Reference Pose Generation for Long-term Visual Localization via Learned Features and View Synthesis

. 2021 ; 129 (4) : 821-844. [epub] 20201223

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34720404

Visual Localization is one of the key enabling technologies for autonomous driving and augmented reality. High quality datasets with accurate 6 Degree-of-Freedom (DoF) reference poses are the foundation for benchmarking and improving existing methods. Traditionally, reference poses have been obtained via Structure-from-Motion (SfM). However, SfM itself relies on local features which are prone to fail when images were taken under different conditions, e.g., day/night changes. At the same time, manually annotating feature correspondences is not scalable and potentially inaccurate. In this work, we propose a semi-automated approach to generate reference poses based on feature matching between renderings of a 3D model and real images via learned features. Given an initial pose estimate, our approach iteratively refines the pose based on feature matches against a rendering of the model from the current pose estimate. We significantly improve the nighttime reference poses of the popular Aachen Day-Night dataset, showing that state-of-the-art visual localization methods perform better (up to 47%) than predicted by the original reference poses. We extend the dataset with new nighttime test images, provide uncertainty estimates for our new reference poses, and introduce a new evaluation criterion. We will make our reference poses and our framework publicly available upon publication.

Zobrazit více v PubMed

Aiger, D., Kaplan, H., Kokiopoulou, E., Sharir, M., & Zeisl, B. (2019). General techniques for approximate incidences and their application to the camera posing problem. In 35th international symposium on computational geometry (SoCG 2019).

Albl, C., Kukelova, Z., & Pajdla, T. (2016). Rolling shutter absolute pose problem with known vertical direction. In CVPR.

Alcantarilla, P. F., Ni, K., Bergasa, L. M., & Dellaert, F. (2011). Visibility learning in large-scale urban environment. In ICRA.

Arandjelović, R., & Zisserman, A. (2014). Visual vocabulary with a semantic twist. In ACCV.

Arandjelović, R., Gronat, P., Torii, A., Pajdla, T.,& Sivic, J. (2016). NetVLAD: CNN architecture for weakly supervised place recognition. In CVPR. PubMed

Armagan, A., Hirzer, M., Roth, P. M., & Lepetit, V. (2017) Learning to align semantic segmentation and 2.5D maps for geolocalization. In IEEE conference on computer visual pattern recogintion (CVPR) (pp. 4590–4597).

Aubry M, Russell BC, Sivic J. Painting-to-3D model alignment via discriminative visual elements. ACM Transactions on Graphics (TOG) 2014;33(2):14. doi: 10.1145/2591009. DOI

Badino, H., Huber, D., & Kanade, T. (2011). Visual topometric localization. In Intelligent vehicles symposium (IV) (pp. 794–799).

Balntas, V., Frost, D., Kouskouridas, R., Barroso-Laguna, A., Talattof, A., Heijnen, H., et al. (2019). SILDa: scape imperial localisation dataset. https://www.visuallocalization.net/datasets/.

Balntas, V., Li, S., & Prisacariu, V. (2018, September). RelocNet: Continuous metric learning relocalisation using neural nets. In The European conference on computer vision (ECCV).

Balntas, V., Riba, E., Ponsa, D., & Mikolajczyk, K. (2016). Learning local feature descriptors with triplets and shallow convolutional neural networks. In BMVC.

Bay H, Ess A, Tuytelaars T, Gool V. Speeded-up robust features (SURF) Comput. Vis. Image Underst. 2008;110(3):346–359. doi: 10.1016/j.cviu.2007.09.014. DOI

Benbihi, A., Geist, M., & Pradalier, C. (2019). ELF: embedded localisation of features in pre-trained CNN. In IEEE international conference on computer vision (ICCV).

Brachmann, E., & Rother, C. (2018). Learning less is more—6D camera localization via 3D surface regression. In CVPR.

Brachmann, E., & Rother, C. (2019). Expert sample consensus applied to camera re-localization. In ICCV.

Brachmann, E., Krull, A., Nowozin, S., Shotton, J., Michel, F., Gumhold, S., & Rother, C. (2017). DSAC—differentiable RANSAC for camera localization. In CVPR.

