Network of large pedigrees reveals social practices of Avar communities

. 2024 May ; 629 (8011) : 376-383. [epub] 20240424

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, historické články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38658749
Odkazy

PubMed 38658749
PubMed Central PMC11078744
DOI 10.1038/s41586-024-07312-4
PII: 10.1038/s41586-024-07312-4
Knihovny.cz E-zdroje

From AD 567-568, at the onset of the Avar period, populations from the Eurasian Steppe settled in the Carpathian Basin for approximately 250 years1. Extensive sampling for archaeogenomics (424 individuals) and isotopes, combined with archaeological, anthropological and historical contextualization of four Avar-period cemeteries, allowed for a detailed description of the genomic structure of these communities and their kinship and social practices. We present a set of large pedigrees, reconstructed using ancient DNA, spanning nine generations and comprising around 300 individuals. We uncover a strict patrilineal kinship system, in which patrilocality and female exogamy were the norm and multiple reproductive partnering and levirate unions were common. The absence of consanguinity indicates that this society maintained a detailed memory of ancestry over generations. These kinship practices correspond with previous evidence from historical sources and anthropological research on Eurasian Steppe societies2. Network analyses of identity-by-descent DNA connections suggest that social cohesion between communities was maintained via female exogamy. Finally, despite the absence of major ancestry shifts, the level of resolution of our analyses allowed us to detect genetic discontinuity caused by the replacement of a community at one of the sites. This was paralleled with changes in the archaeological record and was probably a result of local political realignment.

ARC Centre of Excellence for Australian Biodiversity and Heritage College of Arts Society and Education James Cook University Cairns Queensland Australia

BirthRites Lise Meitner Research Group Max Planck Institute for Evolutionary Anthropology Leipzig Germany

Curt Engelhorn Center for Archaeometry gGmbH Mannheim Germany

Department of Archaeogenetics Max Planck Institute for Evolutionary Anthropology Leipzig Germany

Department of Archaeology and Museology Faculty of Arts Masaryk University Brno Czechia

Department of Art History Istanbul Medeniyet University Istanbul Turkey

Department of Biological Anthropology ELTE Eötvös Loránd University Budapest Hungary

Department of Biological Anthropology University of Szeged Szeged Hungary

Department of Genetics Max Planck Institute for Evolutionary Anthropology Leipzig Germany

Department of Geological Sciences University of Cape Town Rondebosch South Africa

Department of History University of Vienna Vienna Austria

Department of Human Behavior Ecology and Culture Max Planck Institute for Evolutionary Anthropology Leipzig Germany

Hungarian National Museum Budapest Hungary

Institute for Advanced Study Princeton NJ USA

Institute for Medieval Research Austrian Academy of Sciences Vienna Austria

Institute of Archaeogenomics HUN REN Research Centre for the Humanities Budapest Hungary

Institute of Archaeological Sciences ELTE Eötvös Loránd University Budapest Hungary

Institute of Archaeology HUN REN Research Centre for the Humanities Budapest Hungary

Institute of History HUN REN Research Centre for the Humanities Budapest Hungary

MOE Key Laboratory of Contemporary Anthropology Department of Anthropology and Human Genetics School of Life Sciences Fudan University Shanghai China

Zobrazit více v PubMed

Pohl, W. The Avars: A Steppe Empire in Central Europe 567–822 (Cornell Univ. Press, 2018).

Krader L. Principles and structures in the organization of the Asiatic steppe-pastoralists. Southwest. J. Anthropol. 1955;11:67–92. doi: 10.1086/soutjanth.11.2.3628962. DOI

Fowler C, et al. A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature. 2022;601:584–587. doi: 10.1038/s41586-021-04241-4. PubMed DOI PMC

Mittnik A, et al. Kinship-based social inequality in Bronze Age Europe. Science. 2019;366:731–734. doi: 10.1126/science.aax6219. PubMed DOI

Rivollat M, et al. Extensive pedigrees reveal the social organization of a Neolithic community. Nature. 2023;620:600–606. doi: 10.1038/s41586-023-06350-8. PubMed DOI PMC

Pohl, W., Krause, J., Vida, T. & Geary, P. Integrating genetic, archaeological, and historical perspectives on eastern central Europe, 400–900 ad. Hist. Stud. Cent. Eur.1, 213–228 (2021).

