Tracing mobility patterns through the 6th-5th millennia BC in the Carpathian Basin with strontium and oxygen stable isotope analyses

. 2020 ; 15 (12) : e0242745. [epub] 20201209

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33296396

The complexity of Neolithic population movements and their interpretation through material culture have been the subject of archaeological research for decades. One of the dominant narratives proposes that groups from the Starčevo-Körös-Criş complex spread from the central towards the northern Balkans in the Early Neolithic and eventually brought the Neolithic lifestyle into present-day Hungary. Broad geographical migrations were considered to shape the continuous expansion of Neolithic groups and individuals. However, recent archaeological research, aDNA, and isotope analyses challenged the synchronous appearance of specific material culture distributions and human movement dynamics through emphasizing communication networks and socio-cultural transformation processes. This paper seeks to retrace the complexity of Neolithic mobility patterns across Hungary by means of strontium and oxygen stable isotope analyses, which were performed on a total of 718 human dental enamel samples from 55 Neolithic sites spanning the period from the Starčevo to the Balaton-Lasinja culture in Transdanubia and from the Körös to the Tiszapolgár cultural groups on the Great Hungarian Plain (Alföld). This study presents the largest strontium and oxygen isotope sample size for the Neolithic Carpathian Basin and discusses human mobility patterns on various geographical scales and throughout archaeological cultures, chronological periods, and sex and gender categories in a multiproxy analysis. Based on our results, we discuss the main stages of the Neolithisation processes and particularly trace individual movement behaviour such as exogamy patterns within extensive social networks. Furthermore, this paper presents an innovative differentiation between mobility patterns on small, micro-regional, and supra-regional scales, which provides new insights into the complex organisation of Neolithic communities.

Zobrazit více v PubMed

Anders A, Siklósi Z, editors. The Körös culture in eastern Hungary. Oxford: Archaeopress, BAR International series 2334; 2012.

Bánffy E. The 6th Millennium BC boundary in Western Transdanubia and its role in the Central European transition (The Szentgyörgyvölgy-Pityerdomb settlement). Budapest: Varia Arch. Hung; 15; 2004. 10.1016/j.arthro.2004.08.001 DOI

Bánffy E. The Early Neolithic in the Danube-Tisza Interfluve. Oxford: Archaeopress, Archaeolingua Central European series 7; 2013.

Raczky P, Sümegi P, Bartosiewicz L, Gál E, Kaczanowska M, Kozłowski JK, et al. Ecological Barrier versus Mental Marginal Zone? Problems of the Northernmost Körös Culture Settlements in the Great Hungarian Plain. In: Gronenborn D, Petrasch J editors. Die Neolithisierung Mitteleuropas: Internationale Tagung, Mainz 24. bis 26. Juni 2005 = The Spread of the Neolithic to Central Europe; International Symposium, Mainz 24 June-26 June 2005. (RGZM-Tagungen, 4). Mainz: Verlag des Römisch-Germanischen Zentralmuseums; 2010. pp. 147–173.

Oross K, Bánffy E. Three successive waves of Neolithisation: LBK development in Transdanubia. Documenta Praehistorica. 2009;36: 175–189. 10.4312/dp.36.11 DOI

Szécsényi-Nagy A, Keerl V, Jakucs J, Brandt G, Bánffy E, Alt KW. Ancient DNA Evidence for a Homogeneous Maternal Gene Pool in Sixth Millennium cal BC Hungary and the Central European LBK. Proceedings of the British Academy. 2014;198: 71–93.

