In vitro activity of carvacrol in combination with meropenem against carbapenem-resistant Klebsiella pneumoniae

. 2022 Feb ; 67 (1) : 143-156. [epub] 20211102

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34729712
Odkazy

PubMed 34729712
DOI 10.1007/s12223-021-00908-7
PII: 10.1007/s12223-021-00908-7
Knihovny.cz E-zdroje

Carbapenem resistance observed in Klebsiella pneumoniae strains limits treatment options. Therefore, use of antibiotics combined with bioactive compounds may be an important strategy to control K. pneumoniae. The purpose of this study was to evaluate the activity of combination of carvacrol and meropenem on carbapenem-resistant K. pneumoniae (CRKP) strains. The presence of blaOXA-48 carbapenemase in all 25 CRKP strains was identified using the PCR technique. The combination of carvacrol and meropenem was tested for antimicrobial activity on CRKP strains. The minimum inhibitory concentrations of carvacrol and meropenem were detected within a range of 32-128 µg/mL using the broth microdilution method. Synergy between carvacrol and meropenem was observed on 8 of the 25 CRKP strains by checkerboard assay (FICI = 0.5) and confirmed by time-kill assay. According to the live-dead test results, the viability percentage of the cells exposed to synergistic combination was 35.47% at the end of 24 h. The membrane damage caused by the synergistic combination was spectrophotometrically measured (A = 0.21) and further confirmed by SEM analysis. According to the MTT assay, both carvacrol and meropenem did not show any statistically significant cytotoxic effect on Vero cells (p > 0.05). In conclusion, the results suggest that carvacrol and meropenem can act synergistically to inhibit the growth of CRKP.

Zobrazit více v PubMed

Abdallah EM (2011) Plants: an alternative source for antimicrobials. J Appl Pharm Sci 1(6):16–20

Ahmad S, Al-Juaid NF, Alenzi FQ, Mattar EH, Oel-S B (2009) Prevalence, antibiotic susceptibility pattern and production of extended-spectrum beta-lactamases amongst clinical isolates of Klebsiella pneumoniae at Armed Forces Hospital in Saudi Arabia. J Coll Phys Surg Pak 19(4):264–265

Akşit NN, Gürdap S, İşoğlu SD, İşoğlu İA (2020) Preparation of antibacterial electrospun poly (D, L-lactide-co-glycolide)/gelatin blend membranes containing Hypericum capitatum var. capitatum. Int J Polym Mater. https://doi.org/10.1080/00914037.2020.1765354 DOI

Alp E, Percin D, Colakoğlu S, Durmaz S, Kürkcü CA, Ekincioğlu P, Güneş T (2013) Molecular characterization of carbapenem-resistant Klebsiella pneumoniae in a tertiary university hospital in Turkey. J Hosp Infect 84(2):178–180. https://doi.org/10.1016/j.jhin.2013.03.002 PubMed DOI

Azap Ö, Otlu B, Yeşilkaya A, Yakupoğulları Y (2013) Detection of OXA-48-like carbapenemase-producing Klebsiella pneumoniae in a tertiary care center in Turkey: molecular characterization and epidemiology. Balkan Med J 30(2):259–260. https://doi.org/10.5152/balkanmedj.2013.7499 PubMed DOI PMC

Bagamboula CF, Uyttendaele M, Debevere J (2004) Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol 21(1):33–42. https://doi.org/10.1016/S0740-0020(03)00046-7 DOI

Ben Arfa A, Combes S, Preziosi-Belloy L, Gontard N, Chalier P (2006) Antimicrobial activity of carvacrol related to its chemical structure. Lett Appl Microbiol 43(2):149–154. https://doi.org/10.1111/j.1472-765X.2006.01938.x PubMed DOI

Bendali F, Gaillard-Martinie B, Hebraud M, Sadoun D (2008) Kinetic of production and mode of action of the Lactobacillus paracasei subsp. paracasei anti-listerial bacteriocin, an Algerian isolate. LWT - Food Sci Technol 41(10):1784–1792. https://doi.org/10.1016/j.lwt.2008.02.010 DOI

Bouza E, Cercenado E (2002) Klebsiella and enterobacter: antibiotic resistance and treatment implications. Semin Respir Infect 17(3):215–230. https://doi.org/10.1053/srin.2002.34693 PubMed DOI

Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol 94:223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022 PubMed DOI

Cai W, Fu Y, Zhang W et al (2016) Synergistic effects of baicalein with cefotaxime against Klebsiella pneumoniae through inhibiting CTX-M-1 gene expression. BMC Microbiol 16(1):1–9. https://doi.org/10.1186/s12866-016-0797-1 DOI

Carrër A, Poirel L, Eraksoy H, Cagatay AA, Badur S, Nordmann P (2008) Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob Agents Chemother 52(8):2950–2954. https://doi.org/10.1128/AAC.01672-07 PubMed DOI PMC

