Anti-apoptotic MCL1 Protein Represents Critical Survival Molecule for Most Burkitt Lymphomas and BCL2-negative Diffuse Large B-cell Lymphomas

. 2022 Jan ; 21 (1) : 89-99. [epub] 20211102

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34728569
Odkazy

PubMed 34728569
PubMed Central PMC9398137
DOI 10.1158/1535-7163.mct-21-0511
PII: 1535-7163.MCT-21-0511
Knihovny.cz E-zdroje

The pro-survival MCL1 protein is overexpressed in many cancers, including B-cell non-Hodgkin lymphomas (B-NHL). S63845 is a highly specific inhibitor of MCL1. We analyzed mechanisms of sensitivity/resistance to S63845 in preclinical models of diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma. Annexin V-based cytotoxic assays, Western blot analysis, protein co-immunoprecipitation, and cell clones with manipulated expression of BCL2 family proteins were used to analyze mechanisms of sensitivity to S63845. Experimental in vivo therapy with S63845 and/or venetoclax was performed using patient-derived xenografts (PDX) of treatment-refractory B-NHL. A subset of DLBCL and majority of Burkitt lymphoma cell lines were sensitive to S63845. The level of BCL2 protein expression was the major determinant of resistance to S63845: BCL2 serves as a buffer for pro-apoptotic proteins released from MCL1 upon exposure to S63845. While BCL2-negative lymphomas were effectively eliminated by single-agent S63845, its combination with venetoclax was synthetically lethal in BCL2-positive PDX models. Concerning MCL1, both, the level of MCL1 protein expression, and its occupational status represent key factors mediating sensitivity to S63845. In contrast to MCL1-BIM/BAK1 complexes that prime lymphoma cells for S63845-mediated apoptosis, MCL1-NOXA complexes are associated with S63845 resistance. In conclusion, MCL1 represents a critical survival molecule for most Burkitt lymphomas and a subset of BCL2-negative DLBCLs. The level of BCL2 and MCL1 expression and occupational status of MCL1 belong to the key modulators of sensitivity/resistance to S63845. Co-treatment with venetoclax can overcome BCL2-mediated resistance to S63845, and enhance efficacy of MCL1 inhibitors in BCL2-positive aggressive B-NHL.

Zobrazit více v PubMed

Klanova M, Klener P. BCL-2 proteins in pathogenesis and therapy of B-cell non-hodgkin lymphomas. Cancers 2020;12:938. PubMed PMC

Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. . CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002;346:235–42. PubMed

Costa LJ, Xavier AC, Wahlquist AE, Hill EG. Trends in survival of patients with Burkitt lymphoma/leukemia in the USA: an analysis of 3691 cases. Blood 2013;121:4861–6. PubMed PMC

Merino D, Kelly GL, Lessene G, Wei AH, Roberts AW, Strasser A. BH3-mimetic drugs: blazing the trail for new cancer medicines. Cancer Cell 2018;34:879–91. PubMed

Fischer K, Al-Sawaf O, Bahlo J, Fink AM, Tandon M, Dixon M, et al. . Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. N Engl J Med 2019;380:2225–36. PubMed

DiNardo CD, Pratz KW, Letai A, Jonas BA, Wei AH, Thirman M, et al. . Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study. Lancet Oncol 2018;19:216–28. PubMed

Wei AH, Strickland SA, Jr., Hou JZ, Fiedler W, Lin TL, Walter RB, et al. . Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study. J Clin Oncol 2019;37:1277–84. PubMed PMC

Davids MS, Roberts AW, Seymour JF, Pagel JM, Kahl BS, Wierda WG, et al. . Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-hodgkin lymphoma. J Clin Oncol 2017;35:826–33. PubMed PMC

Zelenetz AD, Salles G, Mason KD, Casulo C, Le Gouill S, Sehn LH, et al. . Venetoclax plus R- or G-CHOP in non-Hodgkin lymphoma: results from the CAVALLI phase 1b trial. Blood 2019;133:1964–76. PubMed PMC