Brachmann, E., & Rother, C. (2020). Visual camera re-localization from RGB and RGB-D images using DSAC. arXiv:2002.12324. PubMed

Brahmbhatt, S., Gu, J., Kim, K., Hays, J., Kautz, J. (2018). Geometry-aware learning of maps for camera localization. In CVPR.

Brown, M., Hua, G.,& Winder, S. (2011). Discriminative learning of local image descriptors. In: TPAMI. PubMed

Budvytis, I., Teichmann, M., Vojir, T., & Cipolla, R. (2019). Large scale joint semantic re-localisation and scene understanding via globally unique instance coordinate regression. In BMVC.

Camposeco, F., Cohen, A., Pollefeys, M., & Sattler, T. (2019). Hybrid scene compression for visual localization. In The IEEE conference on computer vision and pattern recognition (CVPR).

Cao, S.,& Snavely, N. (2013). Graph-based discriminative learning for location recognition. In CVPR.

Cao, S.,& Snavely, N. (2014). Minimal scene descriptions from structure from motion models. In CVPR.

Carlevaris-Bianco N, Ushani AK, Eustice RM. University of Michigan North Campus long-term vision and lidar dataset. IJRR. 2016;35(9):1023–1035.

Castle, R. O., Klein, G., & Murray, D. W. (2008). Video-rate localization in multiple maps for wearable augmented reality. In ISWC.

Cavallari, T., Bertinetto, L., Mukhoti, J., Torr, P.,& Golodetz, S. (2019). Let’s take this online: Adapting scene coordinate regression network predictions for online RGB-D camera relocalisation. In 3DV.

Cavallari, T., Golodetz, S., Lord, N. A., Valentin, J., Di Stefano, L., & Torr, P. H. S. (2017). On-the-fly adaptation of regression forests for online camera relocalisation. In CVPR.

Cavallari, T., Golodetz, S., Lord, N., Valentin, J., Prisacariu, V., Di Stefano, L., & Torr, P. H. S. (2019). Real-time RGB-D camera pose estimation in novel scenes using a relocalisation cascade. In TPAMI. PubMed

Chen, Z., Jacobson, A., Sünderhauf, N., Upcroft, B., Liu, L., Shen, C., Reid, I. D., & Milford., M. (2017). Deep learning features at scale for visual place recognition. In ICRA.

Chen, D. M., Baatz, G., Köser, K., Tsai, S. S., Vedantham, R., Pylvänäinen, T., Roimela, K., Chen, X., Bach, J., Pollefeys, M.,  Girod, B.,& Grzeszczuk, R. (2011). City-scale landmark identification on mobile devices. In CVPR.

Cheng, W., Lin, W., Chen, K., & Zhang, X. (2019). Cascaded parallel filtering for memory-efficient image-based localization. In IEEE international conference on computer vision (ICCV).

Choudhary, S., & Narayanan, P. J. (2012). Visibility probability structure from SFM datasets and applications. In ECCV.

Chum O, Matas J. Optimal randomized RANSAC. PAMI. 2008;30(8):1472–1482. doi: 10.1109/TPAMI.2007.70787. PubMed DOI

Clark, R., Wang, S., Markham, A., Trigoni, N., & Wen, H. (2017). VidLoc: A deep spatio-temporal model for 6-DoF video-clip relocalization. In CVPR.

Crandall, D., Owens, A., Snavely, N., & Huttenlocher, D. P. (2011). Discrete-continuous optimization for large-scale structure from motion. In CVPR. PubMed

Dai, A., Nießner, M., Zollöfer, M., Izadi, S., & Theobalt, C. (2017). Bundle fusion: Real-time globally consistent 3D reconstruction using on-the-fly surface re-integration. In ACM transactions on graphics 2017 (TOG).

Davison AJ, Reid ID, Molton ND, Stasse O. MonoSLAM: Real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2007;29(6):1052–1067. doi: 10.1109/TPAMI.2007.1049. PubMed DOI

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K.,& Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In CVPR.

DeTone, D., Malisiewicz, T., & Rabinovich, A. (2018). SuperPoint: Self-supervised interest point detection and description. In The IEEE conference on computer vision and pattern recognition (CVPR) workshops.

Ding, M., Wang, Z., Sun, J., & Shi, J. & Luo, P. (2019). CamNet: Coarse-to-fine retrieval for camera re-localization. In ICCV.

Donoser, M., & Schmalstieg, D. (2014). Discriminative feature-to-point matching in image-based locallization. In CVPR.

Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., & Sattler, T. (2019). D2-Net: A trainable CNN for joint detection and description of local features. In CVPR.

Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., & Sattler, T. (2019, June). D2-net: A trainable CNN for joint description and detection of local features. In The IEEE conference on computer vision and pattern recognition (CVPR).

DuToit, R. C., Hesch, J. A., Nerurkar, E. D., & Roumeliotis, S. I. (2017). Consistent map-based 3D localization on mobile devices. In 2017 IEEE international conference on robotics and automation (ICRA).

Dymczyk, M., Lynen, S., Cieslewski, T., Bosse, M., Siegwart, R., & Furgale, P. (2015). The gist of maps—Summarizing experience for lifelong localization. In 2015 IEEE international conference on robotics and automation (ICRA).

Ebel, P., Mishchuk, A., Yi, K. M., Fua, P., & Trulls, E. (2019). Beyond cartesian representations for local descriptors. In The IEEE international conference on computer vision (ICCV).

Fischler MA, Bolles RC. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM. 1981;24(6):381–395. doi: 10.1145/358669.358692. DOI

Garg S, Suenderhauf N, Milford M. Semantic-geometric visual place recognition: A new perspective for reconciling opposing views. The International Journal of Robotics Research. 2019 doi: 10.1177/0278364919839761. DOI

Germain, H., Bourmaud, G., & Lepetit, V. (2019). Sparse-to-dense hypercolumn matching for long-term visual localization. In International conference on 3D vision (3DV).

Haralick RM, Lee C-N, Ottenberg K, Nölle M. Review and analysis of solutions of the three point perspective pose estimation problem. IJCV. 1994;13(3):331–356. doi: 10.1007/BF02028352. DOI

Hartley R, Zisserman A. Multiple view geometry in computer vision. 2. Cambridge: Cambridge University Press; 2003.

Heng, L., Choi, B., Cui, Z., Geppert, M., Hu, S., Kuan, B., et al. (2019). Project AutoVision: Localization and 3D scene perception for an autonomous vehicle with a multi-camera system. In 2019 IEEE international conference on robotics and automation (ICRA).

Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., & Navab, N. (2012). Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In K. M. Lee, Y. Matsushita, J. M. Rehg, & Z. Hu (Eds.) ACCV.

Huang, Z., Xu, Y., Shi, J., Zhou, X., Bao, H., & Zhang, G. (2019). Prior guided dropout for robust visual localization in dynamic environments. In IEEE international conference on computer vision (ICCV).

Irschara, A., Zach, C., Frahm, J.-M.,& Bischof, H. (2009). From structure-from-motion point clouds to fast location recognition. In CVPR.

Jones ES, Soatto S. Visual-inertial navigation, mapping and localization: A scalable real-time causal approach. International Journal of Robotics Research. 2011;30(4):407–430. doi: 10.1177/0278364910388963. DOI

Kasyanov, A., Engelmann, F., Stückler, J.,& Leibe, B. (2017). Keyframe-based visual-inertial online slam with relocalization. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS).

Kazhdan M, Hoppe H. Screened Poisson surface reconstruction. ACM Transactions on Graphics. 2013;32(3):61–70. doi: 10.1145/2487228.2487237. DOI

Kendall, Alex, & Cipolla, Roberto. (2017). Geometric loss functions for camera pose regression with deep learning. In CVPR.

Kendall, A., Grimes, M., & Cipolla, R. (2015). Posenet: A convolutional network for real-time 6-DoF camera relocalization. In International conference on computer vision (ICCV) (pp. 2938–2946).

Kneip, L., Scaramuzza, D., & Siegwart, R. (2011). A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2969–2976).

Kukelova, Z., Bujnak, M., & Pajdla, T. (2010). Closed-form solutions to minimal absolute pose problems with known vertical direction. In ACCV.

Kukelova, Z., Bujnak, M.,& Pajdla, T. (2013). Real-time solution to the absolute pose problem with unknown radial distortion and focal length. In ICCV.

Larsson, C. T. V., Fredriksson, J., & Kahl, F. (2016). Outlier rejection for absolute pose estimation with known orientation. In BMVC.

Larsson, V., Kukelova, Z., & Zheng, Y. (2017). Making minimal solvers for absolute pose estimation compact and robust. In ICCV.