Szécsényi-Nagy A, Brandt G, Haak W, Keerl V, Jakucs J, Möller-Rieker S, et al. Tracing the genetic origin of Europe ‘s first farmers reveals insights into their social organization. Proceedings Royal Society B: Biological Sciences. 2015;282: 20150339 Available from: https://royalsocietypublishing.org/doi/10.1098/rspb.2015.0339 PubMed DOI PMC

Brandt G, Szécsényi-Nagy A, Alt KW, Haak W. Human paleogenetics of Europe. The known knowns and the known unknowns. Journal of Human Evolution. 2015;79: 73–92. 10.1016/j.jhevol.2014.06.017 PubMed DOI

Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S, Llamas B, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522(7555): 207–211. 10.1038/nature14317 PubMed DOI PMC

Lipson M, Szécsényi-Nagy A, Mallick S, Pósa A, Stégmár B, Keerl V, et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature. 2017;551(7680): 368–372. 10.1038/nature24476 PubMed DOI PMC

Mathieson I, Roodenberg SA, Posth C, Szécsényi-Nagy A, Rohland N, Mallick S, et al. The genomic history of Southeastern Europe. Nature. 2018;555(7695): 197–203. 10.1038/nature25778 PubMed DOI PMC

Kempf M, Depaermentier MLC, Alt KW, Bánffy E. Modelling a scale-based strontium isotope baseline map for Hungary. In preparation.

Kalicz N. Die Körös-Starcevo-Kulturen und ihre Beziehungen zur Linearbandkeramik. Nachr. Niedersachsens Urgesch. 1983;52: 91–130.

Whittle A, Bartosiewicz L, Borič D, Pettitt P, Richards M. In the Beginning: New Radiocarbon Dates for the Early Neolithic in Northern Serbia and South-East Hungary. Antaeus. 2002;25: 63–117.

Oross K, Siklósi Zs. Relative and absolute chronology of the Early Neolithic in the Great Hungarian Plain In: Anders A, Siklósi Zs, editors. The First Neolithic Sites in Central/South-East European Transect. Volume III The Körös Culture in Eastern Hungary. Oxford: Archaeopress, BAR IS 2334; 2012. pp. 129–159.

Jakucs J, Bánffy E, Oross K, Voicsek V, Bronk Ramsey Ch, Dunbar E, et al. Between the Vinča and Linearbandkeramik Worlds: The Diversity of Practices and Identities in the 54th–53rd Centuries cal BC in Southwest Hungary and Beyond. Journal of World Prehistory. 2016;27(3): 267–336. 10.1007/s10963-016-9096-x PubMed DOI PMC

Domboróczki L. The radiocarbon data from Neolithic archaeological sites in Heves County (North-Eastern Hungary). Agria. 2003;39: 5–76.

Goldman G, Szénászky J. Die neolitische Esztár-Gruppe in Ostungarn. Jósa András Múzeum Évkönyve. 1994;36: 225–230.

Vaday A, Bánffy E, Bartosiewicz L, T. Biró K, Gogaltan F., Horváth F, et al. Kompolt-Kistér: újkőkori telep. Eger: Újkőkori, bronzkori, szarmata és avar lelőhely. Leletmentő ásatás az M3 nyomvonalán (A Neolithic, Bronze age, Sarmatian and Avar site. Rescue excavation at the M3 motorway); 1999.

Füzesi A, Rassmann K, Bánffy E, Raczky P. Human activities on a Late Neolithic tell-like settlement complex of the Hungarian Plain (Öcsöd-Kováshalom). Oxford: Oxbow; Forthcoming.

Oross K, Simmer L, Straub P. Regionality in fluidity: the Linearbandkeramik site at Keszthely-Lendl Adolf út in western Hungary and its hinterland In: Bánffy E, Barna JP, editors. „Trans Lacum Pelsonem”. Prähistorische Forschungen in Südwestungarn (5500–500 v. Chr.)–Prehistoric Research in South-Western Hungary (5500–500 BC). Castellum Pannonicum Pelsonense, Bd. 7. Rahden/Westf.: Verlag Marie Leidorf; 2019. pp. 9–72. 10.1038/s41598-019-48409-5 DOI

Oross K, Osztás A, Marton T, Köhler K, Ódor JG, Szécsényi-Nagy A, et al. Midlife changes: the Sopot burial ground at Alsónyék. Bericht der Römisch-Germanischen Kommission. 2016;94: 151–178.

Barna JP. The Formation of the Lengyel Culture in south-western Transdanubia. Budapest: Archaeolingua; 2017.

Bánffy E, Osztás A, Oross K, Zalai-Gaál I, Marton T, Nyerges ÉÁ, et al. The Alsónyék story: towards the history of a persistent place. Bericht der Römisch-Germanischen Kommission. 2016;94: 283–318.

