The role of guanidine hydrochloride in graphitic carbon nitride synthesis
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
19-15199S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000853
Ministerstvo Školství, Mládeže a Tělovýchovy
SP 2021/46
Vysoká Škola Bánská - Technická Univerzita Ostrava
PubMed
34732765
PubMed Central
PMC8566454
DOI
10.1038/s41598-021-01009-8
PII: 10.1038/s41598-021-01009-8
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Graphitic carbon nitride (CN) was synthesized from guanidine hydrochloride (G), melamine (M) and dicyandiamide (DCDA). The CN materials synthetized from the pure precursors and their mixtures were characterized by common methods, including thermal analysis, and their photocatalytic activities were tested by the degradation of selected organic pollutants, such as amoxicillin, phenol, Rhodamine B (RhB). Remarkable changes in their texture properties in terms of particle sizes, specific surface areas (SSA) and consequently their photocatalytic activity were explained by the role of guanidine hydrochloride in their synthesis. The SSA increased due to the release of NH3 and HCl and its complex reactions with melamine and DCDA forming structure imperfections and disruptions. The photocatalytic activity of the CN materials was found to be dependent on their SSA.
See more in PubMed
Wang Y, Wang X, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. Engl. 2012;51:68–89. doi: 10.1002/anie.201101182. PubMed DOI
Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016;116:7159–7329. doi: 10.1021/acs.chemrev.6b00075. PubMed DOI
Cao S, Low J, Yu J, Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015;27:2150–2176. doi: 10.1002/adma.201500033. PubMed DOI
Moniz SJA, Shevlin SA, Martin DJ, Guo Z-X, Tang J. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015;8:731–759. doi: 10.1039/C4EE03271C. DOI
Fu J, Yu J, Jiang C, Cheng B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018;8:1701503. doi: 10.1002/aenm.201701503. DOI
Jiang L, et al. Doping of graphitic carbon nitride for photocatalysis: A reveiw. Appl. Catal. B. 2017;217:388–406. doi: 10.1016/j.apcatb.2017.06.003. DOI
Inagaki M, Tsumura T, Kinumoto T, Toyoda M. Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials. Carbon. 2019;141:580–607. doi: 10.1016/j.carbon.2018.09.082. DOI
Safaei J, et al. Graphitic carbon nitride (g-C3N4) electrodes for energy conversion and storage: A review on photoelectrochemical water splitting, solar cells and supercapacitors. J. Mater. Chem. A. 2018;6:22346–22380. doi: 10.1039/C8TA08001A. DOI
Dong Y, et al. Graphitic carbon nitride materials: Sensing, imaging and therapy. Small. 2016;12:5376–5393. doi: 10.1002/smll.201602056. PubMed DOI
Wang A, Wang C, Fu L, Wong-Ng W, Lan Y. Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 2017;9:47. doi: 10.1007/s40820-017-0148-2. PubMed DOI PMC
Wang L, Wang C, Hu X, Xue H, Pang H. Metal/graphitic carbon nitride composites: Synthesis, structures, and applications. Chem. Asian J. 2016;11:3305–3328. doi: 10.1002/asia.201601178. PubMed DOI
Zhou Z, Zhang Y, Shen Y, Liu S, Zhang Y. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 2018;47:2298–2321. doi: 10.1039/C7CS00840F. PubMed DOI
Yan SC, Li ZS, Zou ZG. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir. 2009;25:10397–10401. doi: 10.1021/la900923z. PubMed DOI
Liu J, Zhang T, Wang Z, Dawson G, Chen W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 2011;21:14398–14401. doi: 10.1039/C1JM12620B. DOI