Larsson, M. Stenborg, E., Toft, C., Hammarstrand, L., Sattler, T., & Kahl, F. (2019). Fine-grained segmentation networks: Self-supervised segmentation for improved long-term visual localization. In IEEE international conference on computer vision (ICCV).

Laskar, Z., Melekhov, I., Kalia, S., & Kannala, J. (2017). Camera relocalization by computing pairwise relative poses using convolutional neural network. In ICCV workshops.

Lebeda, K., Matas, J. E. S., & Chum, O. (2012). Fixing the locally optimized RANSAC. In British machine vision conference (BMVC).

Li, Y., Snavely, N., Huttenlocher, D., & Fua, P. (2012). Worldwide pose estimation using 3D point clouds. In ECCV.

Li, Y., Snavely, N., & Huttenlocher, D. P. (2010). Location recognition using prioritized feature matching. In ECCV.

Lim, H., Sinha, S. N., Cohen, M. F., & Uyttendaele, M. (2012). Real-time image-based 6-DOF localization in large-scale environments. In CVPR.

Liu, L., Li, H., & Dai, Y. (2017). Efficient global 2D–3D matching for camera localization in a large-scale 3D map. In ICCV.

Lowe DG. Distinctive image features from scale-invariant keypoints. The International Journal of Computer Vision. 2004;60(2):91–110. doi: 10.1023/B:VISI.0000029664.99615.94. DOI

Lynen, S., Sattler, T., Bosse, M., Hesch, J., Pollefeys, M., & Siegwart, R. (2015). Get out of my lab: Large-scale real-time visual-inertial localization. In Robotics: Science and systems (RSS).

Maddern W, Pascoe G, Linegar C, Newman P. 1 year, 1000 km: The Oxford RobotCar dataset. The International Journal of Robotics Research. 2017;36(1):3–15. doi: 10.1177/0278364916679498. DOI

Massiceti, D., Krull, A., Brachmann, E., Rother, C., & Torr, P. H. S. (2017). Random forests versus neural networks—What’s best for camera relocalization? In ICRA.

Melekhov, I., Ylioinas, J., Kannala, J., & Rahtu, E. (2017). Image-based Localization using Hourglass Networks. In ICCV workshops.

Meng, L., Chen, J., Tung, F., Little, J. J., Valentin, J., & de Silva, C. W. (2017). Backtracking regression forests for accurate camera relocalization. In IROS.

Meng, L., Tung, F., Little, J. J., Valentin, J., & de Silva, C. W. (2018). Exploiting points and lines in regression forests for RGB-D camera relocalization. In IROS.

Middelberg, S., Sattler, T., Untzelmann, O., & Kobbelt, L. (2014). Scalable 6-DOF localization on mobile devices. In ECCV.

Milford, M. J, & Wyeth, G. F. (2012). SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights. In ICRA.

Mishchuk, A., Mishkin, D., Radenovic, F., & Matas, J. (2017). Working hard to know your neighbor’s margins: Local descriptor learning loss. In Advances in neural information processing systems.

Mur-Artal R, Tardós JD. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics. 2017;33(5):1255–1262. doi: 10.1109/TRO.2017.2705103. DOI

Mur-Artal R, Tardós JD. Visual-inertial monocular SLAM with map reuse. IEEE Robotics and Automation Letters. 2017;2(2):796–803. doi: 10.1109/LRA.2017.2653359. DOI

Naseer, T., Oliveira, G. L., Brox, T., & Burgard, W. (2017). Semantics-aware visual localization under challenging perceptual conditions. In ICRA.

Newcombe, R. A., Izadi, S., Hilliges, O., Kim, D., Davison, A. J., & Kohli, P., Fitzgibbon, A. (2011). KinectFusion: Real-time dense surface mapping and tracking. In IEEE ISMAR.

Noh, H., Araujo, A., Sim, J., Weyand, T., & Han, B. (2017). Large-scale image retrieval with attentive deep local features. In International conference on computer vision (ICCV) (pp. 3476–3485).

Ono, Y., Trulls, E., Fua, P., & Yi, K. M. (2018). LF-Net: Learning local features from images. In Advances in neural information processing systems (Vol. 31).

