Long shared haplotypes identify the Southern Urals as a primary source for the 10th century Hungarians
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
R01 HG012287
NHGRI NIH HHS - United States
PubMed
39091721
PubMed Central
PMC11291037
DOI
10.1101/2024.07.21.599526
PII: 2024.07.21.599526
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
During the Hungarian Conquest in the 10th century CE, the early medieval Magyars, a group of mounted warriors from Eastern Europe, settled in the Carpathian Basin. They likely introduced the Hungarian language to this new settlement area, during an event documented by both written sources and archaeological evidence. Previous archaeogenetic research identified the newcomers as migrants from the Eurasian steppe. However, genome-wide ancient DNA from putative source populations has not been available to test alternative theories of their precise source. We generated genome-wide ancient DNA data for 131 individuals from candidate archaeological contexts in the Circum-Uralic region in present-day Russia. Our results tightly link the Magyars to people of the Early Medieval Karayakupovo archaeological horizon on both the European and Asian sides of the southern Urals. Our analyes show that ancestors of the people of the Karayakupovo archaeological horizon were established in the Southern Urals by the Iron Age and that their descendants persisted locally in the Volga-Kama region until at least the 14th century.
Broad Institute of MIT and Harvard; Cambridge MA 02142 USA
Department of Archaeogenetics Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
Department of Archaeology Kazan Federal University Kazan Republic of Tatarstan Russia
Department of Biology and Ecology Faculty of Science University of Ostrava; Ostrava Czechia
Department of Evolutionary Anthropology University of Vienna; Vienna Austria
Department of Genetics Harvard Medical School; Boston MA 02138 USA
Department of Human Evolutionary Biology Harvard University; Cambridge MA USA
Doctoral School of Biology ELTE Eötvös Loránd University; Budapest Hungary
Howard Hughes Medical Institute; Boston MA 02138 USA
Hungarian Prehistory Research group HUN REN Research Centre for the Humanities; Budapest Hungary
Institute of Archaeogenomics HUN REN Research Centre for the Humanities; Budapest Hungary
Institute of Archaeology National Academy of Sciences of Ukraine; Kyiv Ukraine
National Museum of Tatarstan Republic; Kazan Republic of Tatarstan Russia
National Museum of the Republic of Bashkortostan; Ufa Republic of Bashkortostan Russia
National Research Tomsk State University; Tomsk Russia
Research Laboratory of Archeology Samara National Research University; Samara Russia
Samara Regional Museum of History and Local Lore named after P 5 Alabin; Samara Russia
Samara State University of Social Sciences and Education; Samara Russia
Zobrazit více v PubMed
Fodor I., In Search of a New Homeland: The Prehistory of the Hungarian People and the Conquest. (Corvina Kiadó, 1982).
Kristó Gy., Hungarian History in the Ninth Century. (Szegedi Középkorász Műhely, 1996).
Olekszij K., A korai magyarság vándorlásának történeti és régészeti emlékei. (Martin Opitz Kiadó, 2018).
Langó P., Amit elrejt a Föld… A 10. századi magyarság anyagi kultúrájának régészeti kutatása a Kárpát-medencében. (L’Harmattan, 2007).
Türk A., Füredi Á., “Latest archaeological results on the origin of the Hungarian people in the Eurasian contex” in Nomadic Empires of Eurasia in Archaeological and Interdisciplinary Studies: volume of the IV International Congress of Medieval Archeology of the Eurasian Steppes, dedicated to the 100th Anniversary of the Russian Academic Archeology (Ulan-Ude, September 16–21, 2019). (Publishing House of BSC SB RAS, 2019) pp. 93–96.
Türk A., “A korai magyar történelem régészeti kutatásainak aktuális eredményei és azok lehetséges nyelvészeti vonatkozásai (Recent advances in archaeological research on early Hungarian history and their potential linguistic relevance)” in Párhuzamos történetek. Interdiszciplináris őstörténeti konferencia a PPKE Régészettudományi Intézetének szervezésében. Budapest, 2020. november 11–13. (Martin Opitz, 2021) pp. 163–204.
Kristó Gy., Levedi törzsszövetségétől Szent István államáig (Magvető, 1980).
Ivanov V. A., V. A., Drevnie ugry-mad’jary v Vostočnoj Evrope (Gilem, 1999).