Curta F. Ethnicity in the steppe lands of the northern Black Sea region during the early Byzantine Times. Archaeol. Bulgarica. 2019;23:33–70.

Vida, T. in The Other Europe in the Middle Ages: Avars, Bulgars, Khazars, and Cumans (ed. Curta, F.) 13–46 (Brill, 2008).

Daim, F. in The Transformation of the Roman World (eds Goetz, H.-W. et al.) 463–570 (Brill, 2003).

Gnecchi-Ruscone GA, et al. Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites. Cell. 2022;185:1402–1413. doi: 10.1016/j.cell.2022.03.007. PubMed DOI PMC

Balogh, C. A Duna-Tisza Köze Avar Kori Betelepülésének Problémái. PhD thesis, Eötvös Loránd Univ. (2013).

Lezsák, G. M. Avarok a Herke-Tónál. A Kunszállás-Fülöpjakabi Avar Temető Története (Antológia, 2008).

Mácsai, V. A Rákóczifalva-Bagi-földek 8A avar temetőjének feldolgozása. Master thesis, Eötvös Loránd Univ. Budapest (2012).

Rácz, Z. & Szenthe, G. Avar temető Hajdúnánás határában. Commun. Archaeol. Hung.2009, 309–335 (2009).

Hajdu, T., Guba, Z. & Pap, I. A hajdúnánási avar temető embertani leletei. Preprint at Commun. Archaeol. Hung.2009, 339–358 (2009).

Popli D, Peyrégne S, Peter BM. KIN: a method to infer relatedness from low-coverage ancient DNA. Genome Biol. 2023;24:10. doi: 10.1186/s13059-023-02847-7. PubMed DOI PMC

Weisberg, D. E. Levirate Marriage and the Family in Ancient Judaism (Brandeis Univ. Press, 2009).

Гмыря, Л. Б. Страна гуннов у Каспийских ворот: Прикаспийский Дагестан в эпоху Великого переселения народов (Dagestanskoe Knizhnoe Izdatel Stvo, 1995).

Commercio ME. ‘Don’t become a lost specimen!’: polygyny and motivational interconnectivity in Kyrgyzstan. Cent. Asian Surv. 2020;39:340–360. doi: 10.1080/02634937.2020.1777088. DOI

Holmgren, J. in Marriage and Inequality in Chinese Society (eds Watson, R. S. & Ebrey, P. B.) 58–96 (Univ. California Press, 1991).

Taşbaş E. The Turkic kinship system. Acta Orient. 2019;72:245–258. doi: 10.1556/062.2019.72.2.6. DOI

Fadlan, A. I. Mission to the Volga (NYU Press, 2017).

Maróti Z, et al. The genetic origin of Huns, Avars, and conquering Hungarians. Curr. Biol. 2022;32:2858–2870. doi: 10.1016/j.cub.2022.04.093. PubMed DOI

Massy K, Friedrich R, Mittnik A, Stockhammer PW. Pedigree-based Bayesian modelling of radiocarbon dates. PLoS ONE. 2022;17:e0270374. doi: 10.1371/journal.pone.0270374. PubMed DOI PMC

Ventresca Miller AR, Makarewicz CA. Intensification in pastoralist cereal use coincides with the expansion of trans-regional networks in the Eurasian Steppe. Sci Rep. 2019;9:8363. doi: 10.1038/s41598-018-35758-w. PubMed DOI PMC

Szenthe G, Gáll E. A (needle) case in point: transformations in the Carpathian Basin during the early Middle Ages (late Avar period, 8th−9th century ad) Eur. J. Archaeol. 2021;24:345–366. doi: 10.1017/eaa.2021.3. DOI

Gnecchi-Ruscone GA, et al. Ancient genomic time transect from the Central Asian Steppe unravels the history of the Scythians. Sci. Adv. 2021;7:eabe4414. doi: 10.1126/sciadv.abe4414. PubMed DOI PMC

Depaermentier MLC, Kempf M, Bánffy E, Alt KW. Tracing mobility patterns through the 6th–5th millennia BC in the Carpathian Basin with strontium and oxygen stable isotope analyses. PLoS ONE. 2020;15:e0242745. doi: 10.1371/journal.pone.0242745. PubMed DOI PMC

Gulyás, B. Cultural connections between the Eastern European steppe region and the Carpathian Basin in the 5th–7th centuries AD: the origin of the Early Avar Period population of the Trans-Tisza region. Diss. Archaeol.3, 701–756 (2024).