Zhang G, Zhang J, Zhang M, Wang X. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 2012;22:8083–8091. doi: 10.1039/C2JM00097K. DOI
Komatsu T, Nakamura T. Polycondensation/pyrolysis of tris-s-triazine derivatives leading to graphite-like carbon nitrides. J. Mater. Chem. 2001;11:474–478. doi: 10.1039/B005982J. DOI
Wang X, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009;8:76–80. doi: 10.1038/nmat2317. PubMed DOI
Dong F, et al. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem. 2011;21:15171–15174. doi: 10.1039/C1JM12844B. DOI
Guo Q, et al. Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures. Chem. Commun. 2004 doi: 10.1039/B311390F. PubMed DOI
Tang Y, Song H, Su Y, Lv Y. Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal. Chem. 2013;85:11876–11884. doi: 10.1021/ac403517u. PubMed DOI
Long B, Lin J, Wang X. Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis. J. Mater. Chem. A. 2014;2:2942–2951. doi: 10.1039/C3TA14339B. DOI
Jürgens B, et al. Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. J. Am. Chem. Soc. 2003;125:10288–10300. doi: 10.1021/ja0357689. PubMed DOI
Zhao Z, et al. Synthesis of graphitic carbon nitride from different precursors by fractional thermal polymerization method and their visible light induced photocatalytic activities. J. Alloy. Compd. 2018;735:1297–1305. doi: 10.1016/j.jallcom.2017.11.033. DOI
Kubelka P, Munk F. Ein Beitrag Zur Optik Der Farbanstriche. Z. Phys. 1931;12:593–601.
Scherrer, P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgensrahlen. In Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 98–100 (1918).
Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (b) 1966;15:627–637. doi: 10.1002/pssb.19660150224. DOI
Xu Y, Gao S-P. Band gap of C3N4 in the GW approximation. Int. J. Hydrogen Energy. 2012;37:11072–11080. doi: 10.1016/j.ijhydene.2012.04.138. DOI
Thomas A, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008;18:4893. doi: 10.1039/b800274f. DOI
Wu P, Wang J, Zhao J, Guo L, Osterloh FE. Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J. Mater. Chem. A. 2014;2:20338–20344. doi: 10.1039/c4ta04100c. DOI
Papailias I, et al. Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 2015;358:278–286. doi: 10.1016/j.apsusc.2015.08.097. DOI
Komatsu T. The first synthesis and characterization of cyameluric high polymers. Macromol. Chem. Phys. 2001;202:19–25. doi: 10.1002/1521-3935(20010101)202:1<19::AID-MACP19>3.0.CO;2-G. DOI
Shi L, Liang L, Wang F, Ma J, Sun J. Polycondensation of guanidine hydrochloride into a graphitic carbon nitride semiconductor with a large surface area as a visible light photocatalyst. Catal. Sci. Technol. 2014;4:3235–3243. doi: 10.1039/C4CY00411F. DOI
Shan W, Hu Y, Bai Z, Zheng M, Wei C. In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity. Appl. Catal. B. 2016;188:1–12. doi: 10.1016/j.apcatb.2016.01.058. DOI
Li Y, et al. Novel P-n Li2SnO3/g-C3N4 heterojunction with enhanced visible light photocatalytic efficiency toward rhodamine B degradation. Front. Chem. 2020 doi: 10.3389/fchem.2020.00075. PubMed DOI PMC
Zhang L, et al. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity. Mater. Res. Bull. 2013;48:3485–3491. doi: 10.1016/j.materresbull.2013.05.040. DOI
Zhou C, et al. Construction of hybrid Z-scheme graphitic C3N4/reduced TiO2 microsphere with visible-light-driven photocatalytic activity. J. Materiomics. 2018;4:238–246. doi: 10.1016/j.jmat.2018.04.002. DOI
