Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment: DUNE Collaboration

. 2021 ; 81 (4) : 322. [epub] 20210416

Status PubMed-not-MEDLINE Jazyk angličtina Země Francie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34720713

Grantová podpora
MR/T019530/1 Medical Research Council - United Kingdom
MR/T041323/1 Medical Research Council - United Kingdom

The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE's sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.

Argonne National Laboratory Argonne IL 60439 USA

Banaras Hindu University Varanasi 221 005 India

Beykent University Istanbul Turkey

Boston University Boston MA 02215 USA

Brookhaven National Laboratory Upton NY 11973 USA

California Institute of Technology Pasadena CA 91125 USA

CEA Saclay IRFU Institut de Recherche sur les Lois Fondamentales de l'Univers 91191 Gif sur Yvette Cedex France

Central University of South Bihar Gaya 824236 India

Centro Brasileiro de Pesquisas Físicas Rio de Janeiro RJ 22290 180 Brazil

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Mexico City Mexico

CERN The European Organization for Nuclear Research 1211 Meyrin Switzerland

Chung Ang University Seoul 06974 South Korea

Chungnam National University Daejeon 34134 South Korea

CIEMAT Centro de Investigaciones Energéticas Medioambientales y Tecnológicas 28040 Madrid Spain

Colorado State University Fort Collins CO 80523 USA

Columbia University New York NY 10027 USA

Czech Technical University 115 19 Prague 1 Czech Republic

Dakota State University Madison SD 57042 USA

Daresbury Laboratory Cheshire WA4 4AD UK

Drexel University Philadelphia PA 19104 USA

Duke University Durham NC 27708 USA

Durham University Durham DH1 3LE UK

ETH Zurich Zurich Switzerland

Faculdade de Ciências da Universidade de Lisboa FCUL 1749 016 Lisbon Portugal

Fermi National Accelerator Laboratory Batavia IL 60510 USA

Fluminense Federal University 9 Icaraí Niterói RJ 24220 900 Brazil

Georgian Technical University Tbilisi Georgia

Gran Sasso Science Institute L'Aquila Italy

H Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences Cracow Poland

Harish Chandra Research Institute Jhunsi Allahabad 211 019 India

Harvard University Cambridge MA 02138 USA

High Energy Accelerator Research Organization Tsukuba Ibaraki 305 0801 Japan

Idaho State University Pocatello ID 83209 USA

Illinois Institute of Technology Chicago IL 60616 USA

Imperial College of Science Technology and Medicine London SW7 2BZ UK

Indian Institute of Technology Guwahati Guwahati 781 039 India

Indian Institute of Technology Hyderabad Hyderabad 502285 India

Indiana University Bloomington IN 47405 USA

Institut de Fìsica d'Altes Energies Barcelona Spain

Institut de Physique des 2 Infinis de Lyon 69622 Villeurbanne France

Institute for Nuclear Research of the Russian Academy of Sciences Moscow 117312 Russia

Institute for Research in Fundamental Sciences Tehran Iran

Institute of Particle and Nuclear Physics of the Faculty of Mathematics and Physics of the Charles University 180 00 Prague 8 Czech Republic

Institute of Physics Czech Academy of Sciences 182 00 Prague 8 Czech Republic

Instituto de Fisica Corpuscular 46980 Paterna Valencia Spain

Instituto Superior Técnico IST Universidade de Lisboa Lisbon Portugal

Iowa State University Ames IA 50011 USA

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud 95123 Catania Italy

Istituto Nazionale di Fisica Nucleare Sezione di Bologna 40127 Bologna BO Italy

Istituto Nazionale di Fisica Nucleare Sezione di Catania 95123 Catania Italy

Istituto Nazionale di Fisica Nucleare Sezione di Genova 16146 Genoa GE Italy

Istituto Nazionale di Fisica Nucleare Sezione di Lecce 73100 Lecce Italy

Istituto Nazionale di Fisica Nucleare Sezione di Milano 20133 Milan Italy

Istituto Nazionale di Fisica Nucleare Sezione di Milano Bicocca 3 20126 Milan Italy

Istituto Nazionale di Fisica Nucleare Sezione di Napoli 80126 Naples Italy

Istituto Nazionale di Fisica Nucleare Sezione di Padova 35131 Padua Italy

Istituto Nazionale di Fisica Nucleare Sezione di Pavia 27100 Pavia Italy

Iwate University Morioka Iwate 020 8551 Japan

Jawaharlal Nehru University New Delhi 110067 India

Jeonbuk National University Jeonju Jeonrabuk do 54896 South Korea

K L University Vaddeswaram Andhra Pradesh 522502 India

Kansas State University Manhattan KS 66506 USA

Kavli Institute for the Physics and Mathematics of the Universe Kashiwa Chiba 277 8583 Japan

Korea Institute of Science and Technology Information Daejeon 34141 South Korea

Kyiv National University Kiev 01601 Ukraine

Laboratoire d'Annecy le Vieux de Physique des Particules CNRS IN2P3 and Université Savoie Mont Blanc 74941 Annecy le Vieux France

Laboratoire de l'Accélérateur Linéaire 91440 Orsay France

Laboratori Nazionali del Gran Sasso L'Aquila AQ Italy

Laboratório de Instrumentação e Física Experimental de Partículas 1649 003 Lisbon and 3004 516 Coimbra Portugal