Stark, S. in From the Huns to the Turks: Mounted Warriors in Europe and Central Asia (eds Daim, F. et al.) 59–87 (Tagungen des Landesmuseums für Vorgeschichte Halle, 2021).

Csiky, G. in Crossing Boundaries: Mounted Nomads in Central Europe, their Eastern Roots and Connections (eds Daim, F. & Meller, H.) 33–44 (Tagungen des Landesmuseums für Vorgeschichte Halle, 2022).

Vida, T. in Crossing Boundaries: Mounted Nomads in Central Europe, their Eastern Roots and Connections (eds Daim, F. & Meller, H.) 260–275 (Tagungen des Landesmuseums für Vorgeschichte Halle, 2022).

Bóna I. Avar lovassír Iváncsáról. Archaeol. Értesítő. 1970;97:243–261.

R Core Team. R: A Language and Environment for Statistical Computinghttps://www.R-project.org/ (R Foundation for Statistical Computing, 2022).

Dabney J, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA. 2013;110:15758–15763. doi: 10.1073/pnas.1314445110. PubMed DOI PMC

Rohland N, Glocke I, Aximu-Petri A, Meyer M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 2018;13:2447–2461. doi: 10.1038/s41596-018-0050-5. PubMed DOI

Gansauge M-T, et al. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res. 2017;45:e79. PubMed PMC

Gansauge M-T, Aximu-Petri A, Nagel S, Meyer M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 2020;15:2279–2300. doi: 10.1038/s41596-020-0338-0. PubMed DOI

DeAngelis MM, Wang DG, Hawkins TL. Solid-phase reversible immobilization for the isolation of PCR products. Nucleic Acids Res. 1995;23:4742–4743. doi: 10.1093/nar/23.22.4742. PubMed DOI PMC

Fu Q, et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA. 2013;110:2223–2227. doi: 10.1073/pnas.1221359110. PubMed DOI PMC

Haak W, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–211. doi: 10.1038/nature14317. PubMed DOI PMC

Fu Q, et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature. 2015;524:216–219. doi: 10.1038/nature14558. PubMed DOI PMC

Fellows Yates JA, et al. Reproducible, portable, and efficient ancient genome reconstruction with nf–core/eager. PeerJ. 2021;9:e10947. doi: 10.7717/peerj.10947. PubMed DOI PMC

Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes. 2016;9:88. doi: 10.1186/s13104-016-1900-2. PubMed DOI PMC

Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013;29:1682–1684. doi: 10.1093/bioinformatics/btt193. PubMed DOI PMC

Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15:356. doi: 10.1186/s12859-014-0356-4. PubMed DOI PMC

Renaud G, Slon V, Duggan AT, Kelso J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 2015;16:224. doi: 10.1186/s13059-015-0776-0. PubMed DOI PMC

Kloss-Brandstätter A, et al. HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum. Mutat. 2011;32:25–32. doi: 10.1002/humu.21382. PubMed DOI

Chen H, Lu Y, Lu D, Xu S. Y-LineageTracker: a high-throughput analysis framework for Y-chromosomal next-generation sequencing data. BMC Bioinformatics. 2021;22:114. doi: 10.1186/s12859-021-04057-z. PubMed DOI PMC

Link, V. et al. ATLAS: analysis tools for low-depth and ancient samples. Preprint at bioRxiv10.1101/105346 (2017).

