Predicting strength from aggressive vocalizations versus speech in African bushland and urban communities
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34719250
PubMed Central
PMC8558769
DOI
10.1098/rstb.2020.0403
Knihovny.cz E-zdroje
- Klíčová slova
- Hadza, acoustic communication, aggression, handgrip strength, nonverbal vocalization,
- MeSH
- agrese MeSH
- akustika MeSH
- hlas * MeSH
- lidé MeSH
- řeč * MeSH
- síla ruky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The human voice carries information about a vocalizer's physical strength that listeners can perceive and that may influence mate choice and intrasexual competition. Yet, reliable acoustic correlates of strength in human speech remain unclear. Compared to speech, aggressive nonverbal vocalizations (roars) may function to maximize perceived strength, suggesting that their acoustic structure has been selected to communicate formidability, similar to the vocal threat displays of other animals. Here, we test this prediction in two non-WEIRD African samples: an urban community of Cameroonians and rural nomadic Hadza hunter-gatherers in the Tanzanian bushlands. Participants produced standardized speech and volitional roars and provided handgrip strength measures. Using acoustic analysis and information-theoretic multi-model inference and averaging techniques, we show that strength can be measured from both speech and roars, and as predicted, strength is more reliably gauged from roars than vowels, words or greetings. The acoustic structure of roars explains 40-70% of the variance in actual strength within adults of either sex. However, strength is predicted by multiple acoustic parameters whose combinations vary by sex, sample and vocal type. Thus, while roars may maximally signal strength, more research is needed to uncover consistent and likely interacting acoustic correlates of strength in the human voice. This article is part of the theme issue 'Voice modulation: from origin and mechanism to social impact (Part I)'.
Department of Philosophy and History of Science Charles University Prague 12800 Czech Republic
Human Behaviour Lab Faculty of Psychology Universidad El Bosque Bogota DC 110121 Colombia
Institute of Ethnology and Anthropology Russian Academy of Science Russia
Institute of Psychology University of Wroclaw 50 527 Poland
Russian State University for the Humanities Moscow 125047 Russia
Zobrazit více v PubMed
Zelick R, Mann DA, Popper AN. 1999. Acoustic communication in fishes and frogs. In Comparative hearing: fish and amphibians (eds Fay RR, Popper AN), pp. 363-411. New York, NY: Springer.
Ladich F, Winkler H. 2017. Acoustic communication in terrestrial and aquatic vertebrates. J. Exp. Biol. 220, 2306-2317. (10.1242/jeb.132944) PubMed DOI
Reby D, McComb K. 2003. Anatomical constraints generate honesty: acoustic cues to age and weight in the roars of red deer stags. Anim. Behav. 65, 519-530. (10.1006/anbe.2003.2078) DOI
Conlan T. 1999. The nature of warfare in Fourteenth-Century Japan: the record of Nomoto Tomoyuki. J. Jpn. Stud. 25, 299-330. (10.4324/9781315234328-24) DOI
Merridale C. 2006. Culture, ideology and combat in the Red Army, 1939–45. J. Contemp. Hist. 41, 305-324. (10.1177/0022009406062072) DOI
Burkert W. 1992. The orientalizing revolution: near eastern influences on Greek culture in the early archaic Age, 2nd edn. Cambridge, MA: Harvard University Press.
Šebesta P, Třebický V, Fialová J, Havlíček J. 2019. Roar of a champion: loudness and voice pitch predict perceived fighting ability in MMA fighters. Front. Psychol. 10, 859. (10.3389/fpsyg.2019.00859) PubMed DOI PMC
Knight C, Lewis J. 2017. Wild voices: mimicry, reversal, metaphor, and the emergence of language. Curr. Anthropol. 58, 435-453. (10.1086/692905) DOI
Pisanski K, Bryant GA. 2019. The evolution of voice perception. In The Oxford handbook of voice studies (eds Eidsheim NS, Meizel K), pp. 268-300. New York, NY: Oxford University Press.