Osztás A, Zalai-Gaál I, Bánffy E. Alsónyék-Bátaszék. A new chapter in the research of Lengyel culture. Documenta Praehistorica. 2012;39: 377–396.

Depaermentier MLC, Osztás A, Bánffy E, Alt KW, Kempf M. Neolithic land-use, subsistence, and mobility patterns in Transdanubia: a multiproxy isotope and environmental analysis from Alsónyék–Bátaszék and Mórágy–Tűzkődomb. Journal of Archaeological Science: Reports. Forthcoming.

Kutzián I. The Early Copper Age Tiszapolgár culture in the Carpathian Basin. Budapest: Akadémiai Kiadó; 1972.

Gyucha A. Prehistoric Village Social Dynamics: The Early Copper Age in the Körös Region. Budapest: Archaeolingua; 2015.

Parkinson WA, Gyucha A, Yerkes RW. The transition to the Copper Age on the Great Hungarian Plain: The Körös regional archaeolgical project. Excavations at Vésztő-Bikeri and Körösladány-Bikeri, Hungary, 2000–2002. Journal of Field Archaeoology. 2004;29: 101–121.

Éry K, Kralovánszky A, Nemeskéri J. Történeti népességek rekonstrukciójának reprezentációja (A representative reconstruction of historic population). Anthropologiai Közlemények. 1963;7: 41–90.

Giblin JI. Strontium isotope analysis of Neolithic and Copper Age populations on the Great Hungarian Plain. Journal of Archaeological Science. 2009;36(2): 491–497. 10.1016/j.jas.2008.09.034 DOI

Giblin JI, Knudson KJ, Bereczki Z, Pálfi G, Pap I. Strontium isotope analysis and human mobility during the Neolithic and Copper Age: a case study from the Great Hungarian Plain. Journal of Archaeological Science. 2013;40(1): 227–239. 10.1016/j.jas.2012.08.024 DOI

Whittle A, Bentley RA, Cramp L, Domboróczki L, Hamilton J, Hedges R, et al. Hungary In: Bickle P, Whittle A, editors. The first farmers of central Europe: Diversity in LBK lifeways. Oakville, CT: Oxbow Books and the David Brown Book Company; 2013. pp. 49–100.

Gerling C, Bánffy E, Dani J, Köhler K, Kulcsár G, Pike AWG, et al. Immigration and transhumance in the Early Bronze Age Carpathian Basin: the occupants of a kurgan. Antiquity. 2012;86(334): 1097–1111. 10.1017/S0003598X00048274 DOI

Evans J, Stoodley N, Chenery C. A strontium and oxygen isotope assessment of a possible fourth century immigrant population in a Hampshire cemetery, southern England. Journal of Archaeological Science. 2006;33: 265–272.

Gerling C. Prehistoric mobility and diet in the West Eurasian steppes 3500 to 300 BC: An isotopic approach. (Topoi, 25). Berlin: De Gruyter; 2015.

Bowen GJ. The Online Isotope in Precipitation Calculator, Version 3.1, 2017. [last accessed: 21.10.2019]. In: WaterIsotopes.org [Internet]. 2017. Available from: http://www.waterisotopes.org.

Bowen GJ, Revenaugh J. Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research. 2003;39(10): 1299 10.129/2003WR002086 DOI

Bowen GJ, Wilkinson B. Spatial distribution of δ18O in meteoric precipitation. Geology. 2002;30(4): 315–318.

Bowen GJ, Wasenaar LI, Hobson KA. Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia. 2005;143: 337–348. 10.1007/s00442-004-1813-y PubMed DOI

Price TD, Knipper C, Grupe G, Smrčka V. Strontium isotopes and prehistoric human migration the Bell Beaker Period in Central Europe. European Journal of Archaeology. 2004;7(1): 9–40.

Price TD, Burton JH, Bentley RA. The Characterization of Biologically Available Strontium Isotope Ratios for the Study of Prehistoric Migration. Archaeometry. 2002;44(1): 117–135.