Pittaluga, F., Koppal, S. J., Kang, S. B., & Sinha, S. N. (2019, June). Revealing scenes by inverting structure from motion reconstructions. In IEEE conference on computer vision and pattern recognition (CVPR).

Radenović F, Tolias G, Chum O. Fine-tuning CNN image retrieval with no human annotation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2019;41(7):1655–1668. doi: 10.1109/TPAMI.2018.2846566. PubMed DOI

Radwan N, Valada A, Burgard W. VLocNet++: Deep multitask learning for semantic visual localization and odometry. RA-L. 2018;3(4):4407–4414.

Raguram R, Chum O, Pollefeys M, Matas J, Frahm J-M. USAC: A universal framework for random sample consensus. TPAMI. 2013;35(8):2022–2038. doi: 10.1109/TPAMI.2012.257. PubMed DOI

Revaud, J., Weinzaepfel, P., de Souza, C. R., & Humenberger, M. (2019). R2D2: Repeatable and reliable detector and descriptor. In NeurIPS.

Robertson, D.,& Cipolla, R. (2004). An image-based system for urban navigation. In BMVC.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention.

Rublee, Ethan, Rabaud, Vincent, Konolige, Kurt, & Bradski, Gary. (2011). ORB: An efficient alternative to SIFT or SURF. In The International Conference on Computer Vision (ICCV) (pp. 2564–2571).

Saha, S., & Varma, G., Jawahar, C. V. (2018). Improved visual relocalization by discovering anchor points. In BMVC.

Sarlin, P.-E., Cadena, C., Siegwart, R., & Dymczyk, M. (2019). From coarse to fine: Robust hierarchical localization at large scale. In The IEEE conference on computer vision and pattern recognition (CVPR).

Sarlin, P.-E., DeTone, D., Malisiewicz, T., & Rabinovich, A. (2020). SuperGlue: Learning feature matching with graph neural networks. In The IEEE conference on computer vision and pattern recognition (CVPR).

Sattler, T. (2019). RansacLib—A template-based SAC implementation. https://github.com/tsattler/RansacLib.

Sattler, T., Leibe, B., & Kobbelt, L. (2011). Fast image-based localization using direct 2D-to-3D matching. In ICCV.

Sattler, T., Maddern, W., Toft, C., Torii, A., Hammarstrand, L., Stenborg, E., Safari, D., Okutomi, M., Pollefeys, M., Sivic, J., Kahl, F., & Pajdla, T.S. (2018). Benchmarking 6DOF outdoor visual localization in changing conditions. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 8601–8610).

Sattler, T., Torii, A., Sivic, J., Pollefeys, M., Taira, H., Okutomi, M., & Pajdla, T. (2017). Are large-scale 3D models really necessary for accurate visual localization? In CVPR. PubMed

Sattler, T., Weyand, T., Leibe, B., & Kobbelt, L. (2012). Image retrieval for image-based localization revisited. In British machine vision conference (BMVC).

Sattler, T., Zhou, Q., Pollefeys, M., & Leal-Taixe, L. (2019). Understanding the limitations of CNN-based absolute camera pose regression. In CVPR.

Sattler T, Leibe B, Kobbelt L. Efficient & effective prioritized matching for large-scale image-based localization. PAMI. 2017;39(9):1744–1756. doi: 10.1109/TPAMI.2016.2611662. PubMed DOI

Schneider T, Dymczyk M, Fehr M, Egger K, Lynen S, Gilitschenski I, et al. Maplab: An open framework for research in visual-inertial mapping and localization. IEEE Robotics and Automation Letters. 2018;3(3):1418–1425. doi: 10.1109/LRA.2018.2800113. DOI

Schönberger, J. L., & Frahm, J.-M. (2016). Structure-from-motion revisited. In IEEE conference on computer vision and pattern recognition (CVPR).

Schönberger, J. L., Zheng, E., Pollefeys, M., & Frahm, J.-M. (2016). Pixelwise view selection for unstructured multi-view stereo. In European conference on computer vision (ECCV).

Schönberger, J. L., Pollefeys, M., Geiger, A.,& Sattler, T. (2018). Semantic visual localization. In CVPR.

Schops, T., Sattler, T., & Pollefeys, M. (2019). BAD SLAM: bundle adjusted direct RGB-D SLAM. In The IEEE conference on computer vision and pattern recognition (CVPR).