Bolen CR, Klanova M, Trneny M, Sehn LH, He J, Tong J, et al. . Prognostic impact of somatic mutations in diffuse large B-cell lymphoma and relationship to cell-of-origin: data from the phase III GOYA study. Haematologica 2020;105:2298–307. PubMed PMC

Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, et al. . The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002;346:1937–47. PubMed

Schuetz JM, Johnson NA, Morin RD, Scott DW, Tan K, Ben-Nierah S, et al. . BCL2 mutations in diffuse large B-cell lymphoma. Leukemia 2012;26:1383–90. PubMed

Iqbal J, Neppalli VT, Wright G, Dave BJ, Horsman DE, Rosenwald A, et al. . BCL2 expression is a prognostic marker for the activated B-cell-like type of diffuse large B-cell lymphoma. J Clin Oncol 2006;24:961–8. PubMed

Masque-Soler N, Szczepanowski M, Kohler CW, Aukema SM, Nagel I, Richter J, et al. . Clinical and pathological features of Burkitt lymphoma showing expression of BCL2–an analysis including gene expression in formalin-fixed paraffin-embedded tissue. Br J Haematol 2015;171:501–8. PubMed

Zhou P, Levy NB, Xie H, Qian L, Lee CY, Gascoyne RD, et al. . MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes. Blood 2001;97:3902–9. PubMed

Cho-Vega JH, Rassidakis GZ, Admirand JH, Oyarzo M, Ramalingam P, Paraguya A, et al. . MCL-1 expression in B-cell non-Hodgkin's lymphomas. Hum Pathol 2004;35:1095–100. PubMed

Wenzel SS, Grau M, Mavis C, Hailfinger S, Wolf A, Madle H, et al. . MCL1 is deregulated in subgroups of diffuse large B-cell lymphoma. Leukemia 2013;27:1381–90. PubMed

Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL, Le Toumelin-Braizat G, et al. . The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 2016;538:477–82. PubMed

Klanova M, Andera L, Brazina J, Svadlenka J, Benesova S, Soukup J, et al. . Targeting of BCL2 family proteins with ABT-199 and homoharringtonine reveals BCL2- and MCL1-dependent subgroups of diffuse large B-cell lymphoma. Clin Cancer Res 2015;22:1138–49. PubMed

Prukova D, Andera L, Nahacka Z, Karolova J, Svaton M, Klanova M, et al. . Cotargeting of BCL2 with venetoclax and MCL1 with S63845 is synthetically lethal in vivo in relapsed mantle cell lymphoma. Clin Cancer Res 2019;25:4455–65. PubMed

Bonifacino JS, Gershlick DC, Dell'Angelica EC. Immunoprecipitation. Curr Protoc Cell Biol 2016;71:7.2.1–7.2.24. doi: 10.1002/cpcb.3. PubMed

Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al. . DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 2013;31:827–32. PubMed PMC

Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, et al. . Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 2014;32:1262–7. PubMed PMC

Smith VM, Dietz A, Henz K, Bruecher D, Jackson R, Kowald L, et al. . Specific interactions of BCL-2 family proteins mediate sensitivity to BH3-mimetics in diffuse large B-cell lymphoma. Haematologica 2020;105:2150–63. PubMed PMC

Belmar J, Fesik SW. Small molecule Mcl-1 inhibitors for the treatment of cancer. Pharmacol Ther 2015;145:76–84. PubMed PMC

Xiang W, Yang CY, Bai L. MCL-1 inhibition in cancer treatment. Onco Targets Ther 2018;11:7301–14. PubMed PMC

Kelly GL, Grabow S, Glaser SP, Fitzsimmons L, Aubrey BJ, Okamoto T, et al. . Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in p53. Genes Dev 2014;28:58–70. PubMed PMC

Fletcher S. MCL-1 inhibitors - where are we now (2019)? Expert Opin Ther Pat 2019;29:909–19. PubMed

Thomas RL, Roberts DJ, Kubli DA, Lee Y, Quinsay MN, Owens JB, et al. . Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure. Genes Dev 2013;27:1365–77. PubMed PMC

Wang X, Bathina M, Lynch J, Koss B, Calabrese C, Frase S, et al. . Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev 2013;27:1351–64. PubMed PMC

Opferman JT, Letai A, Beard C, Sorcinelli MD, Ong CC, Korsmeyer SJ. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 2003;426:671–6. PubMed

Brennan MS, Chang C, Tai L, Lessene G, Strasser A, Dewson G, et al. . Humanized Mcl-1 mice enable accurate preclinical evaluation of MCL-1 inhibitors destined for clinical use. Blood 2018;132:1573–83. PubMed

Scott DW, Mottok A, Ennishi D, Wright GW, Farinha P, Ben-Neriah S, et al. . Prognostic significance of diffuse large B-cell lymphoma cell of origin determined by digital gene expression in formalin-fixed paraffin-embedded tissue biopsies. J Clin Oncol 2015;33:2848–56. PubMed PMC

Hu S, Xu-Monette ZY, Tzankov A, Green T, Wu L, Balasubramanyam A, et al. . MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from the international DLBCL rituximab-CHOP consortium program. Blood 2013;121:4021–31. PubMed PMC

Sehn LH, Oestergaard MZ, Trněný M, Bosi A, Egyed M, Illes A, et al. . Prognostic impact of BCL2 and MYC expression and translocation in untreated DLBCL: results from the phase III GOYA study. Hematol Oncol 2017;35:131–3.

Choudhary GS, Al-Harbi S, Mazumder S, Hill BT, Smith MR, Bodo J, et al. . MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies. Cell Death Dis 2015;6:e1593. PubMed PMC

Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA, et al. . Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 2006;9:351–65. PubMed

Gutierrez MI, Cherney B, Hussain A, Mostowski H, Tosato G, Magrath I, et al. . Bax is frequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis. Cancer Res 1999;59:696–703. PubMed

Doucet JP, Hussain A, Al-Rasheed M, Gaidano G, Gutierrez MI, Magrath I, et al. . Differences in the expression of apoptotic proteins in Burkitt's lymphoma cell lines: potential models for screening apoptosis-inducing agents. Leuk Lymphoma 2004;45:357–62. PubMed

Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, et al. . Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 2005;17:393–403. PubMed

Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, et al. . Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000;288:1053–8. PubMed

Shibue T, Takeda K, Oda E, Tanaka H, Murasawa H, Takaoka A, et al. . Integral role of Noxa in p53-mediated apoptotic response. Genes Dev 2003;17:2233–8. PubMed PMC

Gomez-Bougie P, Menoret E, Juin P, Dousset C, Pellat-Deceunynck C, Amiot M. Noxa controls Mule-dependent Mcl-1 ubiquitination through the regulation of the Mcl-1/USP9X interaction. Biochem Biophys Res Commun 2011;413:460–4. PubMed

Haschka MD, Karbon G, Soratroi C, O'Neill KL, Luo X, Villunger A. MARCH5-dependent degradation of MCL1/NOXA complexes defines susceptibility to antimitotic drug treatment. Cell Death Differ 2020;27:2297–312. PubMed PMC

Liu Y, Mondello P, Erazo T, Tannan NB, Asgari Z, de Stanchina E, et al. . NOXA genetic amplification or pharmacologic induction primes lymphoma cells to BCL2 inhibitor-induced cell death. Proc Natl Acad Sci U S A 2018;115:12034–9. PubMed PMC

Li L, Pongtornpipat P, Tiutan T, Kendrick SL, Park S, Persky DO, et al. . Synergistic induction of apoptosis in high-risk DLBCL by BCL2 inhibition with ABT-199 combined with pharmacologic loss of MCL1. Leukemia 2015;29:1702–12. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...