Lancaster University Lancaster LA1 4YB UK

Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

Los Alamos National Laboratory Los Alamos NM 87545 USA

Louisiana State University Baton Rouge LA 70803 USA

Madrid Autonoma University and IFT UAM CSIC 28049 Madrid Spain

Massachusetts Institute of Technology Cambridge MA 02139 USA

Michigan State University East Lansing MI 48824 USA

National Institute of Technology Kure College Hiroshima 737 8506 Japan

Nikhef National Institute of Subatomic Physics 1098 XG Amsterdam The Netherlands

Northern Illinois University DeKalb IL 60115 USA

Northwestern University Evanston IL 60208 USA

Ohio State University Columbus OH 43210 USA

Oregon State University Corvallis OR 97331 USA

Pacific Northwest National Laboratory Richland WA 99352 USA

Pennsylvania State University University Park PA 16802 USA

Physical Research Laboratory Ahmedabad 380 009 India

Pontificia Universidad Católica del Perú Lima Peru

Punjab Agricultural University Ludhiana 141004 India

Radboud University 6525 AJ Nijmegen The Netherlands

Royal Holloway College London TW20 0EX UK

Rutgers University Piscataway NJ 08854 USA

Sanford Underground Research Facility Lead SD 57754 USA

SLAC National Accelerator Laboratory Menlo Park CA 94025 USA

South Dakota School of Mines and Technology Rapid City SD 57701 USA

South Dakota State University Brookings SD 57007 USA

Southern Methodist University Dallas TX 75275 USA

Stanford University Stanford CA 94305 USA

STFC Rutherford Appleton Laboratory Didcot OX11 0QX UK

Stony Brook University SUNY Stony Brook NY 11794 USA

Syracuse University Syracuse NY 13244 USA

Texas A and M University Corpus Christi Corpus Christi TX 78412 USA

Tufts University Medford MA 02155 USA

Universidad Antonio Nariño Bogotá Colombia

Universidad de Colima Colima Mexico

Universidad de Guanajuato C P 37000 Guanajuato Mexico

Universidad del Atlántico Barranquilla Atlántico Colombia

Universidad EIA Envigado Antioquia Colombia

Universidad Nacional de Asunción San Lorenzo Paraguay

Universidad Nacional de Ingeniería Lima 25 Peru

Universidad Sergio Arboleda Bogotá 11022 Colombia

Universidade Estadual de Campinas Campinas SP 13083 970 Brazil

Universidade Federal de Alfenas Poços de Caldas MG 37715 400 Brazil

Universidade Federal de Goias Goiânia GO 74690 900 Brazil

Universidade Federal de São Carlos Araras SP 13604 900 Brazil

Universidade Federal de São Paulo São Paulo 09913 030 Brazil

Universidade Federal do ABC Santo André SP 09210 580 Brazil

Universidade Federal do Rio de Janeiro Rio de Janeiro RJ 21941 901 Brazil

Università degli Studi di Genova Genoa Italy

Università degli Studi di Milano 20133 Milan Italy

Università degli Studi di Pavia 27100 Pavia PV Italy

Università del Bologna 40127 Bologna Italy

Università del Milano Bicocca 20126 Milan Italy

Università del Salento 73100 Lecce Italy

Università di Catania 2 95131 Catania Italy

Università di Pisa 56127 Pisa Italy

Université de Paris CNRS Astroparticule et Cosmologie 75006 Paris France

University College London London WC1E 6BT UK

University Grenoble Alpes CNRS Grenoble INP LPSC IN2P3 38000 Grenoble France

University of Amsterdam 1098 XG Amsterdam The Netherlands

University of Antananarivo 101 Antananarivo Madagascar

University of Arizona Tucson AZ 85721 USA

University of Athens 157 84 Zografou Greece

University of Basel 4056 Basel Switzerland

University of Bern 3012 Bern Switzerland

University of Birmingham Birmingham B15 2TT UK

University of Bristol Bristol BS8 1TL UK

University of Bucharest Bucharest Romania

University of California Berkeley Berkeley CA 94720 USA

University of California Davis Davis CA 95616 USA

University of California Irvine Irvine CA 92697 USA

University of California Los Angeles Los Angeles CA 90095 USA

University of California Riverside Riverside CA 92521 USA

University of California Santa Barbara Santa Barbara CA 93106 USA

University of Cambridge Cambridge CB3 0HE UK

University of Chicago Chicago IL 60637 USA

University of Cincinnati Cincinnati OH 45221 USA

University of Colorado Boulder Boulder CO 80309 USA

University of Dallas Irving TX 75062 4736 USA

University of Edinburgh Edinburgh EH8 9YL UK

University of Florida Gainesville FL 32611 8440 USA

University of Granada and CAFPE 18002 Granada Spain

University of Hawaii Honolulu HI 96822 USA

University of Houston Houston TX 77204 USA

University of Hyderabad Gachibowli Hyderabad 500 046 India

University of Iowa Iowa City IA 52242 USA

University of Jammu Jammu 180006 India

University of Jyvaskyla 40014 Jyväskylä Finland

University of Liverpool Liverpool L69 7ZE UK

University of Lucknow Lucknow Uttar Pradesh 226007 India

University of Manchester Manchester M13 9PL UK

University of Michigan Ann Arbor MI 48109 USA

University of Minnesota Duluth Duluth MN 55812 USA

University of Minnesota Twin Cities Minneapolis MN 55455 USA

University of Mississippi University MS 38677 USA

University of New Mexico Albuquerque NM 87131 USA

University of North Dakota Grand Forks ND 58202 8357 USA

University of Notre Dame Notre Dame IN 46556 USA

University of Oxford Oxford OX1 3RH UK

University of Pennsylvania Philadelphia PA 19104 USA

University of Pittsburgh Pittsburgh PA 15260 USA

University of Puerto Rico Mayagüez PR 00681 USA

University of Rochester Rochester NY 14627 USA

University of Sheffield Sheffield S3 7RH UK

University of South Carolina Columbia SC 29208 USA

University of Sussex Brighton BN1 9RH UK

University of Tennessee at Knoxville Knoxville TN 37996 USA

University of Texas at Arlington Arlington TX 76019 USA

University of Texas at Austin Austin TX 78712 USA

University of Toronto Toronto ON M5S 1A1 Canada

University of Utah Salt Lake City UT 84112 USA

University of Warsaw 00 927 Warsaw Poland

University of Warwick Coventry CV4 7AL UK

University of Wisconsin Madison Madison WI 53706 USA

Universtà degli Studi di Padova 35131 Padua Italy

Valley City State University Valley City ND 58072 USA

Variable Energy Cyclotron Centre Kolkata West Bengal 700 064 India

Virginia Tech Blacksburg VA 24060 USA

Wichita State University Wichita KS 67260 USA

William and Mary Williamsburg VA 23187 USA

Yale University New Haven CT 06520 USA

Yerevan Institute for Theoretical Physics and Modeling 0036 Yerevan Armenia

York University Toronto M3J 1P3 Canada

Zobrazit více v PubMed

DUNE Collaboration, B. Abi et al., Deep underground neutrino experiment (DUNE), far detector technical design report, vol. II. DUNE Phys. arXiv:2002.03005 [hep-ex]

DUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1601.05471 [physics.ins-det] PubMed

DUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1512.06148 [physics.ins-det] PubMed

DUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1601.02984 [physics.ins-det] PubMed

DUNE Collaboration, B. Abi et al., Volume I. Introduction to DUNE. J. Inst. 15(08), T08008 (2020). 10.1088/1748-0221/15/08/T08008. arXiv:2002.02967 [physics.ins-det]

MINERvA Collaboration, L. Aliaga et al., Neutrino flux predictions for the NuMI beam. Phys. Rev. D 94(9), 092005 (2016). 10.1103/PhysRevD.94.092005. 10.1103/PhysRevD.95.039903. arXiv:1607.00704 [hep-ex] [Addendum: Phys. Rev. D 95(3), 039903 (2017)]

GEANT4 Collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). 10.1016/S0168-9002(03)01368-8

Allison J, et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006;53:270. doi: 10.1109/TNS.2006.869826. DOI

Allison J, et al. Recent developments in Geant4. Nucl. Instrum. Methods A. 2016;835:186–225. doi: 10.1016/j.nima.2016.06.125. DOI

Huber P, Lindner M, Winter W. Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator) Comput. Phys. Commun. 2005;167:195. doi: 10.1016/j.cpc.2005.01.003. DOI

Huber P, Kopp J, Lindner M, Rolinec M, Winter W. New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: general long baseline experiment simulator. Comput. Phys. Commun. 2007;177:432–438. doi: 10.1016/j.cpc.2007.05.004. DOI

Andreopoulos C, et al. The GENIE neutrino Monte Carlo generator. Nucl. Instrum. Methods A. 2010;614:87–104. doi: 10.1016/j.nima.2009.12.009. DOI

C. Andreopoulos, C. Barry, S. Dytman, H. Gallagher, T. Golan, R. Hatcher, G. Perdue, J. Yarba, The GENIE neutrino Monte Carlo generator: physics and user manual. arXiv:1510.05494 [hep-ph]

Dentler M, Hernández-Cabezudo A, Kopp J, Machado PAN, Maltoni M, Martinez-Soler I, Schwetz T. Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos. JHEP. 2018;08:010. doi: 10.1007/JHEP08(2018)010. DOI

Gariazzo S, Giunti C, Laveder M, Li YF. Updated global 3+1 analysis of short-baseline neutrino oscillations. JHEP. 2017;06:135. doi: 10.1007/JHEP06(2017)135. DOI

Harari H, Leurer M. Recommending a standard choice of Cabibbo angles and KM phases for any number of generations. Phys. Lett. B. 1986;181:123–128. doi: 10.1016/0370-2693(86)91268-2. DOI

J. Kopp, Sterile neutrinos and non-standard neutrino interactions in GLoBES. https://www.mpi-hd.mpg.de/personalhomes/globes/tools/snu-1.0.pdf

J.R. Todd, Search for sterile neutrinos with MINOS and MINOS+. PhD thesis, Cincinnati U (2018). 10.2172/1484184

Collaboration LSND, Aguilar-Arevalo AA, et al. Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam. Phys. Rev. D. 2001;64:112007. doi: 10.1103/PhysRevD.64.112007. DOI

R.N. Mohapatra, P.B. Pal, Massive neutrinos in physics and astrophysics. Second edition. World Sci. Lect. Notes Phys. 60, 1–397 (1998) [World Sci. Lect. Notes Phys. 72, 1 (2004)]

J.W.F. Valle, J.C. Romao, Neutrinos in high energy and astroparticle physics. Physics textbook. Wiley-VCH, Weinheim (2015). http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527411976.html

Fukugita M, Yanagida T. Physics of Neutrinos and Applications to Astrophysics. Berlin: Springer; 2003. p. 593.

Gell-Mann M, Ramond P, Slansky R. Complex spinors and unified theories. Conf. Proc. C. 1979;790927:315–321.

Yanagida T. Horizontal symmetry and masses of neutrinos. Conf. Proc. C. 1979;7902131:95–99.

Mohapatra RN, Senjanovic G. Neutrino mass and spontaneous parity violation. Phys. Rev. Lett. 1980;44:912. doi: 10.1103/PhysRevLett.44.912. DOI

Schechter J, Valle J. Neutrino masses in SU(2) DOI

Mohapatra RN, Valle JWF. Neutrino mass and baryon number nonconservation in superstring models. Phys. Rev. D. 1986;34:1642. doi: 10.1103/PhysRevD.34.1642. PubMed DOI

Escrihuela FJ, Forero DV, Miranda OG, Tortola M, Valle JWF. On the description of non-unitary neutrino mixing. Phys. Rev. D. 2015;92(5):053009. doi: 10.1103/PhysRevD.92.053009. DOI

Xing Z-Z. Correlation between the charged current interactions of light and heavy Majorana neutrinos. Phys. Lett. B. 2008;660:515–521. doi: 10.1016/j.physletb.2008.01.038. DOI

Xing Z-Z. A full parametrization of the 6 X 6 flavor mixing matrix in the presence of three light or heavy sterile neutrinos. Phys. Rev. D. 2012;85:013008. doi: 10.1103/PhysRevD.85.013008. DOI

Blennow M, Coloma P, Fernandez-Martinez E, Hernandez-Garcia J, Lopez-Pavon J. Non-unitarity, sterile neutrinos, and non-standard neutrino interactions. JHEP. 2017;04:153. doi: 10.1007/JHEP04(2017)153. DOI

Shrock RE. New tests for, and bounds on, neutrino masses and lepton mixing. Phys. Lett. B. 1980;96:159–164. doi: 10.1016/0370-2693(80)90235-X. DOI