Puts D. 2016. Human sexual selection. Curr. Opin. Psychol. 7, 28-32. (10.1016/j.copsyc.2015.07.011) DOI
Bowling DL, Garcia M, Dunn JC, Ruprecht R, Stewart A, Frommolt KH, Fitch WT. 2017. Body size and vocalization in primates and carnivores. Sci. Rep. 7, 41070. (10.1038/srep41070) PubMed DOI PMC
Charlton BD, Pisanski K, Raine J, Reby D. 2020. Coding of static information in terrestrial mammal vocal signals. In Coding strategies in vertebrate acoustic communication (eds Aubin T, Mathevon M), pp. 115-136. Cham, Switzerland: Springer.
Fitch WT, Hauser MD. 2003. Unpacking ‘Honesty’: vertebrate vocal production and the evolution of acoustic signals. In Acoustic communication, (eds Simmons AM, Fay RR, Popper AN) pp. 65-137. New York, NY: Springer. (10.1007/0-387-22762-8_3) DOI
Fitch WT. 2000. The phonetic potential of nonhuman vocal tracts: comparative cineradiographic observations of vocalizing animals. Phonetica 57, 205-218. (10.1159/000028474) PubMed DOI
Fitch WT. 1997. Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. J. Acoust. Soc. Am. 102, 1213-1222. (10.1121/1.421048) PubMed DOI
Fitch WT, Reby D. 2001. The descended larynx is not uniquely human. Proc. R. Soc. B 268, 1669-1675. (10.1098/rspb.2001.1704) PubMed DOI PMC
Pisanski K, et al. . 2014. Vocal indicators of body size in men and women: a meta-analysis. Anim. Behav. 95, 89-99. (10.1016/j.anbehav.2014.06.011) DOI
Morton ES. 1977. On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. Am. Nat. 111, 855-869. (10.1086/283219) DOI
Charlton BD, Reby D. 2016. The evolution of acoustic size exaggeration in terrestrial mammals. Nat. Commun. 7, 12739. (10.1038/ncomms12739) PubMed DOI PMC
Sell A, Bryant GA, Cosmides L, Tooby J, Sznycer D, Von Rueden C, Krauss A, Gurven M. 2010. Adaptations in humans for assessing physical strength from the voice. Proc. R. Soc. B 277, 3509-3518. (10.1098/rspb.2010.0769) PubMed DOI PMC
Puts DA, Apicella CL, Cárdenas RA. 2012. Masculine voices signal men's threat potential in forager and industrial societies. Proc. R. Soc. B 279, 601-609. (10.1098/rspb.2011.0829) PubMed DOI PMC
Hodges-Simeon CR, Gurven M, Puts DA, Gaulin SJCC. 2014. Vocal fundamental and formant frequencies are honest signals of threat potential in peripubertal males. Behav. Ecol. 25, 984-988. (10.1093/beheco/aru081) PubMed DOI PMC
Han C, Wang H, Fasolt V, Hahn AC, Holzleitner IJ, Lao J, DeBruine LM, Feinberg DR, Jones BC. 2018. No clear evidence for correlations between handgrip strength and sexually dimorphic acoustic properties of voices. Am. J. Hum. Biol. 30, 1-4. (10.1002/ajhb.23178) PubMed DOI
Aung T, Puts D. 2020. Voice pitch: a window into the communication of social power. Curr. Opin. Psychol. 33, 154-161. (10.1016/j.copsyc.2019.07.028) PubMed DOI
Raine J, Pisanski K, Oleszkiewicz A, Simner J, Reby D. 2018. Human listeners can accurately judge strength and height relative to self from aggressive roars and speech. iScience 4, 273-280. (10.1016/j.isci.2018.05.002) PubMed DOI PMC
Raine J, Pisanski K, Bond R, Simner J, Reby D. 2019. Human roars communicate upper-body strength more effectively than do screams or aggressive and distressed speech. PLoS ONE 14, e0213034. (10.1371/journal.pone.0213034) PubMed DOI PMC
