennium BC). Doc praeh. 2015; 42. doi: 10.4312/dp.42.13 DOI

Pásztor L, Laborczi A, Bakacsi Z, Szabó J, Illés G. Compilation of a national soil-type map for Hungary by sequential classification methods. Geoderma. 2018; 311:93–108. doi: 10.1016/j.geoderma.2017.04.018 DOI

Dobos E, Micheli E, Baumgardner M., F., Biehl L, Helt T. Use of combined digital elevation model and satellite radiometric data for regional soil mapping. Geoderma. 2000; 97:367–91.

Magyari E. Late Quaternary Vegetation History in the Hortobágy Steppe and Middle Tisza Floodplain, NE Hungary. Studia bot. hung. 2011; 42:185–203.

Schofield R, Thomas DSG, Kirkby MJ. Causal processes of soil salinization in Tunisia, Spain and Hungary. Land Degrad Dev. 2001; 12:163–81. doi: 10.1002/ldr.446 DOI

Tóth T, Kuti L, Kabos L, Pásztor L. Use of Digitalized Hydrogeological Maps for Evaluation of Salt-Affected Soils of Large Areas. Arid Land Research and Management. 2001; 15:329–46. doi: 10.1080/153249801753127624 DOI

Pásztor L, Szabó J, Bakacsi Z, Laborczi A, Dobos E, Illés G, et al.. Elaboration of novel, countrywide maps for the satisfaction of recent demands on spatial, soil related information in Hungary. In: Arrouays D, McKenzie N, Hempel J, Richer de Forges AC, McBratney AB, editors. GlobalSoilMap. Basis of the global spatial soil information system: proceedings of the 1st GlobalSoilMap conference, Orléans, France, 7–9 October 2013. Boca Raton: CRC Presss; 2014. pp. 207–12.

Waltner I, Pásztor L, Centeri C, Takács K, Pirkó B, Koós S, et al.. Evaluating the new soil erosion map of Hungary-A semiquantitative approach. Land Degrad Dev. 2018; 29:1295–302. doi: 10.1002/ldr.2916 DOI

Laborczi A, Szatmári G, Kaposi AD, Pásztor L. Comparison of soil texture maps synthetized from standard depth layers with directly compiled products. Geoderma. 2019; 352:360–72. doi: 10.1016/j.geoderma.2018.01.020 DOI

EGDI. Hydrogeological Map of Europe (IHME 1500). Geological Survey Organisations of Europe; 2020.

USGS. Aster GDEM; 2020.

Laborczi A, Szatmári G, Takács K, Pásztor L. Mapping of topsoil texture in Hungary using classification trees. Journal of Maps. 2016; 12:999–1009. doi: 10.1080/17445647.2015.1113896 DOI

CLC. Corine Land Monitoring Service. Corine Land Cover; 2018.

Wollák K. The Protection of Cultural Heritage by Legislative Methods in Hungary. In: Jerem E, editor. Archaeological and cultural heritage preservation. Within the light of new technologies; selected papers from the joint Archaeolingua-EPOCH workshop; 27 September—2 October 2004, Százhalombatta, Hungary. Budapest: Archaeolingua; 2006. pp. 73–82. doi: 10.1098/rsos.171738 DOI

Bánffy E, Raczky P. The crisis and changes in cultural heritage legislation in Hungary: cul-de-sac or solution. In: Schlanger N, Aitchison K, editors. Archaeology and the global economic crisis. Multiple impacts, possible solutions. Tervuren: Culture Lab Editions; 2010. pp. 81–6. doi: 10.1097/BPO.0b013e3181c6318c DOI

Kreiter A. The Hungarian Archaeology Database. Internet Archaeol. 2021. doi: 10.11141/ia.58.9 DOI