Shrock RE. General theory of weak leptonic and semileptonic decays. 1. Leptonic pseudoscalar meson decays, with associated tests for, and bounds on, neutrino masses and lepton mixing. Phys. Rev. D. 1981;24:1232. doi: 10.1103/PhysRevD.24.1232. DOI

Shrock RE. General theory of weak processes involving neutrinos. 2. Pure leptonic decays. Phys. Rev. D. 1981;24:1275. doi: 10.1103/PhysRevD.24.1275. DOI

Langacker P, London D. Mixing between ordinary and exotic fermions. Phys. Rev. D. 1988;38:886. doi: 10.1103/PhysRevD.38.886. PubMed DOI

Bilenky SM, Giunti C. Seesaw type mixing and DOI

Nardi E, Roulet E, Tommasini D. Limits on neutrino mixing with new heavy particles. Phys. Lett. B. 1994;327:319–326. doi: 10.1016/0370-2693(94)90736-6. DOI

Tommasini D, Barenboim G, Bernabeu J, Jarlskog C. Nondecoupling of heavy neutrinos and lepton flavor violation. Nucl. Phys. B. 1995;444:451–467. doi: 10.1016/0550-3213(95)00201-3. DOI

Antusch S, Biggio C, Fernandez-Martinez E, Gavela M, Lopez-Pavon J. Unitarity of the leptonic mixing matrix. JHEP. 2006;0610:084. doi: 10.1088/1126-6708/2006/10/084. DOI

Fernandez-Martinez E, Gavela MB, Lopez-Pavon J, Yasuda O. CP-violation from non-unitary leptonic mixing. Phys. Lett. B. 2007;649:427–435. doi: 10.1016/j.physletb.2007.03.069. DOI

Antusch S, Baumann JP, Fernandez-Martinez E. Non-standard neutrino interactions with matter from physics beyond the standard model. Nucl. Phys. B. 2009;810:369–388. doi: 10.1016/j.nuclphysb.2008.11.018. DOI

Biggio C. The contribution of fermionic seesaws to the anomalous magnetic moment of leptons. Phys. Lett. B. 2008;668:378–384. doi: 10.1016/j.physletb.2008.09.004. DOI

Antusch S, Blennow M, Fernandez-Martinez E, Lopez-Pavon J. Probing non-unitary mixing and CP-violation at a Neutrino Factory. Phys. Rev. D. 2009;80:033002. doi: 10.1103/PhysRevD.80.033002. DOI

Forero DV, Morisi S, Tortola M, Valle JWF. Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw. JHEP. 2011;09:142. doi: 10.1007/JHEP09(2011)142. DOI

Alonso R, Dhen M, Gavela M, Hambye T. Muon conversion to electron in nuclei in type-I seesaw models. JHEP. 2013;1301:118. doi: 10.1007/JHEP01(2013)118. DOI

Antusch S, Fischer O. Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities. JHEP. 2014;1410:94. doi: 10.1007/JHEP10(2014)094. DOI

Abada A, Toma T. Electric dipole moments of charged leptons with sterile fermions. JHEP. 2016;02:174. doi: 10.1007/JHEP02(2016)174. DOI

Fernandez-Martinez E, Hernandez-Garcia J, Lopez-Pavon J, Lucente M. Loop level constraints on Seesaw neutrino mixing. JHEP. 2015;10:130. doi: 10.1007/JHEP10(2015)130. DOI

S. Parke, M. Ross-Lonergan, Unitarity and the three flavour neutrino mixing matrix. Phys. Rev. D 93, 113009 (2016). 10.1103/PhysRevD.93.113009. arXiv:1508.05095 [hep-ph]

Miranda OG, Tortola M, Valle JWF. New ambiguity in probing CP violation in neutrino oscillations. Phys. Rev. Lett. 2016;117(6):061804. doi: 10.1103/PhysRevLett.117.061804. PubMed DOI

Fong CS, Minakata H, Nunokawa H. A framework for testing leptonic unitarity by neutrino oscillation experiments. JHEP. 2017;02:114. doi: 10.1007/JHEP02(2017)114. DOI

Escrihuela FJ, Forero DV, Miranda OG, Tortola M, Valle JWF. Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study. New J. Phys. 2017;19(9):093005. doi: 10.1088/1367-2630/aa79ec. DOI

Fernandez-Martinez E, Hernandez-Garcia J, Lopez-Pavon J. Global constraints on heavy neutrino mixing. JHEP. 2016;08:033. doi: 10.1007/JHEP08(2016)033. DOI

M. Blennow, E. Fernandez-Martinez, Neutrino oscillation parameter sampling with MonteCUBES. Comput. Phys. Commun. 181, 227–231 (2010). 10.1016/j.cpc.2009.09.014. arXiv:0903.3985 [hep-ph]. http://wwwth.mpp.mpg.de/members/blennow/montecubes/

Farzan Y, Tortola M. Neutrino oscillations and non-standard interactions. Front. Phys. 2018;6:10. doi: 10.3389/fphy.2018.00010. DOI

M. Masud, A. Chatterjee, P. Mehta, Probing CP violation signal at DUNE in presence of non-standard neutrino interactions. J. Phys. G 43(9), 095005 (2016). 10.1088/0954-3899/43/9/095005/meta. 10.1088/0954-3899/43/9/095005. arXiv:1510.08261 [hep-ph]

Masud M, Mehta P. Nonstandard interactions spoiling the CP violation sensitivity at DUNE and other long baseline experiments. Phys. Rev. D. 2016;94:013014. doi: 10.1103/PhysRevD.94.013014. DOI

Masud M, Mehta P. Nonstandard interactions and resolving the ordering of neutrino masses at DUNE and other long baseline experiments. Phys. Rev. D. 2016;94(5):053007. doi: 10.1103/PhysRevD.94.053007. DOI

F. Capozzi, S.S. Chatterjee, A. Palazzo, Neutrino mass ordering obscured by non-standard interactions. Phys. Rev. Lett. 124, 111801 (2020). 10.1103/PhysRevLett.124.111801. arXiv:1908.06992 [hep-ph] PubMed

Agarwalla, S.S. Chatterjee, A. Palazzo, Degeneracy between

de Gouvea A, Kelly KJ. Non-standard neutrino interactions at DUNE. Nucl. Phys. B. 2016;908:318–335. doi: 10.1016/j.nuclphysb.2016.03.013. DOI

Coloma P. Non-standard interactions in propagation at the deep underground neutrino experiment. JHEP. 2016;03:016. doi: 10.1007/JHEP03(2016)016. DOI

Ohlsson T. Status of non-standard neutrino interactions. Rep. Prog. Phys. 2013;76:044201. doi: 10.1088/0034-4885/76/4/044201. PubMed DOI

Miranda OG, Nunokawa H. Non standard neutrino interactions: current status and future prospects. New J. Phys. 2015;17(9):095002. doi: 10.1088/1367-2630/17/9/095002. DOI

Blennow M, Choubey S, Ohlsson T, Pramanik D, Raut SK. A combined study of source, detector and matter non-standard neutrino interactions at DUNE. JHEP. 2016;08:090. doi: 10.1007/JHEP08(2016)090. DOI

Bakhti P, Khan AN, Wang W. Sensitivities to charged-current nonstandard neutrino interactions at DUNE. J. Phys. 2017;G44(12):125001. doi: 10.1088/1361-6471/aa9098. DOI

Mikheev S, Smirnov AY. Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos. Sov. J. Nucl. Phys. 1985;42:913–917.

Wolfenstein L. Neutrino oscillations in matter. Phys. Rev. D. 1978;17:2369–2374. doi: 10.1103/PhysRevD.17.2369. DOI

Guzzo M, Masiero A, Petcov S. On the MSW effect with massless neutrinos and no mixing in the vacuum. Phys. Lett. B. 1991;260:154–160. doi: 10.1016/0370-2693(91)90984-X. DOI

Guzzo M, Petcov S. On the matter enhanced transitions of solar neutrinos in the absence of neutrino mixing in vacuum. Phys. Lett. B. 1991;271:172–178. doi: 10.1016/0370-2693(91)91295-7. DOI

Roulet E. MSW effect with flavor changing neutrino interactions. Phys. Rev. D. 1991;44:935–938. doi: 10.1103/PhysRevD.44.R935. PubMed DOI

Valle J. Resonant oscillations of massless neutrinos in matter. Phys. Lett. B. 1987;199:432. doi: 10.1016/0370-2693(87)90947-6. DOI

Particle Data Group Collaboration, K.A. Olive et al., Review of particle physics. Chin. Phys. C 38, 090001 (2014). 10.1088/1674-1137/38/9/090001

Davidson S, Peña Garay C, Rius N, Santamaria A. Present and future bounds on nonstandard neutrino interactions. JHEP. 2003;0303:011. doi: 10.1088/1126-6708/2003/03/011. DOI

Gonzalez-Garcia M, Maltoni M. Phenomenology with massive neutrinos. Phys. Rep. 2008;460:1–129. doi: 10.1016/j.physrep.2007.12.004. DOI

Biggio C, Blennow M, Fernandez-Martinez E. General bounds on non-standard neutrino interactions. JHEP. 2009;0908:090. doi: 10.1088/1126-6708/2009/08/090. DOI

LBNE Collaboration, C. Adams et al., The long-baseline neutrino experiment: exploring fundamental symmetries of the Universe (2013). arXiv:1307.7335 [hep-ex]

Gonzalez-Garcia MC, Maltoni M. Determination of matter potential from global analysis of neutrino oscillation data. JHEP. 2013;09:152. doi: 10.1007/JHEP09(2013)152. DOI

Esteban I, Gonzalez-Garcia MC, Maltoni M, Martinez-Soler I, Salvado J. Updated constraints on non-standard interactions from global analysis of oscillation data. JHEP. 2018;08:180. doi: 10.1007/JHEP08(2018)180. DOI

Roe B. Matter density versus distance for the neutrino beam from Fermilab to Lead, South Dakota, and comparison of oscillations with variable and constant density. Phys. Rev. D. 2017;95(11):113004. doi: 10.1103/PhysRevD.95.113004. DOI

Kelly KJ, Parke SJ. Matter density profile shape effects at DUNE. Phys. Rev. D. 2018;98(1):015025. doi: 10.1103/PhysRevD.98.015025. DOI

Dziewonski AM, Anderson DL. Preliminary reference earth model. Phys. Earth Planet. Inter. 1981;25:297–356. doi: 10.1016/0031-9201(81)90046-7. DOI

Stacey F. Physics of the Earth. 2. Hoboken: Wiley; 1977.