Chandra H, Bishnoi P, Yadav A, Patni B, Mishra AP, Nautiyal AR (2017) Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials-a review. Plants 6(2):16. https://doi.org/10.3390/plants6020016 DOI PMC

Choi JG, Kang OH, Lee YS, Oh YC, Chae HS, Jang HJ, Shin DW, Kwon DY (2009) Antibacterial activity of methyl gallate isolated from Galla Rhois or carvacrol combined with nalidixic acid against nalidixic acid resistant bacteria. Molecules 14(5):1773–1780. https://doi.org/10.3390/molecules14051773 PubMed DOI

Ciftci E, Cetin ES, Us E, Kutlu HH, Arıdogan BC (2019) Investigation of carbapenem resistance mechanisms in Klebsiella pneumoniae by using phenotypic tests and a molecular assay. J Infect Dev 13(11):992–1000. https://doi.org/10.3855/jidc.10783 DOI

Clinical and Laboratory Standards Institute (CLSI) (2018a) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 11th edn. CLSI Standard M07, Wayne

Clinical and Laboratory Standards Institute (CLSI) (2018b) Performance standards for antimicrobial susceptibility testing, 28th edn. CLSI Supplement M100, Wayne

Cordeiro LV, Figueiredo PTR, Sousa AP, Andrade FP Jr, Souza HDS, Araújo DL, Sobreira ALC, Lima EO (2020) Association of carvacrol with ceftazidime and cefepime against Klebsiella pneumoniae. Res Soc Dev 9(7):1–10. https://doi.org/10.33448/rsd-v9i7.4089 DOI

de Souza GHdA, dos Santos Radai JA, Mattos Vaz MS, Esther da Silva K, Fraga TL, Barbosa LS, Simionatto S (2021) In vitro and in vivo antibacterial activity assays of carvacrol: a candidate for development of innovative treatments against KPC-producing Klebsiella pneumoniae. PLoS ONE 16(2):e0246003. https://doi.org/10.1371/journal.pone.0246003 PubMed DOI PMC

Devi KP, Sakthivel R, Nisha SA, Suganthy N, Pandian SK (2013) Eugenol alters the integrity of cell membrane and acts against the nosocomial pathogen Proteus mirabilis. Arch Pharm Res 36(3):282–292. https://doi.org/10.1007/s12272-013-0028-3 PubMed DOI

Dhara L, Tripathi A (2020) Cinnamaldehyde: a compound with antimicrobial and synergistic activity against ESBL-producing quinolone-resistant pathogenic Enterobacteriaceae. Eur J Clin Microbiol Infect Dis 39(1):65–73. https://doi.org/10.1007/s10096-019-03692-y PubMed DOI

Doorduijn DJ, Rooijakkers SH, van Schaik W, Bardoel BW (2016) Complement resistance mechanisms of Klebsiella pneumoniae. Immunobiology 221(10):1102–1109. https://doi.org/10.1016/j.imbio.2016.06.014 PubMed DOI

El Atki Y, Aouam I, El Kamari F, Taroq A, Gourch A, Lyoussi B, Abdellaoui A (2019) Antibacterial efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of nosocomial infection-bacteria. J Pharm Sci Res 11(2):306–309

García-Sureda L, Doménech-Sánchez A, Barbier M, Juan C, Gascó J, Albertí S (2011) OmpK26, a novel porin associated with carbapenem resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 55(10):4742–4747. https://doi.org/10.1128/AAC.00309-11 PubMed DOI PMC

Genc O, Aksu E, Gulcan A (2016) The identification of carbapenemase types in Enterobacteriaceae by using molecular assay and phenotyping confirmation tests. J Microbiol Methods 125:8–11. https://doi.org/10.1016/j.mimet.2016.03.010 PubMed DOI

Hemaiswarya S, Kruthiventi AK, Doble M (2008) Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 15(8):639–652. https://doi.org/10.1016/j.phymed.2008.06.008 PubMed DOI

Khan I, Bahuguna A, Kumar P, Bajpai VK, Kang SC (2017) Antimicrobial potential of carvacrol against uropathogenic Escherichia coli via membrane disruption, depolarization, and reactive oxygen species generation. Front Microbiol 8:2421. https://doi.org/10.3389/fmicb.2017.02421 PubMed DOI PMC

Labarca J, Poirel L, Ozdamar M, Turkoglü S, Hakko E, Nordmann P (2014) KPC-producing Klebsiella pneumoniae, finally targeting Turkey. New Microbes New Infect 2(2):50–51. https://doi.org/10.1002/nmi2.42 PubMed DOI PMC