Ericson JE. Strontium isotope characterization in the study of prehistoric human ecology. Journal of Human Evolution. 1985;14(5): 503–514.

Price TD, Frei KM, Tiesler V, Gestsdóttir H. Isotopes and mobility. Case studies with large samples In: Kaiser E, Burger J, Schier W, editors. Population Dynamics in Prehistory and Early History. New Approaches by Using Stable Isotopes and Genetic; Berlin, Boston; 2012. pp. 311–321.

Bentley RA. Strontium Isotopes from the Earth to the Archaeological Skeleton. A Review. Journal of archaeological Method and Theory. 2006;13(3): 135–187.

Montgomery J. Passports from the past. Investigating human dispersals using strontium isotope analysis of tooth enamel. Annals of Human Biology. 2010;37(3): 325–346. 10.3109/03014461003649297 PubMed DOI

Knipper C. Sampling for stable isotope analyses in archaeology. Information potential, strategies, and documentation In: Molodin VI, Hansen S, editors. Multidisciplinarnye metody v archeologii novejšie itogi i perspektivy. Materialy Meždunarodnogo simpoziuma "Multidisciplinarnye metody v archeologii: novejšie itogi i perspektivy" (22–26 ijunja 2015 g. g. Novosibirsk). Novosibirsk; 2017. pp. 84–94.

Brönnimann D, Knipper C, Pichler SL, Röder B, Rissanen H, Stopp B, et al. The lay of land. Strontium isotope variability in the dietary catchment of the Late Iron Age proto-urban settlement of Basel-Gasfabrik, Switzerland. Journal of Archaeological Science: Reports. 2018;17: 279–292.

Maurer AF, Galer SK, Knipper C, Beierlein L, Nunn EV, Peters D, et al. Bioavailable 87Sr/86Sr in different environmental samples—effects of anthropogenic contamination and implications for isoscapes in past migration studies. The Science of the Total Environment. 2012;433: 216–229. 10.1016/j.scitotenv.2012.06.046 PubMed DOI

Knipper C, Maurer AF, Peters D, Meyer C, Brauns M, Galer SG, et al. Mobility in Thuringia or mobile Thuringians: a strontium isotope study from early Medieval central Germany In: Kaiser E, Burger J, Schier W, editors. Migrations in Prehistory and Early History. Stable Isotopes and Population Genetics. Berlin: De Gruyter; 2012. pp. 293–317.

Knipper C, Meyer C, Jacobi F, Roth C, Fecher M, Schatz K, et al. Social differentiation and land use at an Early Iron Age “princely seat”: bioarchaeological investigations at the Glauberg (Germany). Journal of Archaeological Science. 2014;41: 818–835.

Fricke HC O ’Neil JR. The correlation between 18O/16O ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time. Earth Planetary Science Letters. 1999;170(3): 181–196.

Kohn MJ, Welker JM. On the temperature correlation of δ18O in modern precipitation. Earth and Planetary Science Letters. 2005;231: 87–96.

Luz B, Kolodny Y, Horowitz M. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta. 1984;48: 1689–1693

Chenery CA, Pashley V, Lamb AL, Sloane HJ, Evans JA. The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite. Rapid Communications in Mass Spectrometry. 2012;26: 309–319. 10.1002/rcm.5331 PubMed DOI

Longinelli A. Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta. 1984;48: 385–390.

D’Angela D, Longinelli A. Oxygen isotopes in living mammal’s bone phosphate: further results. Chemical Geology. 1990;86: 75–82.

Knipper C, Pichler SI, Brönnimann D, Rissanen H, Rosner M, Spichtig N, et al. A knot in a network: Residential mobility at the Late Iron Age proto-urban centre of Basel-Gasfabrik (Switzerland) revealed by isotope analyses. Journal of Archaeological Sciences: Reports. 2018;17: 735–753.

Chenery CA, Müldner G, Evans J, Eckardt H, Lewis M. Strontium and stable isotope evidence for diet and mobility in Roman Gloucester, UK. Journal of Archaeological Science. 2010;37: 150–163.