Shen W, Ritzwoller MH. Crustal and uppermost mantle structure beneath the United States. J. Geophys. Res.: Solid Earth. 2016;121:4306. doi: 10.1002/2016JB012887. DOI

A. Chatterjee, F. Kamiya, C.A. Moura, J. Yu, Impact of matter density profile shape on non-standard interactions at DUNE. arXiv:1809.09313 [hep-ph]

Rout J, Masud M, Mehta P. Can we probe intrinsic CP and T violations and nonunitarity at long baseline accelerator experiments? Phys. Rev. D. 2017;95(7):075035. doi: 10.1103/PhysRevD.95.075035. DOI

Masud M, Bishai M, Mehta P. Extricating new physics scenarios at DUNE with higher energy beams. Sci. Rep. 2019;9(1):352. doi: 10.1038/s41598-018-36790-6. PubMed DOI PMC

R.F. Streater, A.S. Wightman, PCT, spin and statistics, and all that (1989)

Barenboim G, Lykken JD. A model of CPT violation for neutrinos. Phys. Lett. B. 2003;554:73–80. doi: 10.1016/S0370-2693(02)03262-8. DOI

Kostelecký VA, Mewes M. Lorentz and CPT violation in neutrinos. Phys. Rev. D. 2004;69:016005. doi: 10.1103/PhysRevD.69.016005. DOI

Diaz JS, Kostelecký VA, Mewes M. Perturbative Lorentz and CPT violation for neutrino and antineutrino oscillations. Phys. Rev. D. 2009;80:076007. doi: 10.1103/PhysRevD.80.076007. DOI

Kostelecký A, Mewes M. Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D. 2012;85:096005. doi: 10.1103/PhysRevD.85.096005. DOI

Barenboim G, Ternes CA, Tórtola M. Neutrinos, DUNE and the world best bound on CPT invariance. Phys. Lett. B. 2018;780:631–637. doi: 10.1016/j.physletb.2018.03.060. DOI

Barenboim G, Ternes CA, Tórtola M. New physics vs new paradigms: distinguishing CPT violation from NSI. Eur. Phys. J. C. 2019;79(5):390. doi: 10.1140/epjc/s10052-019-6900-7. DOI

Barenboim G, Masud M, Ternes CA, Tórtola M. Exploring the intrinsic Lorentz-violating parameters at DUNE. Phys. Lett. B. 2019;788:308–315. doi: 10.1016/j.physletb.2018.11.040. DOI

Schwingenheuer B, et al. CPT tests in the neutral kaon system. Phys. Rev. Lett. 1995;74:4376–4379. doi: 10.1103/PhysRevLett.74.4376. PubMed DOI

Barenboim G, Salvado J. Cosmology and CPT violating neutrinos. Eur. Phys. J. C. 2017;77(11):766. doi: 10.1140/epjc/s10052-017-5347-y. DOI

de Salas PF, Forero DV, Ternes CA, Tórtola M, Valle JWF. Status of neutrino oscillations 2018: 3 DOI

Super-Kamiokande Collaboration, K. Abe et al., Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I–IV. Phys. Rev. D 97(7), 072001 (2018). 10.1103/PhysRevD.97.072001. arXiv:1710.09126 [hep-ex]

IceCube Collaboration, M.G. Aartsen et al., Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Phys. Rev. D 91(7), 072004 (2015). 10.1103/PhysRevD.91.072004. arXiv:1410.7227 [hep-ex]

IceCube Collaboration, M.G. Aartsen et al., Measurement of atmospheric neutrino oscillations at 6–56 GeV with IceCube DeepCore. Phys. Rev. Lett. 120(7), 071801 (2018). 10.1103/PhysRevLett.120.071801. arXiv:1707.07081 [hep-ex] PubMed

ANTARES Collaboration, S. Adrian-Martinez et al., Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope. Phys. Lett. B 714, 224–230 (2012). 10.1016/j.physletb.2012.07.002. arXiv:1206.0645 [hep-ex]

B. Cleveland, T. Daily, J. Davis, Raymond, J.R. Distel, K. Lande et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys.J. 496, 505–526 (1998). 10.1086/305343

Kaether F, Hampel W, Heusser G, Kiko J, Kirsten T. Reanalysis of the GALLEX solar neutrino flux and source experiments. Phys. Lett. B. 2010;685:47–54. doi: 10.1016/j.physletb.2010.01.030. DOI

SAGE Collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: results for the 2002–2007 data-taking period. Phys. Rev. C 80, 015807 (2009). 10.1103/PhysRevC.80.015807. arXiv:0901.2200 [nucl-ex]

Super-Kamiokande Collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I. Phys. Rev. D 73, 112001 (2006). 10.1103/PhysRevD.73.112001. arXiv:hep-ex/0508053

Super-Kamiokande Collaboration, J.P. Cravens et al., Solar neutrino measurements in Super-Kamiokande-II. Phys. Rev. D 78, 032002 (2008). 10.1103/PhysRevD.78.032002. arXiv:0803.4312 [hep-ex]

Super-Kamiokande Collaboration, K. Abe et al., Solar neutrino results in Super-Kamiokande-III. Phys. Rev. D 83, 052010 (2011). 10.1103/PhysRevD.83.052010. arXiv:1010.0118 [hep-ex]

Y. Nakano, PhD Thesis, University of Tokyo (2016). http://www-sk.icrr.u-tokyo.ac.jp/sk/_pdf/articles/2016/doc_thesis_naknao.pdf

SNO Collaboration, B. Aharmim et al., An independent measurement of the total active B-8 solar neutrino flux using an array of He-3 proportional counters at the sudbury neutrino observatory. Phys. Rev. Lett. 101, 111301 (2008). 10.1103/PhysRevLett.101.111301. arXiv:0806.0989 [nucl-ex] PubMed

SNO Collaboration, B. Aharmim et al., Low energy threshold analysis of the phase I and phase II data sets of the sudbury neutrino observatory. Phys. Rev. C 81, 055504 (2010). 10.1103/PhysRevC.81.055504. arXiv:0910.2984 [nucl-ex]

Borexino Collaboration, G. Bellini et al., Final results of Borexino Phase-I on low energy solar neutrino spectroscopy. Phys. Rev. D 89(11), 112007 (2014). 10.1103/PhysRevD.89.112007. arXiv:1308.0443 [hep-ex]

K2K Collaboration, M.H. Ahn et al., Measurement of neutrino oscillation by the K2K experiment. Phys. Rev. D 74, 072003 (2006). 10.1103/PhysRevD.74.072003. arXiv:hep-ex/0606032 [hep-ex]

MINOS Collaboration, P. Adamson et al., Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS. Phys.Rev.Lett. 110(25), 251801 (2013). 10.1103/PhysRevLett.110.251801. arXiv:1304.6335 [hep-ex] PubMed

MINOS Collaboration, P. Adamson et al., Combined analysis of PubMed

T2K Collaboration, K. Abe et al., Combined analysis of neutrino and antineutrino oscillations at T2K. Phys. Rev. Lett. 118(15), 151801 (2017). 10.1103/PhysRevLett.118.151801. arXiv:1701.00432 [hep-ex] PubMed

T2K Collaboration, K. Abe et al., Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5

NOvA Collaboration, P. Adamson et al., Measurement of the neutrino mixing angle PubMed

NOvA Collaboration, P. Adamson et al., Constraints on oscillation parameters from PubMed

KamLAND Collaboration, A. Gando et al., Constraints on

Daya Bay Collaboration, F.P. An et al., Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment. Phys. Rev. D 95(7), 072006 (2017). 10.1103/PhysRevD.95.072006. arXiv:1610.04802 [hep-ex]