Se, S., Lowe, D., & Little, J. (2002). Global localization using distinctive visual features. In IEEE/RSJ international conference on intelligent robots and systems.

Seymour, Z., Sikka, K., Chiu, H.-P., Samarasekera, S., & Kumar, R. (2019). Semantically-aware attentive neural embeddings for image-based visual localization. In BMVC.

Shan, Q., Wu, C., Curless, B., Furukawa, Y., Hernandez, C., & Seitz, S. M. (2014). Accurate geo-registration by ground-to-aerial image matching. In 3DV.

Shi, T., Shen, S., Gao, X.,& Zhu, L. (2019). Visual localization using sparse semantic 3D map. In 2019 IEEE international conference on image processing (ICIP).

Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., & Fitzgibbon, A. (2013). Scene coordinate regression forests for camera relocalization in RGB-d images. In IEEE conference on computer visual pattern recogntion (CVPR).

Sibbing, D., Sattler, T., Leibe, B.,& Kobbelt, L. (2013). SIFT-realistic rendering. In 3DV.

Simonyan K, Vedaldi A, Zisserman A. Learning local feature descriptors using convex optimisation. TPAMI. 2014;36(8):1573–1585. doi: 10.1109/TPAMI.2014.2301163. PubMed DOI

Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., & Moreno-Noguer, F. (2015). Discriminative learning of deep convolutional feature point descriptors. In ICCV.

Snavely N, Seitz SM, Szeliski R. Modeling the world from internet photo collections. IJCV. 2008;80(2):189–210. doi: 10.1007/s11263-007-0107-3. DOI

Stenborg, E., Toft, C.,& Hammarstrand, L. (2018). Long-term visual localization using semantically segmented images. In 2018 IEEE international conference on robotics and automation (ICRA).

Sun, X., Xie, Y., Luo, P., & Wang, L. (2017). A dataset for benchmarking image-based localization. In CVPR.

Sünderhauf, N., Shirazi, S., Jacobson, A., Dayoub, F., Pepperell, E., Upcroft, B., et al. (2015). Place recognition with ConvNet landmarks: Viewpoint-robust, condition-robust, training-free. In Robotics: science and systems (RSS).

Svärm L, Enqvist O, Kahl F, Oskarsson M. City-scale localization for cameras with known vertical direction. PAMI. 2017;39(7):1455–1461. doi: 10.1109/TPAMI.2016.2598331. PubMed DOI

Taira, H., Okutomi, M., Sattler, T., Cimpoi, M., Pollefeys, M., Sivic, J., Pajdla, T., & Torii, A. (2018). Inloc: Indoor visual localization with dense matching and view synthesis. In IEEE conference on computer vision and pattern recognition (CVPR). PubMed

Taira, H., Rocco, I., Sedlar, J., Okutomi, M., Sivic, J., Pajdla, T., Sattler, T., & Torii, A. (2019). Is this the right place? Geometric-semantic pose verification for indoor visual localization. In International conference on computer vision (ICCV).

Tian, Y., Fan, B., & Wu, F. (2017). L2-Net: Deep learning of discriminative patch descriptor in Euclidean space. In The IEEE conference on computer vision and pattern recognition (CVPR).

Tian, Y., Yu, X., Fan, B., Wu, F., Heijnen, H., & Balntas, V. (2019). SOSNet: Second order similarity regularization for local descriptor learning. In The IEEE conference on computer vision and pattern recognition (CVPR).

Toft, C., Olsson, C., & Kahl, F. (2017). Long-term 3D localization and pose from semantic labellings. In ICCV Workshops.

Toft, C., Stenborg, E., Hammarstrand, L., Brynte, L., Pollefeys, M., Sattler, T., & Kahl, F. (2018). Semantic match consistency for long-term visual localization. In The European conference on computer vision (ECCV).

Torii, A., Sivic, J.,& Pajdla, T. (2011). Visual localization by linear combination of image descriptors. In Proceedings of the 2nd IEEE workshop on mobile vision, with ICCV.