Martiniano R, De Sanctis B, Hallast P, Durbin R. Placing ancient DNA sequences into reference phylogenies. Mol. Biol. Evol. 2022;39:msac017. doi: 10.1093/molbev/msac017. PubMed DOI PMC

Jeong C, et al. The genetic history of admixture across inner Eurasia. Nat. Ecol. Evol. 2019;3:966–976. doi: 10.1038/s41559-019-0878-2. PubMed DOI PMC

Lazaridis I, et al. Genomic insights into the origin of farming in the ancient Near East. Nature. 2016;536:419–424. doi: 10.1038/nature19310. PubMed DOI PMC

Patterson N, et al. Ancient admixture in human history. Genetics. 2012;192:1065–1093. doi: 10.1534/genetics.112.145037. PubMed DOI PMC

Allentoft ME, et al. Population genomics of Bronze Age Eurasia. Nature. 2015;522:167–172. doi: 10.1038/nature14507. PubMed DOI

Amorim CEG, et al. Understanding 6th-century barbarian social organization and migration through paleogenomics. Nat. Commun. 2018;9:3547. doi: 10.1038/s41467-018-06024-4. PubMed DOI PMC

de Barros Damgaard P, et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science. 2018;360:eaar7711. doi: 10.1126/science.aar7711. PubMed DOI PMC

de Barros Damgaard P, et al. 137 ancient human genomes from across the Eurasian steppes. Nature. 2018;557:369–374. doi: 10.1038/s41586-018-0094-2. PubMed DOI

Fu Q, et al. The genetic history of Ice Age Europe. Nature. 2016;534:200–205. doi: 10.1038/nature17993. PubMed DOI PMC

Jeong C, et al. Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proc. Natl. Acad. Sci. USA. 2018;115:E11248–E11255. doi: 10.1073/pnas.1813608115. PubMed DOI PMC

Jeong C, et al. A dynamic 6,000-year genetic history of Eurasia’s eastern steppe. Cell. 2020;183:890–904. doi: 10.1016/j.cell.2020.10.015. PubMed DOI PMC

Krzewińska M, et al. Ancient genomes suggest the eastern Pontic-Caspian steppe as the source of western Iron Age nomads. Sci. Adv. 2018;4:eaat4457. doi: 10.1126/sciadv.aat4457. PubMed DOI PMC

Lamnidis TC, et al. Ancient Fennoscandian genomes reveal origin and spread of Siberian ancestry in Europe. Nat. Commun. 2018;9:5018. doi: 10.1038/s41467-018-07483-5. PubMed DOI PMC

Li J, et al. The genome of an ancient Rouran individual reveals an important paternal lineage in the Donghu population. Am. J. Phys. Anthropol. 2018;166:895–905. doi: 10.1002/ajpa.23491. PubMed DOI

Mathieson I, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499–503. doi: 10.1038/nature16152. PubMed DOI PMC

Mathieson I, et al. The genomic history of southeastern Europe. Nature. 2018;555:197–203. doi: 10.1038/nature25778. PubMed DOI PMC

McColl H, et al. The prehistoric peopling of Southeast Asia. Science. 2018;361:88–92. doi: 10.1126/science.aat3628. PubMed DOI

Narasimhan VM, et al. The formation of human populations in South and Central Asia. Science. 2019;365:eaat7487. doi: 10.1126/science.aat7487. PubMed DOI PMC

Ning C, et al. Ancient genomes from northern China suggest links between subsistence changes and human migration. Nat. Commun. 2020;11:2700. doi: 10.1038/s41467-020-16557-2. PubMed DOI PMC

Zhang F, et al. The genomic origins of the Bronze Age Tarim Basin mummies. Nature. 2021;599:256–261. doi: 10.1038/s41586-021-04052-7. PubMed DOI PMC

Raghavan M, et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature. 2014;505:87–91. doi: 10.1038/nature12736. PubMed DOI PMC

Sikora M, et al. The population history of northeastern Siberia since the Pleistocene. Nature. 2019;570:182–188. doi: 10.1038/s41586-019-1279-z. PubMed DOI PMC

Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190. doi: 10.1371/journal.pgen.0020190. PubMed DOI PMC

Lazaridis I, et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature. 2014;513:409–413. doi: 10.1038/nature13673. PubMed DOI PMC

Reich D, et al. Reconstructing Native American population history. Nature. 2012;488:370–374. doi: 10.1038/nature11258. PubMed DOI PMC

Harney É, Patterson N, Reich D, Wakeley J. Assessing the performance of qpAdm: a statistical tool for studying population admixture. Genetics. 2021;217:iyaa045. doi: 10.1093/genetics/iyaa045. PubMed DOI PMC

Loh P-R, et al. Inferring admixture histories of human populations using linkage disequilibrium. Genetics. 2013;193:1233–1254. doi: 10.1534/genetics.112.147330. PubMed DOI PMC