RENO Collaboration, J.H. Choi et al., Observation of energy and baseline dependent reactor antineutrino disappearance in the RENO experiment. Phys. Rev. Lett. 116(21), 211801 (2016). 10.1103/PhysRevLett.116.211801. arXiv:1511.05849 [hep-ex] PubMed

Double Chooz Collaboration, Y. Abe et al., Improved measurements of the neutrino mixing angle

Colladay D, Kostelecký VA. CPT violation and the standard model. Phys. Rev. D. 1997;55:6760–6774. doi: 10.1103/PhysRevD.55.6760. DOI

Kostelecký VA, Mewes M. Lorentz and CPT violation in the neutrino sector. Phys. Rev. D. 2004;70:031902. doi: 10.1103/PhysRevD.70.031902. DOI

Kostelecký VA, Mewes M. Lorentz violation and short-baseline neutrino experiments. Phys. Rev. D. 2004;70:076002. doi: 10.1103/PhysRevD.70.076002. DOI

Díaz JS, Kostelecký A, Lehnert R. Relativity violations and beta decay. Phys. Rev. D. 2013;88(7):071902. doi: 10.1103/PhysRevD.88.071902. DOI

Díaz JS, Kostelecky A, Mewes M. Testing relativity with high-energy astrophysical neutrinos. Phys. Rev. D. 2014;89(4):043005. doi: 10.1103/PhysRevD.89.043005. DOI

IceCube Collaboration, M.G. Aartsen et al., Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube. Nat. Phys. 14(9), 961–966 (2018). 10.1038/s41567-018-0172-2. arXiv:1709.03434 [hep-ex]

Super-Kamiokande Collaboration, K. Abe et al., Test of Lorentz invariance with atmospheric neutrinos. Phys. Rev. D 91(5), 052003 (2015). 10.1103/PhysRevD.91.052003. arXiv:1410.4267 [hep-ex]

IceCube Collaboration, M.G. Aartsen et al., Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube. Nat. Phys. 14(9), 961–966 (2018). 10.1038/s41567-018-0172-2. arXiv:1709.03434 [hep-ex]

Kostelecký VA, Mewes M. Signals for Lorentz violation in electrodynamics. Phys. Rev. D. 2002;66:056005. doi: 10.1103/PhysRevD.66.056005. PubMed DOI

Honda M, SajjadAthar M, Kajita T, Kasahara K, Midorikawa S. Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model. Phys. Rev. D. 2015;92(2):023004. doi: 10.1103/PhysRevD.92.023004. DOI

J. Picone et al., NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107(A12), SIA 15–1 (2002). 10.1029/2002JA009430

Particle Data Group Collaboration, M. Tanabashi et al., Review of particle physics. Phys. Rev. D 98(3), 030001 (2018). 10.1103/PhysRevD.98.030001

Czyz W, Sheppey GC, Walecka JD. Neutrino production of lepton pairs through the point four-fermion interaction. Nuovo Cim. 1964;34:404–435. doi: 10.1007/BF02734586. DOI

Lovseth J, Radomiski M. Kinematical distributions of neutrino-produced lepton triplets. Phys. Rev. D. 1971;3:2686–2706. doi: 10.1103/PhysRevD.3.2686. DOI

Fujikawa K. The self-coupling of weak lepton currents in high-energy neutrino and muon reactions. Ann. Phys. 1971;68:102–162. doi: 10.1016/0003-4916(71)90244-2. DOI

Koike K, Konuma M, Kurata K, Sugano K. Neutrino production of lepton pairs. 1. Prog. Theor. Phys. 1971;46:1150–1169. doi: 10.1143/PTP.46.1150. DOI

Koike K, Konuma M, Kurata K, Sugano K. Neutrino production of lepton pairs. 2. Prog. Theor. Phys. 1971;46:1799–1804. doi: 10.1143/PTP.46.1799. DOI

Brown RW, Hobbs RH, Smith J, Stanko N. Intermediate boson. III. Virtual-boson effects in neutrino trident production. Phys. Rev. D. 1972;6:3273–3292. doi: 10.1103/PhysRevD.6.3273. DOI

Belusevic R, Smith J. W-Z interference in neutrino-nucleus scattering. Phys. Rev. D. 1988;37:2419. doi: 10.1103/PhysRevD.37.2419. PubMed DOI

Zhou B, Beacom JF. Neutrino-nucleus cross sections for W-boson and trident production. Phys. Rev. D. 2020;101(3):036011. doi: 10.1103/PhysRevD.101.036011. DOI

Zhou B, Beacom JF. W -boson and trident production in TeV–PeV neutrino observatories. Phys. Rev. D. 2020;101(3):036010. doi: 10.1103/PhysRevD.101.036010. DOI

CHARM-II Collaboration, D. Geiregat et al., First observation of neutrino trident production. Phys. Lett. B 245, 271–275 (1990). 10.1016/0370-2693(90)90146-W

CCFR Collaboration, S.R. Mishra et al., Neutrino tridents and W Z interference. Phys. Rev. Lett. 66, 3117–3120 (1991). 10.1103/PhysRevLett.66.3117 PubMed

NuTeV Collaboration, T. Adams et al., Evidence for diffractive charm production in muon-neutrino Fe and anti-muon-neutrino Fe scattering at the Tevatron. Phys. Rev. D 61, 092001 (2000). 10.1103/PhysRevD.61.092001. arXiv:hep-ex/9909041 [hep-ex]

W. Altmannshofer, S. Gori, J. Martín-Albo, A. Sousa, M. Wall2bank, Neutrino tridents at DUNE. Phys. Rev. D 100(11), 115029 (2019). 10.1103/PhysRevD.100.115029. arXiv:1902.06765 [hep-ph]

Ballett P, Hostert M, Pascoli S, Perez-Gonzalez YF, Tabrizi Z, Zukanovich Funchal R. Neutrino trident scattering at near detectors. JHEP. 2019;01:119. doi: 10.1007/JHEP01(2019)119. DOI

Ballett P, Hostert M, Pascoli S, Perez-Gonzalez YF, Tabrizi Z, Zukanovich Funchal R. DOI

Altmannshofer W, Gori S, Pospelov M, Yavin I. Neutrino trident production: a powerful probe of new physics with neutrino beams. Phys. Rev. Lett. 2014;113:091801. doi: 10.1103/PhysRevLett.113.091801. PubMed DOI

DELPHI, OPAL, LEP Electroweak, ALEPH and L3 Collaboration, S. Schael et al., Electroweak measurements in electron–positron collisions at W-boson-pair energies at LEP. Phys. Rep. 532, 119–244 (2013). 10.1016/j.physrep.2013.07.004. arXiv:1302.3415 [hep-ex]

He XG, Joshi GC, Lew H, Volkas RR. NEW Z-prime PHENOMENOLOGY. Phys. Rev. D. 1991;43:22–24. doi: 10.1103/PhysRevD.43.R22. PubMed DOI

He X-G, Joshi GC, Lew H, Volkas RR. Simplest Z-prime model. Phys. Rev. D. 1991;44:2118–2132. doi: 10.1103/PhysRevD.44.2118. PubMed DOI

Baek S, Deshpande NG, He XG, Ko P. Muon anomalous g-2 and gauged L(muon)- L(tau) models. Phys. Rev. D. 2001;64:055006. doi: 10.1103/PhysRevD.64.055006. DOI

Harigaya K, Igari T, Nojiri MM, Takeuchi M, Tobe K. Muon g-2 and LHC phenomenology in the DOI

Altmannshofer W, Gori S, Pospelov M, Yavin I. Quark flavor transitions in PubMed DOI

Baek S, Ko P. Phenomenology of U(1)(L(mu)-L(tau)) charged dark matter at PAMELA and colliders. JCAP. 2009;0910:011. doi: 10.1088/1475-7516/2009/10/011. DOI

Altmannshofer W, Gori S, Profumo S, Queiroz FS. Explaining dark matter and B decay anomalies with an DOI

CMS Collaboration, A.M. Sirunyan et al., Search for an

BaBar Collaboration, J.P. Lees et al., Search for a muonic dark force at BABAR. Phys. Rev. D 94(1), 011102 (2016). 10.1103/PhysRevD.94.011102. arXiv:1606.03501 [hep-ex]

Bellini G, et al. Precision measurement of the 7Be solar neutrino interaction rate in Borexino. Phys. Rev. Lett. 2011;107:141302. doi: 10.1103/PhysRevLett.107.141302. PubMed DOI

Harnik R, Kopp J, Machado PAN. Exploring nu signals in dark matter detectors. JCAP. 2012;1207:026. doi: 10.1088/1475-7516/2012/07/026. DOI

Borexino Collaboration, M. Agostini et al., First simultaneous precision spectroscopy of

Ahlgren B, Ohlsson T, Zhou S. Comment on “Is dark matter with long-range interactions a solution to all small-scale problems of PubMed DOI

Kamada A, Yu H-B. Coherent propagation of PeV neutrinos and the dip in the neutrino spectrum at IceCube. Phys. Rev. D. 2015;92(11):113004. doi: 10.1103/PhysRevD.92.113004. DOI