Czifra S, Fábián S. Towards a new Horizon: development-led large scale excavation policy in Hungary post-1990’s. In: Horňák M, Guermandi MP, Stäuble H, Depaepe P, Novaković P, et al.., editors. Recent developments in preventive archaeology in Europe. Proceedings of the 22nd EAA Meeting in Vilnius, 2016. 1st ed. Ljubljana: Znanstvena založba Filozofske fakultete; Birografika Bori; 2016. pp. 219–31. doi: 10.1007/s11255-015-1144-4 DOI

Wollák K, Raczky P. Large-scale preventive excavations in Hungary. In: Bofinger J, Krausse D, editors. Large-scale excavations in Europe: Fieldwork strategies and scientific outcome. Proceedings of the International Conference Esslingen am Neckar, Germany, 7th-8th October 2008. Brussel: Europae Archaeologiae Consilium (EAC); 2012. pp. 115–36.

Bánffy E, Gyucha A, Csiky G. Fundamental Modifications to Archaeological Heritage Protection Regulations in Hungary: A Brief Report. Int J Cult Prop. 2011; 18:425–8. doi: 10.1017/S0940739111000403 DOI

Kempf M. Modeling multivariate landscape affordances and functional ecosystem connectivity in landscape archeology. Archaeol Anthropol Sci. 2020; 12:1–21. doi: 10.1007/s12520-020-01127-w DOI

Kempf M. Fables of the past: landscape (re-)constructions and the bias in the data. Documenta Praehistorica. 2020; 47:476–92. doi: 10.4312/dp.47.27 DOI

Kempf M. The application of GIS and satellite imagery in archaeological land-use reconstruction: A predictive model. Journal of Archaeological Science: Reports. 2019; 25:116–28. doi: 10.1016/j.jasrep.2019.03.035 DOI

van Leusen PM. Unbiasing the Archaeological Record. Archeologia e Calcolatori. 1996:129–36.

Crema ER, Bevan A, Lake MW. A probabilistic framework for assessing spatio-temporal point patterns in the archaeological record. Journal of Archaeological Science. 2010; 37:1118–30. doi: 10.1016/j.jas.2009.12.012 DOI

Bevan A, Conolly J. Multiscalar Approaches to Settlement Pattern Analysis. In: Lock G, Molyneaux BL, editors. Confronting Scale in Archaeology. Issues of Theory and Practice. New York: Springer; 2006. pp. 217–34.

Conolly J, Lake M. Geographical Information Systems in Archaeology. Cambridge: Cambridge University Press; 2006.

Lucio PS, Brito NLC de. Detecting Randomness in Spatial Point Patterns: A “Stat-Geometrical” Alternative. Mathematical Geology. 2004; 36:79–99. doi: 10.1023/B:MATG.0000016231.05785.e4 DOI

Knitter D, Nakoinz O. Point Pattern Analysis as Tool for Digital Geoarchaeology: A Case Study of Megalithic Graves in Schleswig-Holstein, Germany. In: Siart C, Forbriger M, Bubenzer O, editors. Digital geoarchaeology. New techniques for interdisciplinary human-environmental research. Cham, Switzerland: Springer; 2018. pp. 45–64.

Nakoinz O, Knitter D. Modelling Human Behaviour in Landscapes. Basic Concepts and Modelling Elements. Cham, s.l.: Springer International Publishing; 2016.

Bevan A, Crema ER, Li X, Palmisano A. Intensities, Interactions and Uncertainties: Some New Approaches to Archaeological Distributions. In: Bevan A, Lake M, editors. Computational Approaches to Archaeological Spaces. Walnut Creek: Left Coast Press; 2013. p. 23.

Carrero-Pazos M. Density, intensity and clustering patterns in the spatial distribution of Galician megaliths (NW Iberian Peninsula). Archaeol Anthropol Sci. 2019; 11:2097–108. doi: 10.1007/s12520-018-0662-2 DOI

Herzog I, Yépez A. Least-Cost Kernel Density Estimation and Interpolation-Based Density Analysis Applied to Survey Data. In: Contreras F, editor. CAA 2010. Fusion of cultures; proceedings of the 38th Annual Conference on Computer Applications and Quantitative Methods in Archaeology, Granada, Spain, April 2010. Oxford: Archaeopress; 2013. pp. 367–74.

