Contrastive Learning for Image Registration in Visual Teach and Repeat Navigation

. 2022 Apr 13 ; 22 (8) : . [epub] 20220413

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35458959

Grantová podpora
20-27034J Czech Science Foundation

Visual teach and repeat navigation (VT&R) is popular in robotics thanks to its simplicity and versatility. It enables mobile robots equipped with a camera to traverse learned paths without the need to create globally consistent metric maps. Although teach and repeat frameworks have been reported to be relatively robust to changing environments, they still struggle with day-to-night and seasonal changes. This paper aims to find the horizontal displacement between prerecorded and currently perceived images required to steer a robot towards the previously traversed path. We employ a fully convolutional neural network to obtain dense representations of the images that are robust to changes in the environment and variations in illumination. The proposed model achieves state-of-the-art performance on multiple datasets with seasonal and day/night variations. In addition, our experiments show that it is possible to use the model to generate additional training examples that can be used to further improve the original model's robustness. We also conducted a real-world experiment on a mobile robot to demonstrate the suitability of our method for VT&R.

Zobrazit více v PubMed

Debeunne C., Vivet D. A Review of Visual-LiDAR Fusion based Simultaneous Localization and Mapping. Sensors. 2020;20:2068. doi: 10.3390/s20072068. PubMed DOI PMC

Štibinger P., Broughton G., Majer F., Rozsypálek Z., Wang A., Jindal K., Zhou A., Thakur D., Loianno G., Krajník T., et al. Mobile Manipulator for Autonomous Localization, Grasping and Precise Placement of Construction Material in a Semi-structured Environment. IEEE Robot. Autom. Lett. 2021;6:2595–2602. doi: 10.1109/LRA.2021.3061377. DOI

Thrun S., Burgard W., Fox D. Probabilistic Robotics. MIT Press; Cambridge, MA, USA: 2010.

Cadena C., Carlone L., Carrillo H., Latif Y., Scaramuzza D., Neira J., Reid I., Leonard J.J. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Tran. Robot. 2016;32:1309–1332. doi: 10.1109/TRO.2016.2624754. DOI

Krajník T., Fentanes J.P., Santos J., Duckett T. FreMEn: Frequency Map Enhancement for Long-Term Mobile Robot Autonomy in Changing Environments. IEEE Trans. Robot. 2017;33:1–14. doi: 10.1109/TRO.2017.2665664. DOI

Hawes N., Burbridge C., Jovan F., Kunze L., Lacerda B., Mudrová L., Young J., Wyatt J., Hebesberger D., Körtner T., et al. The strands project: Long-term autonomy in everyday environments. IEEE Robot. Autom. Mag. 2017;24:146–156. doi: 10.1109/MRA.2016.2636359. DOI

Zhang Z., Sattler T., Scaramuzza D. Reference Pose Generation for Long-term Visual Localization via Learned Features and View Synthesis. Int. J. Comput. Vis. 2020;129:821–844. doi: 10.1007/s11263-020-01399-8. PubMed DOI PMC

Rosen D.M., Mason J., Leonard J.J. Towards lifelong feature-based mapping in semi-static environments; Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA); Stockholm, Sweden. 16–21 May 2016; pp. 1063–1070.

Lowe D. Object recognition from local scale-invariant features; Proceedings of the Seventh IEEE International Conference on Computer Vision; ICCV, Kerkyra, Greece. 20–27 September 1999; DOI

Bay H., Ess A., Tuytelaars T., Gool L.V. Speeded-Up Robust Features (SURF) Comput. Vis. Image Underst. 2008;110:346–359. doi: 10.1016/j.cviu.2007.09.014. DOI

Krizhevsky A., Sutskever I., Hinton G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM. 2017;60:84–90. doi: 10.1145/3065386. DOI

Hoffer E., Ailon N. Similarity-Based Pattern Recognition Lecture Notes in Computer Science. Springer; Cham, Switzerland: 2015. Deep Metric Learning Using Triplet Network; pp. 84–92. DOI

He K., Fan H., Wu Y., Xie S., Girshick R. Momentum Contrast for Unsupervised Visual Representation Learning; Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); Seattle, WA, USA. 13–19 June 2020; DOI

Jaiswal A., Babu A.R., Zadeh M.Z., Banerjee D., Makedon F. A Survey on Contrastive Self-Supervised Learning. Technologies. 2020;9:2. doi: 10.3390/technologies9010002. DOI

Krajník T., Cristóforis P., Kusumam K., Neubert P., Duckett T. Image features for visual teach-and-repeat navigation in changing environments. Robot. Auton. Syst. 2016;88:127–141. doi: 10.1016/j.robot.2016.11.011. DOI

Clement L., Kelly J., Barfoot T.D. Robust Monocular Visual Teach and Repeat Aided by Local Ground Planarity and Color-constant Imagery. J. Field Robot. 2016;34:74–97. doi: 10.1002/rob.21655. DOI

Furgale P., Barfoot T.D. Visual teach and repeat for long-range rover autonomy. J. Field Robot. 2010;27:534–560. doi: 10.1002/rob.20342. DOI

Calonder M., Lepetit V., Strecha C., Fua P. European Conference on Computer Vision. Springer; Berlin/Heidelberg, Germany: 2010. BRIEF: Binary robust independent elementary features; pp. 778–792.