Hu X, Mohamood T, Ma W, Chen C, Zhao J. Oxidative decomposition of rhodamine B dye in the presence of VO2+ and/or Pt(IV) under visible light irradiation: N-deethylation, chromophore cleavage, and mineralization. J. Phys. Chem. B. 2006;110:26012–26018. doi: 10.1021/jp063588q. PubMed DOI
Klauson D, Babkina J, Stepanova K, Krichevskaya M, Preis S. Aqueous photocatalytic oxidation of amoxicillin. Catal. Today. 2010;151:39–45. doi: 10.1016/j.cattod.2010.01.015. DOI
Serpone N, et al. Sonochemical oxidation of phenol and three of its intermediate products in aqueous media: Catechol, hydroquinone, and benzoquinone. Kinetic and mechanistic aspects. Res. Chem. Intermed. 1993;18:183–202. doi: 10.1163/156856792X00281. DOI
Alapi T, Dombi A. Comparative study of the UV and UV/VUV-induced photolysis of phenol in aqueous solution. J. Photochem. Photobiol. A. 2007;188:409–418. doi: 10.1016/j.jphotochem.2007.01.002. DOI
Praus P, Smýkalová A, Foniok K, Novák V, Hrbáč J. Doping of graphitic carbon nitride with oxygen by means of cyanuric acid: Properties and photocatalytic applications. J. Environ. Chem. Eng. 2021;9:105498. doi: 10.1016/j.jece.2021.105498. DOI
Baudys M, et al. Graphitic carbon nitride for photocatalytic air treatment. Materials (Basel) 2020;13:3038. doi: 10.3390/ma13133038. PubMed DOI PMC
Pelant I, Valenta J. Luminescence Spectroscopy of Semiconductors. Oxford University Press; 2012. p. 560.
Wendlandt WW, Kasper M, Bellamy S. A TG-DSC investigation of the thermal dissociation of selected guanidinium salts. Thermochim. Acta. 1984;75:239–244. doi: 10.1016/0040-6031(84)85024-8. DOI
Bann B, Miller SA. Melamine and derivatives of melamine. Chem. Rev. 1958;58:131–172. doi: 10.1021/cr50019a004. DOI
Praus P, et al. Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide. Mater. Chem. Phys. 2017;193:438–446. doi: 10.1016/j.matchemphys.2017.03.008. DOI
Zhang J-B, Tan Z-C, Meng S-H, Li S-H, Zhang L-M. Heat capacity and thermal decomposition of dicyandiamide. Thermochim. Acta. 1997;307:11–15. doi: 10.1016/S0040-6031(97)00323-7. DOI
Wu M, et al. Template-free synthesis of nanocage-like g-C3N4 with high surface area and nitrogen defects for enhanced photocatalytic H2 activity. J. Mater. Chem. A. 2019;7:5324–5332. doi: 10.1039/C8TA12076E. DOI
Li JJ. Name Reactions: A Collection of Detailed Reaction Mechanisms. Springer; 2003.
Barrio J, Shalom M. Photoactive carbon nitride from melamine hydrochloride supramolecular assembly. Mater. Sci. Semicond. Process. 2018;73:78–82. doi: 10.1016/j.mssp.2017.04.015. DOI
Barrio J, Grafmüller A, Tzadikov J, Shalom M. Halogen-hydrogen bonds: A general synthetic approach for highly photoactive carbon nitride with tunable properties. Appl. Catal. B. 2018;237:681–688. doi: 10.1016/j.apcatb.2018.06.043. DOI
Barrio J, Lin L, Wang X, Shalom M. Design of a unique energy-band structure and morphology in a carbon nitride photocatalyst for improved charge separation and hydrogen production. ACS Sustain. Chem. Eng. 2018;6:519–530. doi: 10.1021/acssuschemeng.7b02807. DOI
Škuta R, et al. On P-doping of graphitic carbon nitride with hexachlorotriphosphazene as a source of phosphorus. Appl. Surf. Sci. 2021;552:149490. doi: 10.1016/j.apsusc.2021.149490. DOI
Liu C, et al. Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis. Appl. Catal. B. 2017;203:465–474. doi: 10.1016/j.apcatb.2016.10.002. DOI