Baxter MJ, Beardah CC, Wright RVS. Some Archaeological Applications of Kernel Density Estimates. Journal of Archaeological Science. 1997; 24:347–54. doi: 10.1006/jasc.1996.0119 DOI

Yamada I, Thill J-C. Comparison of planar and network K-functions in traffic accident analysis. Journal of Transport Geography. 2004; 12:149–58. doi: 10.1016/j.jtrangeo.2003.10.006 DOI

Bailey TC, Gatrell AC. Interactive spatial data analysis. Harlow: Longman; 1995. PubMed

Ripley BD. Modelling Spatial Patterns. Journal of the Royal Statistical Society. Series B (Methodological). 1977; 39:172–212.

Marcon E, Traissac S, Lang G. A Statistical Test for Ripley’s K Function Rejection of Poisson Null Hypothesis. ISRN Ecology. 2013; 2013:1–9. doi: 10.1155/2013/753475 DOI

Ripley BD. The second-order analysis of stationary point processes. Journal of Applied Probability. 1976; 13:255–66.

Baddeley A, Rubak E, Turner R. Spatial point patterns. Methodology and applications with R. Boca Raton, London, New York: CRC Press Taylor & Francis Group; 2016.

Dixon PM. Ripley’s K function. In: Shaarawi AHe, Piegorsch WW, editors. Encyclopedia of environmetrics. Chichester: Wiley; 2002. pp. 1796–803.

Baddeley A, Turner R. spatstat: An R Package for Analyzing Spatial Point Patterns. J Stat Soft. 2005; 12. doi: 10.18637/jss.v012.i06 DOI

Baddeley A. Analysing spatial point patterns in R. Workshop Notes. 2008.

Hartmann K, Krois J, Waske B. E-Learning Project SOGA: Statistics and Geospatial Data Analysis. epartment of Earth Sciences, Freie Universitaet Berlin; 2018.

Baddeley A, Chang Y-M, Song Y, Turner R. Nonparametric estimation of the dependence of a spatial point process on spatial covariates. Statistics and Its Interface. 2012; 5:221–36. doi: 10.4310/SII.2012.v5.n2.a7 DOI

Massey FJ. The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association. 1951; 46:68. doi: 10.2307/2280095 DOI

Vargha A, Delaney HD. A Critique and Improvement of the CL Common Language Effect Size Statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics. 2000; 25:101–32.

Torchiano M. Effsize—A Package For Efficient Effect Size Computation. Zenodo; 2016.

Baddeley A. Analysing spatial point patterns in R. Workshop Notes. 2010.

Pebesma E. sf. CRAN; 2021.

Bozán C, Takács K, Körösparti J, Laborczi A, Túri N, Pásztor L. Integrated spatial assessment of inland excess water hazard on the Great Hungarian Plain. Land Degrad Dev. 2018; 29:4373–86. doi: 10.1002/ldr.3187 DOI

Wickham H. ggplot2. Elegant graphics for data analysis. Cham: Springer; 2016.

Geofabrik. OSM. Karlsruhe: Geofabrik; 2020.

Bánffy E. Tracing 6th–5th millennium BC salt exploitation in the Carpathian Basin. In: Harding A, Kavruk V, editors. Explorations in salt archaeology in the Carpathian Zone. Budapest: Archaeolingua Alapítvány; 2013. pp. 201–7.

Harding A. Salt exploitation in the later prehistory of the Carpathian Basin. Documenta Praehistorica. 2015:211–7.

Bánffy E, Osztás A, Oross K, Zalai-Gaál I, Marton T, Nyerges ÉA, et al.. The Alsónyék story: towards the history of a persistent place. In: Römisch-Germanische Kommission des Deutschen Archäologischen Instituts, editor. Bericht der Römisch-Germanischen Kommission, Band 94/2013. 1st ed. Frankfurt am Main: Henrich; 2016. pp. 283–318.