Keshavarzi A, Nomura D, Teubner T. Muon DOI

Araki T, Kaneko F, Ota T, Sato J, Shimomura T. MeV scale leptonic force for cosmic neutrino spectrum and muon anomalous magnetic moment. Phys. Rev. D. 2016;93(1):013014. doi: 10.1103/PhysRevD.93.013014. DOI

Kamada A, Kaneta K, Yanagi K, Yu H-B. Self-interacting dark matter and muon DOI

Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020). 10.1051/0004-6361/201833910. arXiv:1807.06209 [astro-ph.CO]

J. Alexander et al., Dark sectors 2016 workshop: community report (2016). arXiv:1608.08632 [hep-ph]. http://inspirehep.net/record/1484628/files/arXiv:1608.08632.pdf

M. Battaglieri et al., US cosmic visions: new ideas in dark matter 2017: community report. arXiv:1707.04591 [hep-ph]

LoSecco J, Sulak L, Galik R, Horstkotte J, Knauer J, Williams HH, Soukas A, Wanderer PJ, Weng W. Limits on the production of neutral penetrating states in a beam dump. Phys. Lett. 1981;102B:209–212. doi: 10.1016/0370-2693(81)91064-9. DOI

Dutta B, Kim D, Liao S, Park J-C, Shin S, Strigari LE. Dark matter signals from timing spectra at neutrino experiments. Phys. Rev. Lett. 2020;124(12):121802. doi: 10.1103/PhysRevLett.124.121802. PubMed DOI

Agashe K, Cui Y, Necib L, Thaler J. (In)direct detection of boosted dark matter. JCAP. 2014;10:062. doi: 10.1088/1475-7516/2014/10/062. DOI

Belanger G, Park J-C. Assisted freeze-out. JCAP. 2012;1203:038. doi: 10.1088/1475-7516/2012/03/038. DOI

D’Eramo F, Thaler J. Semi-annihilation of dark matter. JHEP. 2010;06:109. doi: 10.1007/JHEP06(2010)109. DOI

Huang J, Zhao Y. Dark matter induced nucleon decay: model and signatures. JHEP. 2014;02:077. doi: 10.1007/JHEP02(2014)077. DOI

Berger J, Cui Y, Zhao Y. Detecting boosted dark matter from the sun with large volume neutrino detectors. JCAP. 2015;1502(02):005. doi: 10.1088/1475-7516/2015/02/005. DOI

Cherry JF, Frandsen MT, Shoemaker IM. Direct detection phenomenology in models where the products of dark matter annihilation interact with nuclei. Phys. Rev. Lett. 2015;114:231303. doi: 10.1103/PhysRevLett.114.231303. PubMed DOI

Giudice GF, Kim D, Park J-C, Shin S. Inelastic boosted dark matter at direct detection experiments. Phys. Lett. B. 2018;780:543–552. doi: 10.1016/j.physletb.2018.03.043. DOI

Cui Y, Pospelov M, Pradler J. Signatures of dark radiation in neutrino and dark matter detectors. Phys. Rev. D. 2018;97(10):103004. doi: 10.1103/PhysRevD.97.103004. DOI

Bringmann T, Pospelov M. Novel direct detection constraints on light dark matter. Phys. Rev. Lett. 2019;122(17):171801. doi: 10.1103/PhysRevLett.122.171801. PubMed DOI

Alhazmi H, Kong K, Mohlabeng G, Park J-C. Boosted dark matter at the deep underground neutrino experiment. JHEP. 2017;04:158. doi: 10.1007/JHEP04(2017)158. DOI

Kim D, Park J-C, Shin S. Dark matter ‘collider’ from inelastic boosted dark matter. Phys. Rev. Lett. 2017;119(16):161801. doi: 10.1103/PhysRevLett.119.161801. PubMed DOI

A. Chatterjee, A. De Roeck, D. Kim, Z.G. Moghaddam, J.-C. Park, S. Shin, L.H. Whitehead, J. Yu, Search for boosted dark matter at ProtoDUNE. Phys. Rev. D 98(7), 075027 (2018). 10.1103/PhysRevD.98.075027. arXiv:1803.03264 [hep-ph]

Kim D, Kong K, Park J-C, Shin S. Boosted dark matter quarrying at surface neutrino detectors. JHEP. 2018;08:155. doi: 10.1007/JHEP08(2018)155. DOI

Necib L, Moon J, Wongjirad T, Conrad JM. Boosted dark matter at neutrino experiments. Phys. Rev. D. 2017;95(7):075018. doi: 10.1103/PhysRevD.95.075018. DOI

Kong K, Mohlabeng G, Park J-C. Boosted dark matter signals uplifted with self-interaction. Phys. Lett. B. 2015;743:256–266. doi: 10.1016/j.physletb.2015.02.057. DOI

Super-Kamiokande Collaboration, C. Kachulis et al., Search for boosted dark matter interacting with electrons in super-Kamiokande. Phys. Rev. Lett. 120(22), 221301 (2018). 10.1103/PhysRevLett.120.221301. arXiv:1711.05278 [hep-ex] PubMed

V. De Romeri, K.J. Kelly, P.A.N. Machado, DUNE-PRISM Sensitivity to Light Dark Matter. Phys. Rev. D 100(9), 095010 (2019). 10.1103/PhysRevD.100.095010. arXiv:1903.10505 [hep-ph]

C.M. Marshall, K.S. McFarland, C. Wilkinson, Neutrino-electron elastic scattering for flux determination at the DUNE oscillation experiment. Phys. Rev. D 101(3), 032002 (2020). 10.1103/PhysRevD.101.032002. arXiv:1910.10996 [hep-ex]

LDMX Collaboration, T. Åkesson et al., Light dark matter eXperiment (LDMX). arXiv:1808.05219 [hep-ex]

de Niverville P, Frugiuele C. Hunting sub-GeV dark matter with the NO DOI

MiniBooNE DM Collaboration, A.A. Aguilar-Arevalo et al., Dark matter search in nucleon, pion, and electron channels from a proton beam dump with MiniBooNE. Phys. Rev. D 98(11), 112004 (2018). 10.1103/PhysRevD.98.112004. arXiv:1807.06137 [hep-ex]

BaBar Collaboration, J.P. Lees et al., Search for invisible decays of a dark photon produced in PubMed

Davier M, Nguyen Ngoc H. An unambiguous search for a light higgs boson. Phys. Lett. B. 1989;229:150–155. doi: 10.1016/0370-2693(89)90174-3. DOI

NA48/2 Collaboration, J.R. Batley et al., Search for the dark photon in

Bjorken JD, Ecklund S, Nelson WR, Abashian A, Church C, Lu B, Mo LW, Nunamaker TA, Rassmann P. Search for neutral metastable penetrating particles produced in the SLAC beam dump. Phys. Rev. D. 1988;38:3375. doi: 10.1103/PhysRevD.38.3375. PubMed DOI

Riordan EM, et al. A search for short lived axions in an electron beam dump experiment. Phys. Rev. Lett. 1987;59:755. doi: 10.1103/PhysRevLett.59.755. PubMed DOI

Bjorken JD, Essig R, Schuster P, Toro N. New fixed-target experiments to search for dark gauge forces. Phys. Rev. D. 2009;80:075018. doi: 10.1103/PhysRevD.80.075018. DOI

Bross A, Crisler M, Pordes SH, Volk J, Errede S, Wrbanek J. A search for shortlived particles produced in an electron beam dump. Phys. Rev. Lett. 1991;67:2942–2945. doi: 10.1103/PhysRevLett.67.2942. PubMed DOI

Navarro JF, Frenk CS, White SDM. The structure of cold dark matter halos. Astrophys. J. 1996;462:563–575. doi: 10.1086/177173. DOI

Navarro JF, Frenk CS, White SDM. A Universal density profile from hierarchical clustering. Astrophys. J. 1997;490:493–508. doi: 10.1086/304888. DOI

D. Kim, P.A. Machado, J.-C. Park, S. Shin, Optimizing energetic light dark matter searches in dark matter and neutrino experiments. JHEP 07, 057 (2020). 10.1007/JHEP07(2020)057. arXiv:2003.07369 [hep-ph]

A. De Roeck, D. Kim, Z.G. Moghaddam, J.-C. Park, S. Shin, L.H. Whitehead, Probing energetic light dark matter with multi-particle tracks signatures at DUNE. JHEP 11, 043 (2020). 10.1007/JHEP11(2020)043. arXiv:2005.08979 [hep-ph]

Formaggio JA, Zeller GP. From eV to EeV: neutrino cross sections across energy scales. Rev. Mod. Phys. 2012;84:1307–1341. doi: 10.1103/RevModPhys.84.1307. DOI

Banerjee D, et al. Dark matter search in missing energy events with NA64. Phys. Rev. Lett. 2019;123(12):121801. doi: 10.1103/PhysRevLett.123.121801. PubMed DOI

NA64 Collaboration, D. Banerjee et al., Search for vector mediator of Dark Matter production in invisible decay mode. Phys. Rev. D 97(7), 072002 (2018). 10.1103/PhysRevD.97.072002. arXiv:1710.00971 [hep-ex]