Chen Z., Birchfield S.T. Vision-Based Path Following without Calibration. Mob. Robot. Navig. 2010:427–446. doi: 10.5772/8981. DOI

Chen Z., Birchfield S. Qualitative Vision-Based Path Following. IEEE Trans. Robot. 2009;25:749–754. doi: 10.1109/TRO.2009.2017140. DOI

Krajník T., Faigl J., Vonásek V., Košnar K., Kulich M., Přeučil L. Simple yet stable bearing-only navigation. J. Field Robot. 2010;27:511–533. doi: 10.1002/rob.20354. DOI

Krajník T., Majer F., Halodová L., Vintr T. Navigation without localisation: Reliable teach and repeat based on the convergence theorem; Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Madrid, Spain. 1–5 October 2018; pp. 1657–1664.

Dall’Osto D., Fischer T., Milford M. Fast and robust bio-inspired teach and repeat navigation; Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Prague, Czech Republic. 27 September–1 October 2021; DOI

Thrun S. A Lifelong Learning Perspective for Mobile Robot Control; Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems; Munich, Germany. 12–16 September 1994; pp. 201–214. DOI

Churchill W., Newman P. Experience-based navigation for long-term localisation. Int. J. Robot. Res. 2013;32:1645–1661. doi: 10.1177/0278364913499193. DOI

Dayoub F., Duckett T. An adaptive appearance-based map for long-term topological localization of mobile robots; Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems; Nice, France. 22–26 September 2008; pp. 3364–3369.

Halodová L., Dvořáková E., Majer F., Vintr T., Mozos O.M., Dayoub F., Krajník T. Predictive and adaptive maps for long-term visual navigation in changing environments; Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Macau, China. 3–8 November 2019.

Karoly A.I., Galambos P., Kuti J., Rudas I.J. Deep Learning in Robotics: Survey on Model Structures and Training Strategies. IEEE Trans. Syst. Man, Cybern. Syst. 2021;51:266–279. doi: 10.1109/TSMC.2020.3018325. DOI

Khosla P., Teterwak P., Wang C., Sarna A., Tian Y., Isola P., Maschinot A., Liu C., Krishnan D. Supervised Contrastive Learning. In: Larochelle H., Ranzato M., Hadsell R., Balcan M.F., Lin H., editors. Advances in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc.; Red Hook, NY, USA: 2020. pp. 18661–18673.

Neubert P., Sünderhauf N., Protzel P. Superpixel-based appearance change prediction for long-term navigation across seasons. Robot. Auton. Syst. 2015;69:15–27. doi: 10.1016/j.robot.2014.08.005. DOI

Sunderhauf N., Shirazi S., Dayoub F., Upcroft B., Milford M. On the performance of ConvNet features for place recognition; Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Hamburg, Germany. 28 September–2 October 2015; DOI

Suenderhauf N., Shirazi S., Jacobson A., Dayoub F., Pepperell E., Upcroft B., Milford M. Place Recognition with ConvNet Landmarks: Viewpoint-Robust, Condition-Robust, Training-Free; Proceedings of the Robotics: Science and Systems; Rome, Italy. 13–17 July 2015; DOI

Lowry S., Sunderhauf N., Newman P., Leonard J.J., Cox D., Corke P., Milford M.J. Visual Place Recognition: A Survey. IEEE Trans. Robot. 2016;32:1–19. doi: 10.1109/TRO.2015.2496823. DOI

Dosovitskiy A., Beyer L., Kolesnikov A., Weissenborn D., Zhai X., Unterthiner T., Dehghani M., Minderer M., Heigold G., Gelly S., et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv. 20202010.11929

Carion N., Massa F., Synnaeve G., Usunier N., Kirillov A., Zagoruyko S. End-to-End Object Detection with Transformers. Springer; Cham, Switzerland: 2020. pp. 213–229. DOI

Tan M., Le Q.V. EfficientNetV2: Smaller Models and Faster Training. ICML. 2021;139:10096–10106. doi: 10.48550/arXiv.2104.00298. DOI

Guo D., Wang J., Cui Y., Wang Z., Chen S. SiamCAR: Siamese Fully Convolutional Classification and Regression for Visual Tracking; Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); Seattle, WA, USA. 13–19 June 2020; DOI

Ichida A.Y., Meneguzzi F., Ruiz D.D. Measuring Semantic Similarity between Sentences Using A Siamese Neural Network; Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro; Brazil. 8–13 July 2018; DOI

Chen T., Kornblith S., Norouzi M., Hinton G. A Simple Framework for Contrastive Learning of Visual Representations. In: Daumé H. III, Singh A., editors. Proceedings of the 37th International Conference on Machine Learning; PMLR, Virtual. 13–18 July 2020; pp. 1597–1607.