Osztás A. Alsónyék-Bátaszék településtörténete, épületeinek komplex elemzése a lengyeli kultúra összefüggésében. The settlement history of Alsónyék-Bátaszék, complex analysis of its buildings in the context of the Lengyel culture. PhD thesis. Budapest; 2019.

Gyucha A. Prehistoric village social dynamics. The Early Copper Age in the Körös region. Budapest: Archaeolingua Alapítvány; 2015.

van Leusen M, Kamermans H. Predictive modelling for archaeological heritage management. A research agenda. Amersfoort: ROB; 2005. doi: 10.1039/b512135c DOI

Cowley DC. What Do the Patterns Mean? Archaeological Distributions and Bias in Survey Data. In: Forte M, Campana S, editors. Digital Methods and Remote Sensing in Archaeology. Cham: Springer International Publishing; 2016. pp. 147–70.

Ujházy N, Biró M. The ‘Cursed Channel’: utopian and dystopian imaginations of landscape transformation in twentieth-century Hungary. Journal of Historical Geography. 2018; 61:1–13. doi: 10.1016/j.jhg.2018.01.001 DOI

Cegielska K, Noszczyk T, Kukulska A, Szylar M, Hernik J, Dixon-Gough R, et al.. Land use and land cover changes in post-socialist countries: Some observations from Hungary and Poland. Land Use Policy. 2018; 78:1–18. doi: 10.1016/j.landusepol.2018.06.017 DOI

Raczky P. Körös Culture Research History. In: Anders A, Siklósi Z, editors. The Körös culture in eastern Hungary. Oxford: Archaeopress; 2012. pp. 9–38.

Raczky P. Neolithic settlement patterns in the Tisza Region of Hungary. In: Aspes A, editor. Settlement patterns between the Alps and the Black Sea 5th to 2nd Millennium B.C. symposium = Modelli insediativi tra Alpi e Mar Nero dal 5° al 2° millennio A.C.: atti del simposio internazionale, Verona 1991. Milano: Milano: Univ. degli Studi; Verona: Museo Civico di Storia Naturale; 1995. pp. 77–86.

Kalicz N. Die Körös-Starcevo-Kulturen und ihre Beziehungen zur Linearbandkeramik. Nachr. Niedersachsens Urgesch. 1983:91–130.

Whittle A, Bartosiewicz L, Borić D, Pettitt P, Richards MP. In the beginning: new radiocarbon dates for the Early Neolithic in northern Serbia and south-east Hungary. Antaeus. 2002; 25:63–118.

Oross K, Siklósi Z. Relative and absolute chronology of the Early Neolithic in the Great Hungarian Plain. In: Anders A, Siklósi Z, editors. The Körös culture in eastern Hungary. Oxford: Archaeopress; 2012. pp. 129–59.

Osztás A, Bánffy E, Zalai-Gaál I, Oross K, Marton T, Somogyi K. Alsónyék-Bátaszék: introduction to a major Neolithic settlement complex in south-east Transdanubia, Hungary. Bericht der Römisch-Germanischen Komission. 2016:7–21.

Oross K, Bánffy E, Osztás A, Marton T, Nyerges ÉA, Köhler K, et al.. The early days of Neolithic Alsónyék: the Starčevo occupation. Bericht der Römisch-Germanischen Komission. 2016:93–121.

Sümegi P, Persaits G, Gulyás S. Woodland-Grassland Ecotonal Shifts in Environmental Mosaics: Lessons Learnt from the Environmental History of the Carpathian Basin (Central Europe) During the Holocene and the Last Ice Age Based on Investigation of Paleobotanical and Mollusk Remains. In: Myster RW, editor. Ecotones between forest and grassland. New York, NY: Springer; 2012. pp. 17–57.