Belavin A. M., A Ivanov V., Krylasova N. B., Ugri v Preduralya v drevnosti i srednie veka. (Bashk. gos. ped. univ., 2009).
Botalov S. G., “Pogrebalniy kompleks Uyelgi i nekotorie nablyudeniya na predmet ugorskogo i madyarskogo kulturgeneza (A Dél-Urál a 6–11. században. Észrevételek az ugor és a magyar népesség anyagi műveltségének kialakulásával kapcsolatban).” in Hadak útján XXIV. A népvándorláskor fiatal kutatóinak XXIV. konferenciája. Studia ad Archaeologiam Pazmaniensia 3.2. Magyar Tudományos Akadémia Bölcsészettudományi Kutatóközpont Magyar Őstörténeti Témacsoport Kiadványok (Archaeolingua, 2017) pp. 267–334. 10.55722/Arpad.Kiad.2017.3.2_13 DOI
Türk A., Régészeti eredmények a magyar őstörténet kutatásában, lehetséges nyelvészeti vonatkozásokkal, Magyar Nyelv 2023:4, pp. 385–402. 10.18349/MagyarNyelv.2023.4.385 DOI
Zimony I., A magyarság korai történetének sarokpontjai. Magyar Őstörténeti Könyvtár 28. (Balassi Kiadó, 2014) p. 245.
Ligeti L., A magyarság őstörténete (Franklin Társulat, 1943) p. 289.
Czeglédy K., Magyar őstörténeti tanulmányok. Budapest Oriental Reprints. Series A 2. (Kőrösi Csoma Társaság-MTA Könyvtára,1985) p. 367.
Németh Gy., A honfoglaló magyarság kialakulása (Akadémiai Kiadó, 1991) p. 397.
Róna-Tas A., Hungarians and Europe in the Early Middle Ages (Central European University Press, 1999) p. 566.
Tóth S. L., Levediától a Kárpát-medencéig. Szegedi Középkortörténeti Könyvtár 14. (Szegedi Középkorász Műhely, 1998). p. 237.
Kuun G., Relationum Hungarorum cum oriente gentibusque orientalis originis I–II. (Kolozsvár, «Közművelődés» irodalmi és műnyomdai részvénytársaság, 1892). p. 225.
Pauler Gy., A magyar nemzet története Szent Istvánig. (A Magyar Tudományos Akadémia Könyvkiadó Vállalata, 1900). p. 276.
Vajay Sz., Der Eintritt des ungarischen Stämmebundes in die europäische Geschichte (862–933), Studia Hungarica 4. (Hase und Koehler, 1968). p. 173.
Toynbee A., Constantine Porphyrogenitus and His World. (Oxford University Press, 1973). p. 768.
Király P., A magyarok említése a Konstantin-legendában. Magyar Nyelv 70 (1974) pp. 1–11, 157–173, 269–285.
Botalov S. G., Lukinih A. A., Tideman Ye. V., Pogrebalniy kompleks mogilnika Uyelgi – noviy srednevekoviy pamyatnik v Yuzhnom Zauralye. Chelyabinskiy Gumanitarniy Nauchniy Zhurnal 2011:2 (15) (South Ural Federal University, Chelyabinsk, 2011). pp. 104–114.
Halikova E. A., Ősmagyar temető a Káma mentén, Magna Hungaria kérdéséhez. Archaeologiai Értesítő 103 (Akadémiai Kiadó, Budapest, 1976) pp. 53–78.
Fodor I., “Leletek Magna Hungáriától Etelközig” in Honfoglalás és régészet. A honfoglalásról sok szemmel 1. (Balassi Kiadó, 1994). pp. 47–65.
Kazakov Ye. P., Volzhskie bolgari, ugry i finny v IX–XIV vv. Problemi vzaimodeistviya. (Institut istorii im. Sh. Mardzhani AN RT, Kazan, 2007). p. 208.
Khalikov А. Kh., “Velikaya Vengriya mezhdu Volgoi i UralomArheologiya” in yevraziyskih stepei 27. (Tatarstan Academy of Sciences, Kazan, 2022). p. 160.