Aung T, Goetz S, Adams J, McKenna C, Hess C, Roytman S, Cheng JT, Zilioli S, Puts DA. 2021. Low fundamental and formant frequencies predict fighting ability among male mixed martial arts fighters. Sci. Rep. 11, 905. (10.1038/s41598-020-79408-6) PubMed DOI PMC
Smith KM, Olkhov YM, Puts DA, Apicella CL. 2017. Hadza men with lower voice pitch have a better hunting reputation. Evol. Psychol. 15, 1-12. (10.1177/1474704917740466) PubMed DOI PMC
Frey R, Gebler A. 2010. Mechanisms and evolution of roaring-like vocalization in mammals. In Handbook of behavioral neuroscience 19 (ed. Brudzynski Stefan M.), pp. 439-450. San Diego, CA: Elsevier B.V. (10.1016/B978-0-12-374593-4.00040-1) DOI
Arnal LH, Flinker A, Kleinschmidt A, Giraud AL, Poeppel D. 2015. Human screams occupy a privileged niche in the communication soundscape. Curr. Biol. 25, 2051-2056. (10.1016/j.cub.2015.06.043) PubMed DOI PMC
Fitch WT, Neubauer J, Herzel H. 2002. Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal production. Anim. Behav. 63, 407-418. (10.1006/anbe.2001.1912) DOI
Karp D, Manser MB, Wiley EM, Townsend SW. 2014. Nonlinearities in Meerkat alarm calls prevent receivers from habituating. Ethology 120, 189-196. (10.1111/eth.12195) DOI
Anikin A, Pisanski K, Reby D. 2020. Do nonlinear vocal phenomena signal negative valence or high emotion intensity? R. Soc. Open Sci. 7, 201306. (10.1098/rsos.201306) PubMed DOI PMC
Herbst CT. 2016. Biophysics of vocal production in mammals. In Vertebrate sound production and acoustic communication (eds Suthers RA, Fitch WT, Fay RR, Popper AN), pp. 159-189. Cham, Switzerland: Springer.
Henrich J, Heine SJ, Norenzayan A. 2010. Most people are not WEIRD. Nature 466, 29. (10.1038/466029a) PubMed DOI
Sauter DA, Eisner F, Ekman P, Scott SK. 2010. Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations. Proc. Natl Acad. Sci. USA 107, 2408-2412. (10.1073/pnas.0908239106) PubMed DOI PMC
Atkinson J, Pipitone RN, Sorokowska A, Sorokowski P, Mberira M, Bartels A, Gallup GGJ. 2012. Voice and handgrip strength predict reproductive success in a group of indigenous African females. PLoS ONE 7, e41811. (10.1371/journal.pone.0041811) PubMed DOI PMC
Apicella CL, Feinberg DR, Marlowe FW. 2007. Voice pitch predicts reproductive success in male hunter-gatherers. Biol. Lett. 3, 682-684. (10.1098/rsbl.2007.0410) PubMed DOI PMC
Apicella CL, Feinberg DR. 2009. Voice pitch alters mate-choice-relevant perception in hunter–gatherers. Proc. R. Soc. B 276, 1077-1082. (10.1098/rspb.2008.1542) PubMed DOI PMC
Šebesta P, Kleisner K, Tureček P, Kočnar T, Akoko RM, Třebický V, Havlíček J. 2017. Voices of Africa: acoustic predictors of human male vocal attractiveness. Anim. Behav. 127, 205-211. (10.1016/j.anbehav.2017.03.014) DOI
Bryant GA, et al. . 2016. Detecting affiliation in colaughter across 24 societies. Proc. Natl Acad. Sci. USA 113, 4682-4687. (10.1073/pnas.1524993113) PubMed DOI PMC
Marlowe FW. 2001. Male contribution to diet and female reproductive success among foragers. Curr. Anthropol. 42, 755-759. (10.1086/323820) DOI
Apicella CL. 2014. Upper-body strength predicts hunting reputation and reproductive success in Hadza hunter–gatherers. Evol. Hum. Behav. 35, 508-518. (10.1016/j.evolhumbehav.2014.07.001) DOI