Beacham J, et al. Physics beyond colliders at CERN: beyond the standard model working group report. J. Phys. G. 2020;47(1):010501. doi: 10.1088/1361-6471/ab4cd2. DOI

NA64 Collaboration, D. Banerjee et al., Improved limits on a hypothetical X(16.7) boson and a dark photon decaying into

A.L. Read, Modified frequentist analysis of search results (the cl(s) method), in Workshop on Confidence Limits, CERN, Geneva, Switzerland, 17–18 Jan 2000: Proceedings (2000), pp. 81–101. http://weblib.cern.ch/abstract?CERN-OPEN-2000-205

ATLAS, CMS, LHC Higgs Combination Group Collaboration, Procedure for the LHC Higgs boson search combination in summer 2011

Dermisek R, Hall JP, Lunghi E, Shin S. A new avenue to charged Higgs discovery in multi-Higgs models. JHEP. 2014;04:140. doi: 10.1007/JHEP04(2014)140. DOI

Dermisek R, Hall JP, Lunghi E, Shin S. Limits on vectorlike leptons from searches for anomalous production of multi-lepton events. JHEP. 2014;12:013. doi: 10.1007/JHEP12(2014)013. DOI

Dermisek R, Lunghi E, Shin S. New constraints and discovery potential for Higgs to Higgs cascade decays through vectorlike leptons. JHEP. 2016;10:081. doi: 10.1007/JHEP10(2016)081. DOI

K. Griest, D. Seckel, Cosmic asymmetry, neutrinos and the sun. Nucl. Phys. B 283, 681–705 (1987). 10.1016/0550-3213(87)90293-8. 10.1016/0550-3213(88)90409-9 [Erratum: Nucl. Phys. B 296, 1034 (1988)]

Gould A. WIMP distribution in and evaporation from the sun. Astrophys. J. 1987;321:560. doi: 10.1086/165652. DOI

J. Berger, A module for boosted dark matter event generation in GENIE (forthcoming)

https://cdcvs.fnal.gov/redmine/projects/dunetpc

http://soltrack.sourceforge.net

Super-Kamiokande Collaboration, M. Fechner et al., Kinematic reconstruction of atmospheric neutrino events in a large water Cherenkov detector with proton identification. Phys. Rev. D 79, 112010 (2009). 10.1103/PhysRevD.79.112010. arXiv:0901.1645 [hep-ex]

PICO Collaboration, C. Amole et al., Dark matter search results from the complete exposure of thePICO-60 C

PandaX-II Collaboration, J. Xia et al., PandaX-II constraints on spin-dependent WIMP-nucleon effective interactions. Phys. Lett. B 792, 193–198 (2019). 10.1016/j.physletb.2019.02.043. arXiv:1807.01936 [hep-ex]

J. Berger, Y. Cui, M. Graham, L. Necib, G. Petrillo, D. Stocks, Y.-T. Tsai, Y. Zhao, Prospects for detecting boosted dark matter in DUNE through hadronic interactions. arXiv:1912.05558 [hep-ph]

Pati JC, Salam A. Is baryon number conserved? Phys. Rev. Lett. 1973;31:661–664. doi: 10.1103/PhysRevLett.31.661. DOI

Georgi H, Glashow S. Unity of all elementary particle forces. Phys. Rev. Lett. 1974;32:438–441. doi: 10.1103/PhysRevLett.32.438. DOI

Langacker P. Grand unified theories and proton decay. Phys. Rep. 1981;72:185. doi: 10.1016/0370-1573(81)90059-4. DOI

de Boer W. Grand unified theories and supersymmetry in particle physics and cosmology. Prog. Part. Nucl. Phys. 1994;33:201–302. doi: 10.1016/0146-6410(94)90045-0. DOI

Nath P, FileviezPerez P. Proton stability in grand unified theories, in strings and in branes. Phys. Rep. 2007;441:191–317. doi: 10.1016/j.physrep.2007.02.010. DOI

Dimopoulos S, Raby S, Wilczek F. Proton decay in supersymmetric models. Phys. Lett. B. 1982;112:133. doi: 10.1016/0370-2693(82)90313-6. DOI

Dimopoulos S, Georgi H. Softly broken supersymmetry and SU(5) Nucl. Phys. B. 1981;193:150–162. doi: 10.1016/0550-3213(81)90522-8. DOI

Sakai N, Yanagida T. Proton decay in a class of supersymmetric grand unified models. Nucl. Phys. B. 1982;197:533. doi: 10.1016/0550-3213(82)90457-6. DOI

Nath P, Chamseddine AH, Arnowitt RL. Nucleon decay in supergravity unified theories. Phys. Rev. D. 1985;32:2348–2358. doi: 10.1103/PhysRevD.32.2348. PubMed DOI

Shafi Q, Tavartkiladze Z. Flavor problem, proton decay and neutrino oscillations in SUSY models with anomalous U(1) Phys. Lett. B. 2000;473:272–280. doi: 10.1016/S0370-2693(99)01433-1. DOI

Lucas V, Raby S. Nucleon decay in a realistic SO(10) SUSY GUT. Phys. Rev. D. 1997;55:6986–7009. doi: 10.1103/PhysRevD.55.6986. DOI

Pati JC. Probing grand unification through neutrino oscillations, leptogenesis, and proton decay. Subnucl. Ser. 2003;40:194–236. doi: 10.1142/S0217751X03017427. DOI

Babu K, Pati JC, Wilczek F. Suggested new modes in supersymmetric proton decay. Phys. Lett. B. 1998;423:337–347. doi: 10.1016/S0370-2693(98)00108-7. DOI

Alciati ML, Feruglio F, Lin Y, Varagnolo A. Proton lifetime from SU(5) unification in extra dimensions. JHEP. 2005;03:054. doi: 10.1088/1126-6708/2005/03/054. DOI

Altarelli G, Meloni D. A non supersymmetric SO(10) grand unified model for all the physics below DOI

Super-Kamiokande Collaboration, K. Abe et al., Search for proton decay via

Super-Kamiokande Collaboration, K. Abe et al., Search for proton decay via

Super-Kamiokande Collaboration, K. Abe et al., Search for nucleon decay into charged antilepton plus meson in 0.316 megaton

Hyper-Kamiokande Collaboration, K. Abe et al., Hyper-Kamiokande design report. arXiv:1805.04163 [physics.ins-det]

JUNO Collaboration, Z. Djurcic et al., JUNO conceptual design report. arXiv:1508.07166 [physics.ins-det]

Phillips DG, II, et al. Neutron–antineutron oscillations: theoretical status and experimental prospects. Phys. Rep. 2016;612:1–45. doi: 10.1016/j.physrep.2015.11.001. DOI

A.D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967). 10.1070/PU1991v034n05ABEH002497 [Usp. Fiz. Nauk 161(5), 61 (1991)]

Nussinov S, Shrock R. N–anti-N oscillations in models with large extra dimensions. Phys. Rev. Lett. 2002;88:171601. doi: 10.1103/PhysRevLett.88.171601. PubMed DOI

Arnold JM, Fornal B, Wise MB. Simplified models with baryon number violation but no proton decay. Phys. Rev. D. 2013;87:075004. doi: 10.1103/PhysRevD.87.075004. DOI

Girmohanta S, Shrock R. Baryon-number-violating nucleon and dinucleon decays in a model with large extra dimensions. Phys. Rev. D. 2020;101(1):015017. doi: 10.1103/PhysRevD.101.015017. DOI

Girmohanta S, Shrock R. Nucleon decay and DOI

Baldo-Ceolin M, et al. A New experimental limit on neutron–anti-neutron oscillations. Z. Phys. C. 1994;63:409–416. doi: 10.1007/BF01580321. DOI

Super-Kamiokande Collaboration, K. Abe et al., The search for

J.E.T. Hewes, Searches for bound neutron–antineutron oscillation in liquid argon time projection chambers. PhD thesis, Manchester U (2017). 10.2172/1426674. http://lss.fnal.gov/archive/thesis/2000/fermilab-thesis-2017-27.pdf

Barr GD, Gaisser TK, Lipari P, Robbins S, Stanev T. A three-dimensional calculation of atmospheric neutrinos. Phys. Rev. D. 2004;70:023006. doi: 10.1103/PhysRevD.70.023006. DOI

V.C.N. Meddage, Liquid argon time projection chamber calibration using cosmogenic muons, and measurement of neutrino induced charged kaon production in argon in the charged current mode (MicroBooNE experiment). PhD thesis, Kansas State U (2019)

A. Bueno, A.J. Melgarejo, S. Navas, Z.D. ai, Y. Ge, M. Laffranchi, A.M. Meregaglia, A. Rubbia, Nucleon decay searches with large liquid Argon TPC detectors at shallow depths: atmospheric neutrinos and cosmogenic backgrounds. J. High Energy Phys. 2007(04), 041 (2007). http://stacks.iop.org/1126-6708/2007/i=04/a=041

Klinger J, Kudryavtsev VA, Richardson M, Spooner NJC. Muon-induced background to proton decay in the DOI

Bugg DV, et al. Kaon-nucleon total cross sections from 0.6 to 2.65 GeV/c. Phys. Rev. 1968;168:1466–1475. doi: 10.1103/PhysRev.168.1466. DOI