Bakró-Nagy M., A magyar nyelv finnugor és török összetevői történeti megvilágításban. Magyar Tudomány 182(2021)S1, 108–118 DOI: 10.1556/2065.182.2021.S1.11 DOI
Hautala R., Early Hungarian Information on the Beginning of the Western Campaign of Batu (1235–1242). Acta Orientalia Academiae Scientiarum Hungaricae. 69 (2016) pp. 183–199.
Allentoft M. E. et al., Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015). PubMed
Haak W. et al., Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015). PubMed PMC
Lazaridis I. et al., Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016). PubMed PMC
Mathieson I. et al., Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015). PubMed PMC
Martiniano R. et al., Genomic signals of migration and continuity in Britain before the Anglo-Saxons. Nat. Commun. 7, 10326 (2016). PubMed PMC
Sikora M. et al., Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science 358.6363 (2017): 659–662. (2017). PubMed
Unterländer M. et al., Ancestry and demography and descendants of Iron Age nomads of the Eurasian Steppe. Nat. Commun. 8, 14615 (2017). PubMed PMC
Amorim C. E. G. et al., Understanding 6th-century barbarian social organization and migration through paleogenomics. Nat. Commun. 9, 3547 (2018). PubMed PMC
Damgaard P. D. B. et al., 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374 (2018). PubMed
Ebenesersdóttir S. S. et al., Ancient genomes from Iceland reveal the making of a human population. Science 360, 1028–1032 (2018). PubMed
Haber M. et al., Continuity and Admixture in the Last Five Millennia of Levantine History from Ancient Canaanite and Present-Day Lebanese Genome Sequences. Am. J. Hum. Genet. 101, 274–282 (2017). PubMed PMC
Jeong C. et al., Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proc. Natl. Acad. Sci. 115, (2018). PubMed PMC
Krzewińska M. et al., Ancient genomes suggest the eastern Pontic-Caspian steppe as the source of western Iron Age nomads. Sci. Adv. 4, eaat4457 (2018). PubMed PMC
Lamnidis T. C. et al., Ancient Fennoscandian genomes reveal origin and spread of Siberian ancestry in Europe. Nat. Commun. 9, 5018 (2018). PubMed PMC
McColl H. et al., The prehistoric peopling of Southeast Asia. Science 361, 88–92 (2018). PubMed
Mittnik A. et al., The genetic prehistory of the Baltic Sea region. Nat. Commun. 9, 442 (2018). PubMed PMC
Tambets K. et al., Genes reveal traces of common recent demographic history for most of the Uralic-speaking populations. Genome Biol. 19, 139 (2018). PubMed PMC
Veeramah K. R. et al., Population genomic analysis of elongated skulls reveals extensive female-biased immigration in Early Medieval Bavaria. Proc. Natl. Acad. Sci. 115, 3494–3499 (2018). PubMed PMC
Antonio M. L. et al., Ancient Rome: A genetic crossroads of Europe and the Mediterranean. Science 366, 708–714 (2019). PubMed PMC
Järve M. et al., Shifts in the Genetic Landscape of the Western Eurasian Steppe Associated with the Beginning and End of the Scythian Dominance. Curr. Biol. 29, 2430–2441.e10 (2019). PubMed
Jeong C. et al., The genetic history of admixture across inner Eurasia. Nat. Ecol. Evol. 3, 966–976 (2019). PubMed PMC
Narasimhan V.M. et al., The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019). PubMed PMC
Ning C. et al., Ancient Genomes Reveal Yamnaya-Related Ancestry and a Potential Source of Indo-European Speakers in Iron Age Tianshan. Curr. Biol. 29, 2526–2532.e4 (2019). PubMed
Saag L. et al., The Arrival of Siberian Ancestry Connecting the Eastern Baltic to Uralic Speakers further East. Curr. Biol. 29, 1701–1711.e16 (2019). PubMed PMC
Jeong C. et al., A Dynamic 6,000-Year Genetic History of Eurasia’s Eastern Steppe. Cell 183, 890–904.e29 (2020). PubMed PMC
Margaryan A. et al., Population genomics of the Viking world. Nature 585, 390–396 (2020). PubMed
Gnecchi-Ruscone G. A. et al., Ancient genomic time transect from the Central Asian Steppe unravels the history of the Scythians. Sci. Adv. 7, eabe4414 (2021). PubMed PMC
Kılınç G. M. et al., Human population dynamics and Yersinia pestis in ancient northeast Asia. Sci. Adv. 7, eabc4587 (2021). PubMed PMC
Patterson N. et al., Large-scale migration into Britain during the Middle to Late Bronze Age. Nature 601, 588–594 (2022). PubMed PMC