Misiak M, Butovskaya ML, Oleszkiewicz A, Sorokowski P. 2020. Digit ratio and hand grip strength are associated with male competition outcomes: a study among traditional populations of the Yali and Hadza. Am. J. Hum. Biol. 32, e23321. (10.1002/ajhb.23321) PubMed DOI
Trosclair D, Bellar D, Judge LWW, Smith J, Mazerat N, Brignac A. 2011. Hand-grip stength as a predictor of muscular strength and endurance. J. Strength Cond. Res. 25, S99. (10.1097/01.JSC.0000395736.42557.bc) DOI
Gallup AC, Fink B. 2018. Handgrip strength as a Darwinian fitness indicator in men. Front. Psychol. 9, 439. (10.3389/fpsyg.2018.00439) PubMed DOI PMC
Fink B, Neave N, Seydel H. 2007. Male facial appearance signals physical strength to women. Am. J. Hum. Biol. 19, 82-87. (10.1002/ajhb.20583) PubMed DOI
Windhager S, Schaefer K, Fink B. 2011. Geometric morphometrics of male facial shape in relation to physical strength and perceived attractiveness, dominance, and masculinity. Am. J. Hum. Biol. 23, 805-814. (10.1002/ajhb.21219) PubMed DOI
Gallup AC, O'Brien DT, White DD, Wilson DS. 2010. Handgrip strength and socially dominant behavior in male adolescents. Evol. Psychol. 8, 229-243. (10.1177/147470491000800207) PubMed DOI
Gallup AC, White DD, Gallup GGJ. 2007. Handgrip strength predicts sexual behavior, body morphology, and aggression in male college students. Evol. Hum. Behav. 28, 423-429. (10.1016/j.evolhumbehav.2007.07.001) DOI
Shoup ML, Gallup GGJ. 2008. Men's faces convey information about their bodies and their behavior: what you see is what you get. Evol. Psychol. 6, 469-479. (10.1177/147470490800600311) DOI
Young RW. 2003. Evolution of the human hand: the role of throwing and clubbing. J. Anat. 202, 165-174. (10.1046/j.1469-7580.2003.00144.x) PubMed DOI PMC
McGrath RP, Johnson N, Klawitter L, Mahoney S, Trautman K, Carlson C, Rockstad E, Hackney KJ. 2020. What are the association patterns between handgrip strength and adverse health conditions? A topical review. SAGE Open Med. 8, 1-12. (10.1177/2050312120910358) PubMed DOI PMC
Smith L, Yang L, Hamer M. 2019. Handgrip strength, inflammatory markers, and mortality. Scand. J. Med. Sci. Sport. 29, 1190-1196. (10.1111/sms.13433) PubMed DOI
McGrath RP, Kraemer WJ, Snih SAl, Peterson MD. 2018. Handgrip strength and health in aging adults. Sport. Med. 48, 1993-2000. (10.1007/s40279-018-0952-y) PubMed DOI
Koopman JJE, van Bodegom D, van Heemst D, Westendorp RGJ. 2015. Handgrip strength, ageing and mortality in rural Africa. Age Ageing 44, 465-470. (10.1093/ageing/afu165) PubMed DOI PMC
Dabbs JM, Mallinger A. 1999. High testosterone levels predict low voice pitch among men. Pers. Individ. Dif. 27, 801-804. (10.1016/S0191-8869(98)00272-4) DOI
Evans S, Neave N, Wakelin D, Hamilton C. 2008. The relationship between testosterone and vocal frequencies in human males. Physiol. Behav. 93, 783-788. (10.1016/j.physbeh.2007.11.033) PubMed DOI
Butovskaya ML, Windhager S, Karelin D, Mezentseva A, Schaefer K, Fink B. 2018. Associations of physical strength with facial shape in an African pastoralist society, the Maasai of Northern Tanzania. PLoS ONE 13, e0197738. (10.1371/journal.pone.0197738) PubMed DOI PMC
Marlowe FW. 2010. The Hadza: hunter–gatherers of Tanzania, 3rd edn. Berkeley, CA: University of California Press. See https://www.jstor.org/stable/10.1525/j.ctt1pp17z.