Lambert RJW, Skandamis PN, Coote PJ, Nychas GJ (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91(3):453–462. https://doi.org/10.1046/j.1365-2672.2001.01428.x PubMed DOI

Langeveld WT, Veldhuizen EJ, Burt SA (2014) Synergy between essential oil components and antibiotics: a review. Crit Rev Microbiol 40(1):76–94. https://doi.org/10.3109/1040841X.2013.763219 PubMed DOI

Latka A, Drulis-Kawa Z (2020) Advantages and limitations of microtiter biofilm assays in the model of antibiofilm activity of Klebsiella phage KP34 and its depolymerase. Sci Rep 10(1):1–12. https://doi.org/10.1038/s41598-020-77198-5 DOI

Magi G, Marini E, Facinelli B (2015) Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin resistant Group A Streptococci. Front Microbiol 6:165. https://doi.org/10.3389/fmicb.2015.00165 PubMed DOI PMC

Moody J (2010) Synergism testing: broth microdilution checkerboard and broth macrodilution methods. In: Garcia LS (ed) Clinical microbiology procedures handbook. ASM Press, Washington DC

Moody J, Knapp C (2010) Tests to assess bactericidal activity. In: Garcia LS (ed) Clinical microbiology procedures handbook. ASM Press, Washington DC

Munoz-Price LS, Poirel L, Bonomo RA et al (2013) Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13(9):785–796. https://doi.org/10.1016/S1473-3099(13)70190-7 PubMed DOI PMC

Nordmann P, Cuzon G, Naas T (2009) The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9(4):228–236. https://doi.org/10.1016/S1473-3099(09)70054-4 PubMed DOI

Nordmann P, Dortet L, Poirel L (2012) Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 18(5):263–272. https://doi.org/10.1016/j.molmed.2012.03.003 PubMed DOI

Nostro A, Papalia T (2012) Antimicrobial activity of carvacrol: current progress and future prospectives. Recent Pat Antiinfect Drug Discov 7(1):28–35. https://doi.org/10.2174/157489112799829684 PubMed DOI

Palaniappan K, Holley RA (2010) Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int J Food Microbiol 140(2–3):164–168. https://doi.org/10.1016/j.ijfoodmicro.2010.04.001 PubMed DOI

Pei RS, Zhou F, Ji BP, Xu J (2009) Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J Food Sci 74(7):379–383. https://doi.org/10.1111/j.1750-3841.2009.01287.x DOI

Pitout JD, Nordmann P, Poirel L (2015) Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 59(10):5873–5884. https://doi.org/10.1128/AAC.01019-15 PubMed DOI PMC

Poirel L, Héritier C, Tolün V, Nordmann P (2004) Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 48(1):15–22. https://doi.org/10.1128/AAC.48.1.15-22.2004 PubMed DOI PMC

Raei P, Pourlak T, Memar MY, Alizadeh N, Aghamali M, Zeinalzadeh E, Asgharzadeh M, Kafil HS (2017) Thymol and carvacrol strongly inhibit biofilm formation and growth of carbapenemase-producing Gram negative bacilli. Cell Mol Biol 63(5):108–112. https://doi.org/10.14715/cmb/2017.63.5.20 PubMed DOI

Su HR, Turhan Ö, Erman Daloğlu CA, Öğünç MD, Özhak B, Öngüt G, Kuşkucu MA, Midilli K, Mamıkoğlu L (2020) Molecular epidemiology of carbapenem-resistant enterobacterales strains isolated from blood cultures in Antalya, Turkey. Lab Med 51(6):601–605. https://doi.org/10.1093/labmed/lmaa017 PubMed DOI

Suntres ZE, Coccimiglio J, Alipour M (2015) The bioactivity and toxicological actions of carvacrol. Crit Rev Food Sci Nutr 55(3):304–318. https://doi.org/10.1080/10408398.2011.653458 PubMed DOI

Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL (2012) Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 25(4):682–707. https://doi.org/10.1128/CMR.05035-11 PubMed DOI PMC

Ultee A, Kets EPW, Smid EJ (1999) Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 65(10):4606–4610. https://doi.org/10.1128/AEM.65.10.4606-4610.1999 PubMed DOI PMC

Wijesundara NM, Lee SF, Cheng Z, Davidson R, Rupasinghe HV (2021) Carvacrol exhibits rapid bactericidal activity against Streptococcus pyogenes through cell membrane damage. Sci Rep 11(1):1–14. https://doi.org/10.1038/s41598-020-79713-0 DOI

Zhou F, Ji B, Zhang H, Jiang HUI, Yang Z, Li J, Li J, Yan W (2007) The antibacterial effect of cinnamaldehyde, thymol, carvacrol and their combinations against the foodborne pathogen Salmonella typhimurium. J Food Saf 27(2):124–133. https://doi.org/10.1111/j.1745-4565.2007.00064.x DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...