Chopra S., Hadsell R., Lecun Y. Learning a Similarity Metric Discriminatively, with Application to Face Verification; Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR05); San Diego, CA, USA. 20–26 June 2005; DOI

Bromley J., Guyon I., LeCun Y., Säckinger E., Shah R. Series in Machine Perception and Artificial Intelligence Advances in Pattern Recognition Systems Using Neural Network Technologies. World Scientific Publishing Ltd.; Singapore: Jan 1, 1994. Signature Verification Using A “Siamese” Time Delay Neural Network; pp. 25–44. DOI

Spencer J., Bowden R., Hadfield S. Same features, different day: Weakly supervised feature learning for seasonal invariance; Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); Seattle, WA, USA. 13–19 June 2020; DOI

Broughton G., Linder P., Rouček T., Vintr T., Krajník T. Robust Image Alignment for Outdoor Teach-and-Repeat Navigation; Proceedings of the 2021 European Conference on Mobile Robots (ECMR); Bonn, Germany. 31 August–3 September 2021; pp. 1–6. DOI

Rozsypalek Z., Broughton G., Linder P., Roucek T., Kusumam K., Krajnik T. Semi-Supervised Learning for Image Alignment in Teach and Repeat navigation; Proceedings of the Symposium on Applied Computing (SAC); Brno, Czech Republic. 25–29 April 2022.

Cen M., Jung C. Fully Convolutional Siamese Fusion Networks for Object Tracking; Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP); Athens, Greece. 7–10 October 2018; DOI

Yang L., Jiang P., Wang F., Wang X. Robust Real-Time Visual Object Tracking via Multi-Scale Fully Convolutional Siamese Networks; Proceedings of the 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA); Sydney, NSW, Australia. 29 November–1 December 2017; DOI

Corporation N.B. Nordlandsbanen: Minute by Minute, Season by Season. 15 January 2013. [(accessed on 10 April 2022)]. Available online: https://nrkbeta.no/2013/01/15/nordlandsbanen-minute-by-minute-season-by-season/

Yan Z., Sun L., Krajnik T., Ruichek Y. EU Long-term Dataset with Multiple Sensors for Autonomous Driving; Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Las Vegas, NV, USA. 25–29 October 2020.

Fox D., Thrun S., Burgard W., Dellaert F. Sequential Monte Carlo Methods in Practice. Springer; New York, NY, USA: 2001. Particle Filters for Mobile Robot Localization; pp. 401–428. DOI

Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., Killeen T., Lin Z., Gimelshein N., Antiga L., et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: Wallach H., Larochelle H., Beygelzimer A., d’Alché-Buc F., Fox E., Garnett R., editors. Advances in Neural Information Processing Systems 32. Curran Associates, Inc.; Red Hook, NY, USA: 2019. pp. 8024–8035.

Kingma D.P., Ba J. Adam: A method for stochastic optimization; Proceedings of the International Conference on Learning Representations (ICLR); San Diego, CA, USA. 7–9 May 2015.

He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition; Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Las Vegas, NV, USA. 27–30 June 2016; DOI

Hu J., Shen L., Sun G. Squeeze-and-excitation networks; Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City; UT, USA. 18–22 June 2018; DOI

Carlevaris-Bianco N., Ushani A.K., Eustice R.M. University of Michigan North Campus long-term vision and lidar dataset. Int. J. Robot. Res. 2016;35:1023–1035. doi: 10.1177/0278364915614638. DOI

Krajník T., Pedre S., Přeučil L. Monocular navigation for long-term autonomy; Proceedings of the 2013 16th International Conference on Advanced Robotics (ICAR); Montevideo, Uruguay. 25–29 November 2013; pp. 1–6.

Neubert P., Protzel P. Benchmarking superpixel descriptors; Proceedings of the European Signal Processing Conference (EUSIPCO); Nice, France. 31 August–4 September 2015.

DeTone D., Malisiewicz T., Rabinovich A. SuperPoint: Self-Supervised Interest Point Detection and Description; Proceedings of the CVPR Deep Learning for Visual SLAM Workshop, Salt Lake City; UT, USA. 18–22 June 2018.

Halodová L., Dvořáková E., Majer F., Ulrich J., Vintr T., Kusumam K., Krajník T. Adaptive Image Processing Methods for Outdoor Autonomous Vehicles; Proceedings of the Modelling and Simulation for Autonomous Systems (MESAS); Palermo, Italy. 29–31 October 2019; pp. 456–476. DOI

Krajník T., Cristóforis P., Nitsche M., Kusumam K., Duckett T. Image features and seasons revisited; Proceedings of the 2015 European Conference on Mobile Robots (ECMR); Lincoln, UK. 2–4 September 2015; pp. 1–7.

Nitsche M., Pire T., Krajník T., Kulich M., Mejail M. Conference Towards Autonomous Robotic Systems. Springer; Berlin, Germany: 2014. Monte carlo localization for teach-and-repeat feature-based navigation; pp. 13–24.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...