Hellenthal G, et al. A genetic atlas of human admixture history. Science. 2014;343:747–751. doi: 10.1126/science.1243518. PubMed DOI PMC

Liang M, Nielsen R. The lengths of admixture tracts. Genetics. 2014;197:953–967. doi: 10.1534/genetics.114.162362. PubMed DOI PMC

Iasi LNM, Ringbauer H, Peter BM. An extended admixture pulse model reveals the limitations to human–Neandertal introgression dating. Mol. Biol. Evol. 2021;38:5156–5174. doi: 10.1093/molbev/msab210. PubMed DOI PMC

Jun G, Wing MK, Abecasis GR, Kang HM. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 2015;25:918–925. doi: 10.1101/gr.176552.114. PubMed DOI PMC

Kelleher J, Etheridge AM, McVean G. Efficient coalescent simulation and genealogical analysis for large sample sizes. PLoS Comput. Biol. 2016;12:e1004842. doi: 10.1371/journal.pcbi.1004842. PubMed DOI PMC

Caballero M, et al. Crossover interference and sex-specific genetic maps shape identical by descent sharing in close relatives. PLoS Genet. 2019;15:e1007979. doi: 10.1371/journal.pgen.1007979. PubMed DOI PMC

Ringbauer H, Novembre J, Steinrücken M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 2021;12:5425. doi: 10.1038/s41467-021-25289-w. PubMed DOI PMC

Hui R, D’Atanasio E, Cassidy LM, Scheib CL, Kivisild T. Evaluating genotype imputation pipeline for ultra-low coverage ancient genomes. Sci. Rep. 2020;10:18542. doi: 10.1038/s41598-020-75387-w. PubMed DOI PMC

da Mota, B. S. et al. Imputation of ancient human genomes. Nat. Commun.14, 3660 (2023). PubMed PMC

Childebayeva A, et al. Population genetics and signatures of selection in early Neolithic European farmers. Mol. Biol. Evol. 2022;39:msac108. doi: 10.1093/molbev/msac108. PubMed DOI PMC

Rubinacci S, Ribeiro DM, Hofmeister RJ, Delaneau O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 2021;53:120–126. doi: 10.1038/s41588-020-00756-0. PubMed DOI

The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74. doi: 10.1038/nature15393. PubMed DOI PMC

Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–2993. doi: 10.1093/bioinformatics/btr509. PubMed DOI PMC

Ringbauer, H. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet.56, 143–151 (2023). PubMed PMC

Shannon P, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC

Csárdi G, Nepusz T. The igraph software package for complex network research. InterJournal Complex Systems. 2006;1695:1–9.

Brown TA, Nelson DE, Vogel JS, Southon JR. Improved collagen extraction by modified Longin method. Radiocarbon. 1988;30:171–177. doi: 10.1017/S0033822200044118. DOI

Kromer B, Lindauer S, Synal HA, Wacker L. MAMS – a new AMS facility at the Curt-Engelhorn-Centre for Achaeometry, Mannheim, Germany. Nucl. Instrum. Methods Phys. Res. B. 2013;294:11–13. doi: 10.1016/j.nimb.2012.01.015. DOI

Bronk Ramsey C. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009;51:337–360. doi: 10.1017/S0033822200033865. DOI

Reimer PJ, et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP) Radiocarbon. 2020;62:725–757. doi: 10.1017/RDC.2020.41. DOI

Pin C, Briot D, Bassin C, Poitrasson F. Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal. Chim. Acta. 1994;298:209–217. doi: 10.1016/0003-2670(94)00274-6. DOI

Copeland SR, et al. Strontium isotope investigation of ungulate movement patterns on the Pleistocene Paleo-Agulhas Plain of the Greater Cape Floristic Region, South Africa. Quat. Sci. Rev. 2016;141:65–84. doi: 10.1016/j.quascirev.2016.04.002. DOI

Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4:4.

Gnecchi-Ruscone, G. A. 2024_GnecchiRuscone_CarpathianBasinAvarPedigrees. GitHubhttps://github.com/poseidon-framework/community-archive/tree/master/2024_GnecchiRuscone_CarpathianBasinAvarPedigrees (2024)

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...