Pellegrini M, Pouncett J, Jay M, Parker Pearson M, Richards MP. Tooth enamel oxygen “isoscapes” show a high degree of human mobility in prehistoric Britain. Scientific Reports. 2016;6(34986): 1–9. 10.1038/srep34986 PubMed DOI PMC

Cahill Wilson J, Standish CD. Mobility and migration in late Iron Age and early Medieval Ireland. Journal of Archaeological Science: Reports. 2016;6: 230–241.

Hemer KA, Evans JA, Chenery CA, Lamb AL. No Man is an island: evidence of pre-Viking Age migration to the Isle of Man. Journal of Archaeological Science. 2014;52: 242–249.

Vohberger MA. Lokal oder eingewandert? Interpretationsmöglichkeiten und Grenzen lokaler Strontium- und Sauerstoffisotopensignaturen am Beispiel einer Altgrabung in Wenigumstadt. Doc. Thesis: The University of München; 2011. Available from: https://edoc.ub.uni-muenchen.de/12741/.

IAEA. 2020. Global Network of Isotopes in Rivers. The GNIR Database. [Last accessed: 03.02.2020]. In: IAEA/WISER [Internet]. Available from: https://nucleus.iaea.org/wiser.

IAEA/WMO. 2019. Global Network of Isotopes in Precipitation. The GNIP Database. [Last accessed: 24.11.2019]. In: IAEA/WISER [Internet]. Accessible from: https://nucleus.iaea.org/wiser.

Rank D, Wyhlidal S, Schott K, Jung M, Heiss G, Tudor M. A 50 Years’ Isotope Record of the Danube River Water and Its Relevance for Hydrological, Climatological and Environmental Research. Acta Zoologica Bulgarica, Suppl. 2014;7: 109–115.

Pollard AM, Pellegrini M, Lee-Thorp JA. Technical note: some observations on the conversion of dental enamel δ18Op values to δ18Ow to determine human mobility. American Journal of Physisical Anthropology. 2011;145: 499–504. PubMed

Britton K, Fuller BT, Tütken T, Mays S, Richards MP. Oxygen isotope analysis of human bone phosphate evidences weaning age in archaeological populations. American Journal of Physical Anthropology. 2015;157(2): 226–241. 10.1002/ajpa.22704 PubMed DOI

Bickle P, Whittle A, editors. The first farmers of central Europe: Diversity in LBK lifeways. Cardiff Studies in Archaeology. Oakville, CT: Oxbow Books and the David Brown Book Company; 2013.

Willmes M, Bataille CP, James HF, Moffat I, McMorrow L, Kinsley L, et al. Mapping of bioavailable strontium isotope ratios in France for archaeological provenance studies. Applied Geochemistry. 2018;90: 75–86.

Alt KW, Knipper C, Peters D, Müller W, Maurer AF, Kollig I, et al. Lombards on the move–an integrative study of the migration period cemetery at Szólád, Hungary. PloS One. 2014;9(11): e110793 Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110793 PubMed PMC

Kalicz N, Raczky P. The Late Neolithic of the Tisza Region: A survey of recent archaeological research In: Tálas L., Raczky P., editors. The Late Neolithic of the Tisza Region. Szolnok; 1987. pp. 11–30.

Bánffy E. A unique southeastern vessel type from early chalcolithic Transdanubia: data on the “western route”. Acta Arch. Hung. 2002;53: 41–60.

Bánffy E. Eastern, Central and Western Hungary–variations of Neolithisation models. Documenta Praehistorica. 2006;33: 125–142.

Jakucs J, Oross K, Bánffy E, Whittle A. Rows with the neighbours: the short lives of longhouses at the Neolithic site of Versend-Gilencsa. Antiquity. 2018;92(361): 91–117.

Nehlich O, Montgomery J, Evans J, Schade-Lindig S, Pichler SL, Richards MP, et al. Mobility or Migration–A case study from the Neolithic settlement of Nieder-Mörlen (Hessen, Germany). Journal of Archaeological Science. 2009;36: 1791–1799.

Brettell R, Evans J, Marzinzik S, Lamb A, Montgomery J. ‘Impious Easterners’. Can Oxygen and Strontium Isotopes Serve as Indicators of Provenance in Early Medieval European Cemetery Populations? European Journal of Archaeology. 2012;15(1): 117–145.