Wang C.-C. et al., Genomic insights into the formation of human populations in East Asia. Nature 591, 413–419 (2021). PubMed PMC
Antonio M. L. et al., Stable population structure in Europe since the Iron Age, despite high mobility. eLife 13, e79714 (2024). PubMed PMC
Gnecchi-Ruscone G. A. et al., Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites. Cell 185, 1402–1413.e21 (2022). PubMed PMC
Gretzinger J. et al., The Anglo-Saxon migration and the formation of the early English gene pool. Nature 610, 112–119 (2022). PubMed PMC
Kumar V. et al., Bronze and Iron Age population movements underlie Xinjiang population history. Science 376, 62–69 (2022). PubMed
Lazaridis I. et al., The genetic history of the Southern Arc: A bridge between West Asia and Europe. Science 377, eabm4247 (2022). PubMed PMC
Maróti Z. et al., The genetic origin of Huns, Avars, and conquering Hungarians. Curr. Biol. 32, 2858–2870.e7 (2022). PubMed
Moots H. M. et al., A genetic history of continuity and mobility in the Iron Age Central Mediterranean. Nature Ecology & Evolution 7.9 (2023): 1515–1524. PubMed
Gill H., Lee J., Jeong C., Reconstructing the Genetic Relationship between Ancient and Present-Day Siberian Populations. http://biorxiv.org/lookup/doi/10.1101/2023.08.21.554074 (2023) doi:10.1101/2023.08.21.554074. PubMed DOI PMC
Zeng T. C. et al., Postglacial genomes from foragers across Northern Eurasia reveal prehistoric mobility associated with the spread of the Uralic and Yeniseian languages. Preprint at 10.1101/2023.10.01.560332 (2023). DOI
Csáky V. et al., Early medieval genetic data from Ural region evaluated in the light of archaeological evidence of ancient Hungarians. Sci. Rep. 10, 19137 (2020). PubMed PMC
Szeifert B. et al., Tracing genetic connections of ancient Hungarians to the 6th–14th century populations of the Volga-Ural region. Hum. Mol. Genet. 31, 3266–3280 (2022). PubMed PMC
Fu Q. et al., An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015). PubMed PMC
Eisenmann S. et al., Reconciling material cultures in archaeology with genetic data: The nomenclature of clusters emerging from archaeogenomic analysis. Sci. Rep. 8, 13003 (2018). PubMed PMC
Rubinacci S. et al., Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021). PubMed
Ringbauer H. et al., Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet. 56, 143–151 (2024). PubMed PMC
Browning B. L., Browning S. R., Detecting Identity by Descent and Estimating Genotype Error Rates in Sequence Data. Am. J. Hum. Genet. 93, 840–851 (2013). PubMed PMC
Busby G. B. et al., Admixture into and within sub-Saharan Africa. eLife 5, e15266 (2016). PubMed PMC
Leslie S. et al., The fine-scale genetic structure of the British population. Nature 519.7543 (2015): 309–314. PubMed PMC
Patterson N. et al., Ancient Admixture in Human History. Genetics 192, 1065–1093 (2012). PubMed PMC
Peter B. M., Modelling complex population structure using F-statistics and Principal Component Analysis. Preprint at 10.1101/2021.07.13.452141 (2021). DOI
Peter B. M., Admixture, Population Structure, and F -Statistics. Genetics 202, 1485–1501 (2016). PubMed PMC
Harney É. et al., Assessing the performance of qpAdm: a statistical tool for studying population admixture. Genetics 217, iyaa045 (2021). PubMed PMC
Maier R. et al., On the limits of fitting complex models of population history to f-statistics. eLife 12, e85492 (2023). PubMed PMC
Alexander D. H. et al., Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009). PubMed PMC
Ringbauer H. et al., Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 12, 5425 (2021). PubMed PMC
Gnecchi-Ruscone G. A. et al., Network of large pedigrees reveals social practices of Avar communities. Nature 629, 376–383 (2024). PubMed PMC
Jacomy M. et al., ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLoS ONE 9, e98679 (2014). PubMed PMC
Traag V. A. et al., From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019). PubMed PMC
Yüncü E. et al., False Discovery Rates of qpAdm -Based Screens for Genetic Admixture. http://biorxiv.org/lookup/doi/10.1101/2023.04.25.538339 (2023) doi:10.1101/2023.04.25.538339 DOI
Horváth C., Szakony-Kavicsbánya cemetery from the age of the Hungarian conquest. Ephemeris Hungarologica: A Magyarságkutató Intézet Folyóirata. 1 (2). (2021). pp. 289–314.
Hoffmann I., A Tihanyi alapítólevél mint helynévtörténeti forrás. A Magyar Névarchívum Kiadványai 16. (Debreceni Egyetemi Kiadó, 2010). p. 262.
Tóth S. L., A magyar törzsszövetség politikai életrajza: a magyarság a 9–10. században. (Belvedere Meridionale, 2015). p. 632.
Sándor K., A török‒magyar nyelvi kapcsolatok újraértelmezésének lehetőségei in Párhuzamos történetek. Interdiszciplináris őstörténeti konferencia a PPKE Régészettudományi Intézetének szervezésében. Magyar Őstörténeti Kutatócsoport Kiadványok 2. (Martin Opitz, 2021). pp. 77–101.
Zelenkov A. S., Cultural genesis of forest-steppe and sub-taiga population of Tobolo-Irtysh in the Early Middle Ages, PhD thesis (in Russian), Tyumen State University, Tyumen: 2022, p. 395.
Garustovich G. N., “Ob etnicheskoi prinadlezhnosti rannemusulmanskih pamyatnikov Zapadnoy i Tsentralnoy Bashkirii” in ПProblemy drevnih ugrov na Yuzhnom Uralye. (BNTs UrO AN SSSR, Ufa, 1988). pp. 130‒139.
Garustovich G. N., Chiyalikskaya arheologicheskaya kultúra epohi srednevekovya na Yuzhnom Uralye. Ufa Archaeological Herald 15 (2015) pp. 181–198.
Kazakov Ye. P., Madyari i volzhskie bolgari: etapy vzaimodeistviya. In: II. Mezhdunarodniiy Madyarskiy simpozium: sbornik nauchnih trudov. (Chelyabinsk: 2013), p. 173–181.
Vásáry I., “A „keleti” magyarok problémaköre” in Magyarok a honfoglalás korában. (Helikon, 2015) p. 145.
Dabney J. et al., Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proceedings of the National Academy of Sciences 110.39 (2013): 15758–15763. PubMed PMC
Korlević P et al., Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59.2 (2015): 87–93. PubMed
Rohland N. et al., Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nature protocols 13.11 (2018): 2447–2461. PubMed
Rohland N. et al., Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philosophical Transactions of the Royal Society B: Biological Sciences 370.1660 (2015): 20130624. PubMed PMC
Rohland N. et al., Three assays for in-solution enrichment of ancient human DNA at more than a million SNPs. Genome Research 32.11–12 (2022): 2068–2078. PubMed PMC
Behar DM. et al., A “Copernican” reassessment of the human mitochondrial DNA tree from its root. The American Journal of Human Genetics 90.4 (2012): 675–684. PubMed PMC
Li H., Durbin R., Fast and accurate short read alignment with Burrows–Wheeler transform. bioinformatics 25.14 (2009): 1754–1760. PubMed PMC
Patterson N. et al., Population structure and eigenanalysis. PLoS genetics 2.12 (2006): e190. PubMed PMC
Chang C. C. et al., Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4.1 (2015): s13742–015. PubMed PMC
Li H. et al., A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27.21 (2011): 2987–2993. PubMed PMC
Bastian M. et al., Gephi: an open source software for exploring and manipulating networks. Proceedings of the international AAAI conference on web and social media. Vol. 3. No. 1. 2009.
Hagberg A. et al., Exploring network structure, dynamics, and function using NetworkX. No. LA-UR-08–05495; LA-UR-08–5495. Los Alamos National Laboratory (LANL), Los Alamos, NM (United States), 2008.
Ramsey C.B., Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37.2 (1995): 425–430.
Reimer P.J. et al., The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62.4 (2020): 725–757.