Araus JL, Febrero A, Catala M, Molist M, Voltas J, Romagosa I. Crop water availability in early agriculture: evidence from carbon isotope discrimination of seeds from a tenth millennium BP site on the Euphrates. Glob Chang Biol. 1999; 5:201–12.

Roberts N, Rosen A. Diversity and Complexity in Early Farming Communities of Southwest Asia: New Insights into the Economic and Environmental Basis of Neolithic Çatalhöyük. Current Anthropology. 2009; 50:393–402. doi: 10.1086/598606 DOI

Wallace MP, Jones G, Charles M, Fraser R, Heaton THE, Bogaard A. Stable Carbon Isotope Evidence for Neolithic and Bronze Age Crop Water Management in the Eastern Mediterranean and Southwest Asia. PLoS ONE. 2015; 10:e0127085. doi: 10.1371/journal.pone.0127085 . PubMed DOI PMC

Bakels C. The first farmers of the Northwest European Plain: some remarks on their crops, crop cultivation and impact on the environment. Journal of Archaeological Science. 2014; 51:94–7. doi: 10.1016/j.jas.2012.08.046 DOI

Saqalli M, Salavert A, Bréhard S, Bendrey R, Vigne J-D, Tresset A. Revisiting and modelling the woodland farming system of the early Neolithic Linear Pottery Culture (LBK), 5600–4900 b.c. Veget Hist Archaeobot. 2014; 23:37–50. doi: 10.1007/s00334-014-0436-4 DOI

Gronenborn D. A Variation on a Basic Theme: The Transition to Farming in Southern Central Europe. J World Prehist. 1999; 13.

Schmidt MWI, Skjemstad JO, Jäger C. Carbon isotope geochemistry and nanomorphology of soil black carbon: Black chernozemic soils in central Europe originate from ancient biomass burning. Global Biogeochem Cycles. 2002; 16:70-1–70-8. doi: 10.1029/2002GB001939 DOI

Preston CM, Schmidt MWI. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences. 2006; 3:397–420.

Hammes K, Schmidt MWI, Smernik RJ, Currie LA, Ball WP, Nguyen TH, et al.. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochem Cycles. 2007; 21:n/a-n/a. doi: 10.1029/2006GB002914 DOI

Ochs K, Egger G, Weber A, Ferreira T, Householder JE, Schneider M. The potential natural vegetation of large river floodplains–From dynamic to static equilibrium. Journal of Hydro-environment Research. 2020; 30:71–81. doi: 10.1016/j.jher.2020.01.005 DOI

Kirby KJ. A model of a natural wooded landscape in Britain as influenced by large herbivore activity. Forestry. 2004; 77.

Gerling C, Doppler T, Heyd V, Knipper C, Kuhn T, Lehmann MF, et al.. High-resolution isotopic evidence of specialised cattle herding in the European Neolithic. PLoS ONE. 2017; 12:e0180164. doi: 10.1371/journal.pone.0180164 . PubMed DOI PMC

Doppler T, Gerling C, Heyd V, Knipper C, Kuhn T, Lehmann MF, et al.. Landscape opening and herding strategies: Carbon isotope analyses of herbivore bone collagen from the Neolithic and Bronze Age lakeshore site of Zurich-Mozartstrasse, Switzerland. Quaternary International. 2017; 436:18–28. doi: 10.1016/j.quaint.2015.09.007 DOI

Feurdean A, Grindean R, Florescu G, Tanţău I, Niedermeyer E, Diaconu A-C, et al.. The transformation of the forest steppe in the lower Danube Plain of south-eastern Europe: 6000 years of vegetation and land use dynamic. Biogeosciences. 2020. doi: 10.5194/bg-2020-239 DOI

Jakucs J, Bánffy E, Oross K, Voicsek V, Bronk Ramsey C, Dunbar E, et al.. Between the Vinča and Linearbandkeramik Worlds: The Diversity of Practices and Identities in the 54th-53rd Centuries cal BC in Southwest Hungary and Beyond. J World Prehist. 2016; 29:267–336. doi: 10.1007/s10963-016-9096-x . PubMed DOI PMC

Goldmann G, Szénászky JD. Die neolitische Esztár-Gruppe in Ostungarn. Jósa András Múzeum Évkönyve. 1994:225–30.