Schuh C. Tracing human mobility and cultural diversity after the fall of the Western Roman Empire: a multi-isotopic investigation of early medieval cemeteries in the Upper Rhine Valley. Doc. Thesis: University of Kiel; 2014. Available from: https://macau.uni-kiel.de/receive/diss_mods_00014701.

Borič D, Price TD. Strontium isotopes document greater human mobility at the start of the Balkan Neolithic, PNAS February 26 2013;110(9): 3298–3303. Available from: 10.1073/pnas.1211474110 PubMed DOI PMC

Voerkelius S, Lorenz GD, Rummel S, Quetel CR, Heiss G, Baxter M, et al. Strontium isotopic signatures of natural mineral waters, the reference to a simple geological map and its potential for authentication of food. Food Chemistry. 2010;118: 933–940.

Jakucs J, Voicsek V. The northermost distribution of the early Vinča Culture in the Danube valley: a preliminary study from Szederkény-Kukorica-dűlő (Baranya County, southern Hungary). Antaeus. 2015;33: 13–54.

Kalicz N, Makkay J. Die Linienbandkeramik in der Großen Ungarischen Tiefebene. Budapest: Verlag der Ungarischen Akademie der Wissenschaften; 1977.

Zoffmann Z. Az Alfoldi Vonaldiszes Keramia Felsővadasz-Vardomb lelőhelyen feltart kettős temetkezesenek embertani leletei. Herman Otto Muzeum Evk. 2000;39: 103–115.

Domboróczki L. Settlement Structures of the Alföld Linear Pottery Culture (ALPC) in Heves County (North-Eastern Hungary): Development Models and Historical Reconstructions on Micro- Meso- and Macrolevels. Polska Akademia Umiejetnósci, Prace Komisji Prehistorii Karpat. 2009;5: 75–127.

Bentley RA. Mobility and the diversity of early Neolithic lives: isotopic evidence from skeletons. Journal of Anthropological Archaeology. 2013;32: 303–12.

Bentley RA, Bickle P, Fibiger L, Nowell GM, Dale CW, Hedges REM, et al. Community differentiation and kinship among Europe’s first farmers. Proceedings of the National Academy of Sciences of the United States of America. 2012;109: 9326–9330. 10.1073/pnas.1113710109 PubMed DOI PMC

Scholtz R. Előzetes beszámoló a Tiszadob, Ó-Kenéz lelőhelyen 2006-2007-ben végzett feltárásokról—Preliminary report on the excavations conducted at Tiszadob, Ó-Kenéz in 2006–2007. Rég. Kut. 2007: 35–68.

Kovács Á. Középső neolit temetkezések Cegléd-Abony térségében. Studia Comitatensia. 2011;31: 49–81.

Zalai-Gaál I. Die neolithische Gräbergruppe-B1 von Mórágy-Tüzködomb. I. Die archäologischen Funde und Befunde. Szekszárd-Saarbrücken; 2002.

Kempf M. Neolithic land-use, landscape development, and environmental dynamics in the Carpathian Basin. Journal of Archaeological Science: Reports. 2020;34(A): 102637.

Brettell R, Montgomery J, Evans J. Brewing and stewing: the effect of culturally mediated behaviour on the oxygen isotope composition of ingested fluids and the implications for human provenance studies. Journal of Analytical Atomic Specrometry. 2012;27(5): 778–785.

Daux V, Lécuyer C, Héran MA, Amiot R, Simon L, Fourel F, et al. Oxygen isotope fractionation between human phosphate and water revisited. Journal of Human Evolution. 2008;55: 1138–1147. 10.1016/j.jhevol.2008.06.006 PubMed DOI

Wright LE, Schwarcz HP. Stable carbon and oxygen isotopes in human tooth enamel: identifying breastfeeding and weaning in prehistory. American Journal of Physical Anthropology. 1998;106: 1–18. 10.1002/(SICI)1096-8644(199805)106:1<1::AID-AJPA1>3.0.CO;2-W PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace