Ancient DNA reveals reproductive barrier despite shared Avar-period culture
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, historické články
PubMed
39814885
PubMed Central
PMC11864967
DOI
10.1038/s41586-024-08418-5
PII: 10.1038/s41586-024-08418-5
Knihovny.cz E-zdroje
- MeSH
- Asijci genetika MeSH
- běloch MeSH
- běloši genetika MeSH
- dějiny starověku MeSH
- genom lidský genetika MeSH
- hřbitovy dějiny MeSH
- kultura MeSH
- lidé MeSH
- migrace lidstva * dějiny MeSH
- pokrevní příbuzenství MeSH
- rodokmen * MeSH
- rozmnožování * genetika MeSH
- starobylá DNA * analýza MeSH
- Check Tag
- dějiny starověku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- Geografické názvy
- Rakousko MeSH
- Názvy látek
- starobylá DNA * MeSH
After a long-distance migration, Avars with Eastern Asian ancestry arrived in Eastern Central Europe in 567 to 568 CE and encountered groups with very different European ancestry1,2. We used ancient genome-wide data of 722 individuals and fine-grained interdisciplinary analysis of large seventh- to eighth-century CE neighbouring cemeteries south of Vienna (Austria) to address the centuries-long impact of this encounter1,2. We found that even 200 years after immigration, the ancestry at one site (Leobersdorf) remained dominantly East Asian-like, whereas the other site (Mödling) shows local, European-like ancestry. These two nearby sites show little biological relatedness, despite sharing a distinctive late-Avar culture3,4. We reconstructed six-generation pedigrees at both sites including up to 450 closely related individuals, allowing per-generation demographic profiling of the communities. Despite different ancestry, these pedigrees together with large networks of distant relatedness show absence of consanguinity, patrilineal pattern with female exogamy, multiple reproductive partnerships (for example, levirate) and direct correlation of biological connectivity with archaeological markers of social status. The generation-long genetic barrier was maintained by systematically choosing partners with similar ancestry from other sites in the Avar realm. Leobersdorf had more biological connections with the Avar heartlands than with Mödling, which is instead linked to another site from the Vienna Basin with European-like ancestry. Mobility between sites was mostly due to female exogamy pointing to different marriage networks as the main driver of the maintenance of the genetic barrier.
Curt Engelhorn Center for Archaeometry Mannheim Germany
Department of Anthropology Natural History Museum Vienna Vienna Austria
Department of Archaeogenetics Max Planck Institute for Evolutionary Anthropology Leipzig Germany
Department of Archaeology and Museology Faculty of Arts Masaryk University Brno Czech Republic
Department of Evolutionary Anthropology University of Vienna Vienna Austria
Doctoral School of Ecology and Evolution University of Vienna Vienna Austria
HEAS Human Evolution and Archaeological Science Network University of Vienna Vienna Austria
Institute for Advanced Study Princeton NJ USA
Institute for Austrian Historical Research University of Vienna Vienna Austria
Institute of Archaeological Sciences ELTE Eötvös Loránd University Budapest Hungary
Institute of Medieval Research Austrian Academy of Sciences Vienna Austria
School of Computer and Mathematical Sciences The University of Adelaide Adelaide Australia
Zobrazit více v PubMed
Gnecchi-Ruscone, G. A. et al. Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites. Cell185, 1402–1413.e21 (2022). PubMed PMC
Pohl, W. The Avars: A Steppe Empire in Central Europe 567–822 (Cornell Univ. Press, 2018).
Daim, F. Das Awarische Gräberfeld von Leobersdorf, NÖ (Verlag d. Österr. Akad. d. Wiss., 1987).
Daim, F. Die Awaren in Niederösterreich (Univ. Vienna, 1976).
Bálint, C. The Avars, Byzantium and Italy: A Study in Chorology and Cultural History (Institute of Archaeology Research Centre for the Humanities, HAS, 2019).
Wolfram, H. Grenzen und Räume. Geschichte Österreichs vor seiner Entstehung (Verlag Carl Ueberreuter, 1995).
Pohl, W. in Empires and Exchanges in Eurasian Late Antiquity: Rome, China, Iran, and the Steppe, ca. 250–750 (eds Di Cosmo, N. & Maas, M.) 189–205 (Cambridge Univ. Press, 2018).
Bollók, Á. A Century of Gold: The Rise and Glory of the Avar Khaganate in the Carpathian Basin (Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, 2021).
Vida, T. In Proc. Von den Hunnen zu den Türken: Reiterkrieger in Europa und Zentralasien: Internationale Konferenz am Römisch-Germanischen Zentralmuseum (eds Daim, F. et al.) 171–189 (Verlag des RGZM, 2021).
Gnecchi-Ruscone, G. A. et al. Network of large pedigrees reveals social practice of Avar communities. Nature629, 376–383 (2024). PubMed PMC
Szenthe, G. The ‘Late Avar reform’ and the ‘long eighth century’: a tale of the hesitation between structural transformation and the persistent nomadic traditions (7th to 9th century AD). Acta Archaeol.70, 215–250 (2019).
Geary, P. J. The Myth of Nations: The Medieval Origins of Europe (Princeton Univ. Press, 2002).
Pohl, W. In Strategies of Identification (eds Pohl, W. & Heydemann, G.), 1–64 (Brepols Publishers, 2013).
Reich, D. Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past (Oxford Univ. Press, 2018).
Geary, P. J. & Veeramah, K. Mapping European population movement through genomic research. Medieval Words4, 65–78 (2016).
Daim, F. In Regna and Gentes: The Relationship between Late Antique and Early Medieval Peoples and Kingdoms in the Transformation of the Roman World (eds Goetz, H.-W. et al.), 463–570 (Leiden, 2003).
Ning, C. et al. Ancient genomes from northern China suggest links between subsistence changes and human migration. Nat. Commun.11, 2700 (2020). PubMed PMC
Damgaard, P. et al. 137 ancient human genomes from across the Eurasian steppes. Nature522, 207 (2018). PubMed
Amorim, C. E. G. et al. Understanding 6th-century barbarian social organization and migration through paleogenomics. Nat. Commun.9, 3547 (2018). PubMed PMC
Lauermann, E. & Adler, H. in Kulturwandel in Mitteleuropa. Langobarden—Awaren—Slawen. Akten der Internationalen Tagung in Bonn vom 25. bis 28. Februar 2008 (eds Bemmann, J. & Schmauder, M.) 299–308 (Deutsches Archäologisches Institut, 2008).
Lazaridis, I. et al. A genetic probe into the ancient and medieval history of Southern Europe and West Asia. Science377, 940–951 (2022). PubMed PMC
Antonio, M. L. et al. Stable population structure in Europe since the Iron Age, despite high mobility. eLife13, e79714 (2024). PubMed PMC
Olalde, I. et al. Cosmopolitanism at the Roman Danubian Frontier, Slavic Migrations, and the Genomic Formation of Modern Balkan Peoples. Cell186, 5472–5485 (2023). PubMed PMC
Peltola, S. et al. Genetic admixture and language shift in the medieval Volga-Oka interfluve. Curr. Biol.33, 174–182.e10 (2023). PubMed
Kushniarevich, A. et al. Genetic heritage of the Balto-Slavic speaking populations: a synthesis of autosomal, mitochondrial and Y-chromosomal data. PLoS ONE10, e0135820 (2015). PubMed PMC
Vida, T. Late Roman territorial organisation and the settlement of the Barbarian Gentes in Pannonia. Hortus Artium Medievalium13, 319–331 (2007).
Vida, T. Survival of the Gepids in the Tisza region during the Avar period. In Proc. International Conference at Eötvös Loránd University, Budapest, Collapse - Reorganisation - Continuity. Gepids after the Fall of the Hun Empire (eds Vida, T. et al.) 495–512 (Casemate Academic, 2019).
Vyas, D. N. et al. Fine-scale sampling uncovers the complexity of migrations in 5th-6th century Pannonia. Curr. Biol.33, 3951–3961.e11 (2023). PubMed
Bede, I. Le cheval dans les pratiques funéraires de la période avare. Un nouveau regard sur les « sépultures de cavaliers » de Pannonie sud-orientale (Univ. Sorbonne, 2021).
Szenthe, G. Növényi Ornamentika a Késő Avar Kori Díszítőművészetben (Kr. U. 8. Század - 9. Század Eleje). Kultúrtörténeti Tanulmányok Vol. 3, 653 (Magyarságkutató Intézet, 2020).
Fancsalszky G. Állat-és emberábrázolás a késő avar kori öntött bronz övvereteken Vol. 1 (Martin Opitz Kiadó, 2007).
Daim, F. In Die Awaren am Rand der byzantinischen Welt. Studien zu Diplomatie, Handel und Technologietransfer im Frühmittelalter (The Avars on the Border of the Byzantine World) (ed. Daim, F.), 77–204 (Univ. Wagner, 2000).
Daim, F. in Typen der Ethnogenese unter besonderer Berücksichtigung der Bayern. Berichte des Symposions der Kommission für Frühmittelalterforschung, 27. bis 30. Oktober, 1986, Stift Zwettl, Niederösterreich (eds Friesinger, H. & Daim, F.) 273–303 (Verlag der Österreichischen Akademie der Wissenschaften, 1990).
Dekan, J. Herkunft und Ethnizität der gegossenen Bronzeindustrie des VIII. Jahrhunderts. Slov. Arch.20, 317–452 (1972).
Brather, S. in Antike im Mittelalter. Fortleben, Nachwirken, Wahrnehmung. 25 Jahre Forschungsverbund ‘Archäologie und Geschichte des ersten Jahrtausends in Südwestdeutschland’ (eds Brather, S. et al.), 217–234 (Thorbecke, 2014).
Fiedler, U. Studien zu Gräberfeldern des 6. bis 9. Jahrhunderts an der unteren Donau Vol. 11 (Verlag Dr. Rudolf Habelt, 1992).
Szameit, E. Frühmittelalterliche Slawen in Niederösterreich. Ein Beitrag zum Erscheinungsbild slawischer Populationen des 6.-8. Jahrhunderts in Ostösterreich. Arch. Österreich7, 21–28 (1996).
Brather, S. Archäologie der westlichen Slawen: Siedlung, Wirtschaft und Gesellschaft im früh- und hochmittelalterlichen Ostmitteleuropa (Walter de Gruyter, 2008).
Vida, T. & Völling, T. Das slawische Brandgräberfeld von Olympia Vol. 9 (Verlag Marie Leidorf, 2000).
Burmeister, S. Archaeology and migration: approaches to an archaeological proof of migration. Curr. Anthropol.41, 539–567 (2000).
Gretzinger, J. et al. The Anglo-Saxon migration and the formation of the early English gene pool. Nature610, 112–119 (2022). PubMed PMC
Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun.12, 5425 (2021). PubMed PMC
Wilkinson, J. C., Khazanov, A. M. & Crookenden, J. Nomads and the outside world. Geogr. J.151, 270 (1985).
Kara, D. S. The formation of modern Turkic ‘ethnic’ groups in Central and Inner Asia. Hung. Hist. Rev.7, 98–110 (2018).
Broadbridge, A. F. Women and the Making of the Mongol Empire (Cambridge Univ. Press, 2018).
Quale, G. R. A History of Marriage Systems (Bloomsbury Academic, 1988).
Evershed, R. P. et al. Dairying, diseases and the evolution of lactase persistence in Europe. Nature608, 336–345 (2022). PubMed PMC
Brooks, P. J., Enoch, M.-A., Goldman, D., Li, T.-K. & Yokoyama, A. The alcohol flushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS Med.6, e50 (2009). PubMed PMC
Burke, P. Cultural Hybridity (Wiley, 2013).
Anderson-Trocmé, L. et al. On the genes, genealogies, and geographies of Quebec. Science380, 849–855 (2023). PubMed
Bamford, S., Bamford, S. C. & Leach, J. Kinship and Beyond: The Genealogical Model Reconsidered (Berghahn Books, 2012).