Domboróczki L. The radiocarbon data from Neolithic archaeological sites in Heves County (North-Eastern Hungary). Agria. 2003:5–76.

Füzesi A, Rassmann K, Bánffy E, Raczky P. Human activities on a Late Neolithic tell-like settlement complex of the Hungarian Plain (Öcsöd-Kováshalom). Oxford: Oxbow books; forthcoming.

Oross K, Osztás A, Marton T, Köhler K, Ódor JG, Szécsényi-Nagy A, et al.. Midlife changes: the Sopot burial ground at Alsónyék. In: Römisch-Germanische Kommission des Deutschen Archäologischen Instituts, editor. Bericht der Römisch-Germanischen Kommission, Band 94/2013. 1st ed. Frankfurt am Main: Henrich; 2016. pp. 151–78. doi: 10.1007/s10963-016-9096-x DOI

Barna JP. The formation of the Lengyel culture in south-western Transdanubia. Budapest: Archaeolingua Alapítvány; 2017.

Osztás A, Zalai-Gaál I, Bánffy E. Alsónyék-Bátaszék: a new chapter in the research of Lengyel culture. Doc praeh. 2012; 39:377. doi: 10.4312/dp.39.27 DOI

Kutzián I. The Early Copper Age Tiszapolgár culture in the Carpathian Basin. Budapest: Akadémiai Kiadó; 1972.

Smalley I, Marković SB, Svirčev Z. Loess is [almost totally formed by] the accumulation of dust. Quaternary International. 2011; 240:4–11. doi: 10.1016/j.quaint.2010.07.011 DOI

Sümegi P, Szilágyi G, Gulyás S, Jakab G, Molnár A. The Late Quaternary paleoecology and environmental history of Hortobágy, a unique mosaic alkaline steppe from the heart of the Carpathian Basin. In: Morales Prieto MB, Traba Diaz J, editors. Steppe ecosystems. Biological diversity, management and restoration. New York: Nova Publishers; 2013. pp. 165–93.

Kempf M. From landscape affordances to landscape connectivity: contextualizing an archaeology of human ecology. Archaeol Anthropol Sci. 2020; 12:310. doi: 10.1007/s12520-020-01157-4 DOI

Ingold T. The perception of the environment. Essays on livelihood, dwelling and skill. London: Routledge; 2011.

Llobera M. Exploring the topography of mind: GIS, social space and archaeology. Antiquity. 1996; 70:612–22. doi: 10.1017/S0003598X00083745 DOI

Llobera M. Life on a Pixel: Challenges in the Development of Digital Methods Within an “Interpretive” Landscape Archaeology Framework. J Archaeol Method Theory. 2012; 19:495–509. doi: 10.1007/s10816-012-9139-2 DOI

Knitter D, Bebermeier W, Krause J, Schütt B. Critical Physical Geography in Practice: Landscape Archaeology. In: Lave R, Biermann C, Lane SN, editors. The Palgrave handbook of critical physical geography. Cham: Palgrave Macmillan; 2018. pp. 179–200.

Arponen VPJ, Dörfler W, Feeser I, Grimm S, Groß D, Hinz M, et al.. Environmental determinism and archaeology. Understanding and evaluating determinism in research design. Arch DIal. 2019; 26:1–9. doi: 10.1017/S1380203819000059 DOI

DiNapoli RJ, Lipo CP, Brosnan T, Hunt TL, Hixon S, Morrison AE, et al.. Rapa Nui (Easter Island) monument (ahu) locations explained by freshwater sources. PLoS ONE. 2019; 14:e0210409. Epub 2019/01/10. doi: 10.1371/journal.pone.0210409 . PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...