Torii A, Arandjelovic R, Sivic J, Okutomi M, Pajdla T. 24/7 place recognition by view synthesis. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2018;40(2):257–271. doi: 10.1109/TPAMI.2017.2667665. PubMed DOI

Torii A, Sivic J, Okutomi M, Pajdla T. Visual place recognition with repetitive structures. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2015;37(11):2346–2359. doi: 10.1109/TPAMI.2015.2409868. PubMed DOI

Valada, A., Radwan, N., & Burgard, W. (2018). Deep auxiliary learning for visual localization and odometry. In ICRA.

Valentin, J., Dai, A., Niessner, M., Kohli, P., Torr, P., Izadi, S., & Keskin, C. (2016). Learning to navigate the energy landscape. In 3D Vision (3DV) (pp. 323–332).

Valentin, J., Nießner, M., Shotton, J., Fitzgibbon, A., Izadi, S., & Torr, P. (2015). Exploiting uncertainty in regression forests for accurate camera relocalization. In CVPR.

Valentin, J., Dai, A., Niessner, M., Kohli, P., Torr, P., Izadi, S.,& Keskin, C. (2016). Learning to navigate the energy landscape. In International conference on 3D vision (3DV).

Ventura J, Arth C, Reitmayr G, Schmalstieg D. Global localization from monocular SLAM on a mobile phone. IEEE Transactions on Visualization and Computer Graphics. 2014;20(4):531–539. doi: 10.1109/TVCG.2014.27. PubMed DOI

Walch, F., Hazirbas, C., Leal-Taixé, L., Sattler, T., Hilsenbeck, S., & Cremers, D. (2017). Image-based localization using LSTMs for structured feature correlation. In ICCV.

Wang, Q., Zhou, X., Hariharan, B., & Snavely, N. (2020). Learning feature descriptors using camera pose supervision. arXiv:2004.13324.

Wang, P., Huang, X., Cheng, X., Zhou, D., Geng, Q., & Yang, R. (2019). The ApolloScape open dataset for autonomous driving and its application. IEEE Transactions on Pattern Analysis and Machine Intelligence. 10.1109/TPAMI.2019.2926463. PubMed

Williams, B., Klein, G.,& Reid, I. (2007). Real-time SLAM relocalisation. In ICCV. PubMed

Xue, F., Wang, X., Yan, Z., Wang, Q., Wang, J., & Zha, H. (2019). Local supports global: Deep camera relocalization with sequence enhancement. In IEEE international conference on computer vision (ICCV).

Yang, L., Bai, Z., Tang, C., Li, H., Furukawa, Y., & Tan P. (2019). SANet: Scene agnostic network for camera localization. In ICCV.

Yang, T.-Y., Nguyen, D.-K., Heijnen, H., & Balntas, V. (2020). UR2KiD: unifying retrieval, keypoint detection, and keypoint description without local correspondence supervision. arXiv:2001.07252.

Yu, X., Chaturvedi, S., Feng, C., Taguchi, Y., Lee, T., Fernandes, C., &  Ramalingam, S. (2018). VLASE: Vehicle localization by aggregating semantic edges. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Zeisl, B., Sattler, T., & Pollefeys, M. (2015). Camera pose voting for large-scale image-based localization. In ICCV.

Zhang, W.,& Kosecka, J. (2006). Image based localization in urban environments. In International symposium on 3D data processing, visualization, and transmission (3DPVT).

Zhang, J., Sun, D., Luo, Z., Yao, A., Zhou, L., Shen, T., et al. (2019). Learning two-view correspondences and geometry using order-aware network. In IEEE international conference on computer vision (ICCV). PubMed

Zheng, E., & Wu, C. (2015). Structure from motion using structure-less resection. In The IEEE international conference on computer vision (ICCV).

Zhou, L., Luo, Z., Shen, T., Zhang, J., Zhen, M., Yao, Y., Fang, T., & Quan, L. (2020). KFNet: Learning temporal camera relocalization using Kalman Filtering. In The IEEE conference on computer vision and pattern recognition (CVPR).

Zhou, H., Sattler, T., & Jacobs, D. W. (2016). Evaluating local features for day-night matching. In Proceedings of the ECCV workshops.

Zhou, Q., Sattler, T., Pollefeys, M., & Leal-Taixe, L. (2019). Visual localization from essential matrices: To learn or not to learn. In IEEE international conference on robotics and automation (ICRA).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Contrastive Learning for Image Registration in Visual Teach and Repeat Navigation

. 2022 Apr 13 ; 22 (8) : . [epub] 20220413

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...