Sahlins, M. What Kinship Is—And Is Not (Univ. of Chicago Press, 2013).
Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci.370, 20130624 (2015). PubMed PMC
Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature528, 499–503 (2015). PubMed PMC
Fellows Yates, J. A. et al. Reproducible, portable, and efficient ancient genome reconstruction with nf-core/eager. PeerJ9, e10947 (2021). PubMed PMC
Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes9, 88 (2016). PubMed PMC
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics25, 1754–1760 (2009). PubMed PMC
Schuenemann, V. J. et al. Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death. Proc. Natl Acad. Sci. USA108, E746–E752 (2011). PubMed PMC
Jun, G., Wing, M. K., Abecasis, G. R. & Kang, H. M. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res.25, 918–925 (2015). PubMed PMC
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics25, 2078–2079 (2009). PubMed PMC
Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol.16, 224 (2015). PubMed PMC
Rasmussen, M. et al. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science334, 94–98 (2011). PubMed PMC
Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res.44, W58–W63 (2016). PubMed PMC
Popli, D., Peyrégne, S. & Peter, B. M. KIN: a method to infer relatedness from low-coverage ancient DNA. Genome Biol.24, 10 (2023). PubMed PMC
Ringbauer, H. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet.56, 143–151 (2024). PubMed PMC
Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet.53, 120–126 (2021). PubMed
Link, V. et al. ATLAS: analysis tools for low-depth and ancient samples. Preprint at bioRxiv10.1101/105346 (2017).
1000 Genomes Project Consortium. A global reference for human genetic variation. Nature526, 68–74 (2015). PubMed PMC
Patterson, N. et al. Ancient admixture in human history. Genetics192, 1065–1093 (2012). PubMed PMC
Gnecchi-Ruscone, G. A. et al. Ancient genomic time transect from the Central Asian Steppe unravels the history of the Scythians. Sci. Adv.7, eabe4414 (2021). PubMed PMC
Leslie, S. et al. The fine-scale genetic structure of the British population. Nature519, 309–314 (2015). PubMed PMC
International Multiple Sclerosis Genetics Consortiumet al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature476, 214–219 (2011). PubMed PMC
Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet.42, 985–990 (2010). PubMed PMC
Urnikyte, A. et al. Patterns of genetic structure and adaptive positive selection in the Lithuanian population from high-density SNP data. Sci. Rep.9, 9163 (2019). PubMed PMC
Tamm, E. et al. Genome-wide analysis of Corsican population reveals a close affinity with Northern and Central Italy. Sci. Rep.9, 13581 (2019). PubMed PMC
Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature538, 201–206 (2016). PubMed PMC
Pagani, L. et al. Genomic analyses inform on migration events during the peopling of Eurasia. Nature538, 238–242 (2016). PubMed PMC
International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature467, 52–58 (2010). PubMed PMC
Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature526, 75–81 (2015). PubMed PMC
Kovacevic, L. et al. Standing at the gateway to Europe-the genetic structure of Western Balkan populations based on autosomal and haploid markers. PLoS ONE9, e105090 (2014). PubMed PMC
Genome of the Netherlands Consortium. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat. Genet.46, 818–825 (2014). PubMed
Behar, D. M. et al. No evidence from genome-wide data of a Khazar origin for the Ashkenazi Jews. Hum. Biol.85, 859–900 (2013). PubMed
Yunusbayev, B. et al. The Caucasus as an asymmetric semipermeable barrier to ancient human migrations. Mol. Biol. Evol.29, 359–365 (2012). PubMed
Behar, D. M. et al. The genome-wide structure of the Jewish people. Nature466, 238–242 (2010). PubMed
Wilson, J. D., Denny, M. J., Bhamidi, S., Cranmer, S. J. & Desmarais, B. A. Stochastic weighted graphs: flexible model specification and simulation. Soc. Netw.49, 37–47 (2017).
Rohrlach, B. avarNetworkStudy: Avar network analysis. Zenodo10.5281/zenodo.13889079 (2024).