Symonds MREE, Moussalli A. 2011. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion. Behav. Ecol. Sociobiol. 65, 13-21. (10.1007/s00265-010-1037-6) DOI
Shriner D, Tekola-Ayele F, Adeyemo A, Rotimi CN. 2018. Genetic ancestry of Hadza and Sandawe peoples reveals ancient population structure in Africa. Genome Biol. Evol. 10, 875-882. (10.1093/gbe/evy051) PubMed DOI PMC
Kleisner K, et al. 2021. Data and code from: Predicting strength from aggressive vocalisations versus speech in African bushland and urban communities. [Database]. Open Science Framework. (10.17605/OSF.IO/JU6M8) PubMed DOI PMC
Cavanagh T, Berbesque JC, Wood B, Marlowe FW. 2016. Hadza handedness: lateralized behaviors in a contemporary hunter–gatherer population. Evol. Hum. Behav. 37, 202-209. (10.1016/j.evolhumbehav.2015.11.002) DOI
Boersma P, Weenink D. 2020. Praat: doing phonetics by computer. [computer program]. (See https://www.fon.hum.uva.nl/praat/)
Pisanski K, Raine J, Reby D. 2020. Individual differences in human voice pitch are preserved from speech to screams, roars and pain cries. R. Soc. Open Sci. 7, 191642. (10.1098/rsos.191642) PubMed DOI PMC
Burnham KP, Anderson DR, Huyvaert KP. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23-35. (10.1007/s00265-010-1029-6) DOI
Johnson JB, Omland KS. 2004. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101-108. (10.1016/j.tree.2003.10.013) PubMed DOI
R Core Team. 2021. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. (https://www.R-project.org/)
Bartón K. 2020. MuMIn: multi-model inference. R package version 1.43.17. (See https://rdrr.io/cran/MuMIn/.)
Wagenmakers EJ, Farrell S. 2004. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192-196. (10.3758/bf03206482) PubMed DOI
Austin PC, Steyerberg EW. 2015. The number of subjects per variable required in linear regression analyses. J. Clin. Epidemiol. 68, 627-636. (10.1016/j.jclinepi.2014.12.014) PubMed DOI
Hodges-Simeon CR, Gaulin SJCC, Puts DA. 2010. Different vocal parameters predict perceptions of dominance and attractiveness. Hum. Nat. 21, 406-427. (10.1007/s12110-010-9101-5) PubMed DOI PMC
Titze IR. 1994. Principles of voice production. 1st edn. Englewood Cliff, NJ: Prentice Hall.
Raine J, Pisanski K, Simner J, Reby D. 2019. Vocal communication of simulated pain. Bioacoustics 28, 404-426. (10.1080/09524622.2018.1463295) DOI
Ackermann H, Hage SR, Ziegler W. 2014. Brain mechanisms of acoustic communication in humans and nonhuman primates: an evolutionary perspective. Behav. Brain Sci. 37, 529-604. (10.1017/S0140525X13003099) PubMed DOI
Pisanski K, Cartei V, McGettigan C, Raine J, Reby D. 2016. Voice modulation: a window into the origins of human vocal control? Trends Cogn. Sci. 20, 304-318. (10.1016/j.tics.2016.01.002) PubMed DOI
Fitch WT. 2018. The biology and evolution of speech: a comparative analysis. Annu. Rev. Linguist. 4, 255-279. (10.1146/annurev-linguistics-011817-045748) DOI
Boë LJ, Sawallis TR, Fagot J, Badin P, Barbier G, Captier G, Ménard L, Heim JL, Schwartz JL. 2019. Which way to the dawn of speech?: Reanalyzing half a century of debates and data in light of speech science. Sci. Adv. 5, eaaw3916. (10.1126/sciadv.aaw3916) PubMed DOI PMC
Pisanski K, Reby D. 2021. Efficacy in deceptive vocal exaggeration of human body size. Nat. Commun. 12, 968. (10.1038/s41467-021-21008-7) PubMed DOI PMC
figshare
10.6084/m9.figshare.c.5631308