Friedman E, et al. DOI

MINERvA Collaboration, C.M. Marshall et al., Measurement of

ArgoNeuT Collaboration, R. Acciarri et al., A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC. JINST 8, P08005 (2013). 10.1088/1748-0221/8/08/P08005. arXiv:1306.1712 [physics.ins-det]

A. Hocker et al., TMVA-toolkit for multivariate data analysis. arXiv:physics/0703039 [physics.data-an]

Barr GD, Gaisser TK, Robbins S, Stanev T. Uncertainties in atmospheric neutrino fluxes. Phys. Rev. D. 2006;74:094009. doi: 10.1103/PhysRevD.74.094009. DOI

Mahn K, Marshall C, Wilkinson C. Progress in measurements of 0.1–10 GeV neutrino-nucleus scattering and anticipated results from future experiments. Ann. Rev. Nucl. Part. Sci. 2018;68:105–129. doi: 10.1146/annurev-nucl-101917-020930. DOI

Frejus Collaboration, C. Berger et al., Lifetime limits on (B-L) violating nucleon decay and dinucleon decay modes from the Frejus experiment. Phys. Lett. B 269, 227–233 (1991). 10.1016/0370-2693(91)91479-F

Golubeva ES, Barrow JL, Ladd CG. Model of DOI

Barrow JL, Golubeva ES, Paryev E, Richard J-M. Progress and simulations for intranuclear neutron-antineutron transformations in DOI

Friedman E, Gal A. Realistic calculations of nuclear disappearance lifetimes induced by n anti-n oscillations. Phys. Rev. D. 2008;78:016002. doi: 10.1103/PhysRevD.78.016002. DOI

DONUT Collaboration, K. Kodama et al., Observation of tau neutrino interactions. Phys. Lett. B 504, 218–224 (2001). 10.1016/S0370-2693(01)00307-0. arXiv:hep-ex/0012035

DONuT Collaboration, K. Kodama et al., Final tau-neutrino results from the DONuT experiment. Phys. Rev. D 78, 052002 (2008). 10.1103/PhysRevD.78.052002. arXiv:0711.0728 [hep-ex]

OPERA Collaboration, M. Guler et al., OPERA: an appearance experiment to search for nu/mu–nu/tau oscillations in the CNGS beam. Experimental proposal

OPERA Collaboration, N. Agafonova et al., Final results of the OPERA experiment on PubMed

Super-Kamiokande Collaboration, K. Abe et al., Evidence for the appearance of atmospheric tau neutrinos in Super-Kamiokande. Phys. Rev. Lett. 110(18), 181802 (2013). 10.1103/PhysRevLett.110.181802. arXiv:1206.0328 [hep-ex] PubMed

Super-Kamiokande Collaboration, Z. Li et al., Measurement of the tau neutrino cross section in atmospheric neutrino oscillations with Super-Kamiokande. Phys. Rev. D 98(5), 052006 (2018). 10.1103/PhysRevD.98.052006. arXiv:1711.09436 [hep-ex]

IceCube Collaboration, M.G. Aartsen et al., Measurement of atmospheric tau neutrino appearance with IceCube DeepCore. Phys. Rev. D 99(3), 032007 (2019). 10.1103/PhysRevD.99.032007. arXiv:1901.05366 [hep-ex]

P. Machado, H. Schulz, J. Turner, Tau neutrinos at DUNE: new strategies, new opportunities. Phys. Rev. D 102(5), 053010 (2020). 10.1103/PhysRevD.102.053010. arXiv:2007.00015 [hep-ph]

Bakhti P, Farzan Y, Rajaee M. Secret interactions of neutrinos with light gauge boson at the DUNE near detector. Phys. Rev. D. 2019;99(5):055019. doi: 10.1103/PhysRevD.99.055019. DOI

Conrad J, de Gouvea A, Shalgar S, Spitz J. Atmospheric tau neutrinos in a multi-kiloton liquid argon detector. Phys. Rev. D. 2010;82:093012. doi: 10.1103/PhysRevD.82.093012. DOI

A. De Gouvêa, K.J. Kelly, G.V. Stenico, P. Pasquini, Physics with beam tau-neutrino appearance at DUNE. Phys. Rev. D 100(1), 016004 (2019). 10.1103/PhysRevD.100.016004. arXiv:1904.07265 [hep-ph]

Ghoshal A, Giarnetti A, Meloni D. On the role of the DOI

Dienes KR, Dudas E, Gherghetta T. Neutrino oscillations without neutrino masses or heavy mass scales: a higher dimensional seesaw mechanism. Nucl. Phys. B. 1999;557:25. doi: 10.1016/S0550-3213(99)00377-6. DOI

Arkani-Hamed N, Dimopoulos S, Dvali GR, March-Russell J. Neutrino masses from large extra dimensions. Phys. Rev. D. 2001;65:024032. doi: 10.1103/PhysRevD.65.024032. DOI

Davoudiasl H, Langacker P, Perelstein M. Constraints on large extra dimensions from neutrino oscillation experiments. Phys. Rev. D. 2002;65:105015. doi: 10.1103/PhysRevD.65.105015. DOI

MINOS Collaboration, P. Adamson et al., Constraints on large extra dimensions from the MINOS experiment. Phys. Rev. D 94(11), 111101 (2016). 10.1103/PhysRevD.94.111101. arXiv:1608.06964 [hep-ex]

Balantekin AB, de Gouvêa A, Kayser B. Addressing the Majorana vs. Dirac question with neutrino decays. Phys. Lett. B. 2019;789:488–495. doi: 10.1016/j.physletb.2018.11.068. DOI

P. Ballett, T. Boschi, S. Pascoli, Heavy neutral leptons from low-scale seesaws at the DUNE near detector. JHEP 03, 111 (2020). 10.1007/JHEP03(2020)111. arXiv:1905.00284 [hep3375 ph]

Bernardi G, et al. Search for neutrino decay. Phys. Lett. 1986;166B:479–483. doi: 10.1016/0370-2693(86)91602-3. DOI

Bernardi G, et al. Further limits on heavy neutrino couplings. Phys. Lett. B. 1988;203:332–334. doi: 10.1016/0370-2693(88)90563-1. DOI

E949 Collaboration, A.V. Artamonov et al., Search for heavy neutrinos in

Britton DI, et al. Measurement of the PubMed DOI

Britton DI, et al. Improved search for massive neutrinos in PubMed DOI

PIENU Collaboration, A. Aguilar-Arevalo et al., Improved search for heavy neutrinos in the decay

PIENU Collaboration, A. Aguilar-Arevalo et al., Search for heavy neutrinos in

CHARM II Collaboration, P. Vilain et al., Search for heavy isosinglet neutrinos. Phys. Lett. B 343, 453–458 (1995). 10.1016/0370-2693(94)00440-I. 10.1016/0370-2693(94)01422-9. [Phys. Lett. B 351, 387 (1995)]

NuTeV, E815 Collaboration, A. Vaitaitis et al., Search for neutral heavy leptons in a high-energy neutrino beam. Phys. Rev. Lett. 83, 4943–4946 (1999). 10.1103/PhysRevLett.83.4943. arXiv:hep-ex/9908011

DELPHI Collaboration, P. Abreu et al., Search for neutral heavy leptons produced in Z decays. Z. Phys. C 74, 57–71 (1997). 10.1007/s002880050370 [Erratum: Z. Phys. C 75, 580 (1997)]

T2K Collaboration, K. Abe et al., Search for heavy neutrinos with the T2K near detector ND280. Phys. Rev. D 100(5), 052006 (2019). 10.1103/PhysRevD.100.052006. arXiv:1902.07598 [hep-ex]

Ballett P, Pascoli S, Ross-Lonergan M. MeV-scale sterile neutrino decays at the Fermilab Short-Baseline Neutrino program. JHEP. 2017;04:102. doi: 10.1007/JHEP04(2017)102. DOI

Alekhin S, et al. A facility to search for hidden particles at the CERN SPS: the SHiP physics case. Rept. Prog. Phys. 2016;79(12):124201. doi: 10.1088/0034-4885/79/12/124201. PubMed DOI

Drewes M, Hajer J, Klaric J, Lanfranchi G. NA62 sensitivity to heavy neutral leptons in the low scale seesaw model. JHEP. 2018;07:105. doi: 10.1007/JHEP07(2018)105. DOI

D. Curtin et al., Long-lived particles at the energy frontier: the MATHUSLA physics case. Rept. Prog. Phys. 82(11), 116201 (2019). 10.1088/1361-6633/ab28d6. arXiv:1806.07396 [hep-ph] PubMed

Kling F, Trojanowski S. Heavy neutral leptons at FASER. Phys. Rev. D. 2018;97(9):095016. doi: 10.1103/PhysRevD.97.095016. DOI

Rott C, In S, Kumar J, Yaylali D. Directional searches at DUNE for sub-GeV monoenergetic neutrinos arising from dark matter annihilation in the sun. JCAP. 2017;1701(01):016. doi: 10.1088/1475-7516/2017/01/016. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...