Global intercomparison of polyurethane foam passive air samplers evaluating sources of variability in SVOC measurements
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
34733112
PubMed Central
PMC8525512
DOI
10.1016/j.envsci.2021.08.003
PII: S1462-9011(21)00216-1
Knihovny.cz E-zdroje
- Klíčová slova
- Global air monitoring, PUF disk, Passive air sampling, Persistent organic pollutants, Semi-volatile organic compounds, Stockholm Convention,
- Publikační typ
- časopisecké články MeSH
Polyurethane foam passive air samplers (PUF-PAS) are the most common type of passive air sampler used for a range of semi-volatile organic compounds (SVOCs), including regulated persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs), and emerging contaminants (e.g., novel flame retardants, phthalates, current-use pesticides). Data from PUF-PAS are key indicators of effectiveness of global regulatory actions on SVOCs, such as the Global Monitoring Plan of the Stockholm Convention on Persistent Organic Pollutants. While most PUF-PAS use similar double-dome metal shielding, there is no standardized dome size, shape, or deployment configuration, with many different PUF-PAS designs used in regional and global monitoring. Yet, no information is available on the comparability of data from studies using different PUF-PAS designs. We brought together 12 types of PUF-PAS used by different research groups around the world and deployed them in a multi-part intercomparison to evaluate the variability in reported concentrations introduced by different elements of PAS monitoring. PUF-PAS were deployed for 3 months in outdoor air in Kjeller, Norway in 2015-2016 in three phases to capture (1) the influence of sampler design on data comparability, (2) the influence of analytical variability when samplers are analyzed at different laboratories, and (3) the overall variability in global monitoring data introduced by differences in sampler configurations and analytical methods. Results indicate that while differences in sampler design (in particular, the spacing between the upper and lower sampler bowls) account for up to 50 % differences in masses collected by samplers, the variability introduced by analysis in different laboratories far exceeds this amount, resulting in differences spanning orders of magnitude for POPs and PAHs. The high level of variability due to analysis in different laboratories indicates that current SVOC air sampling data (i.e., not just for PUF-PAS but likely also for active air sampling) are not directly comparable between laboratories/monitoring programs. To support on-going efforts to mobilize more SVOC data to contribute to effectiveness evaluation, intercalibration exercises to account for uncertainties in air sampling, repeated at regular intervals, must be established to ensure analytical comparability and avoid biases in global-scale assessments of SVOCs in air caused by differences in laboratory performance.
Air Quality Processes Research Section Environment and Climate Change Canada Toronto Canada
CETESB São Paulo State Environmental Company São Paulo Brazil
College of Urban and Environmental Sciences Peking University Beijing China
Department of Environmental Engineering Dokuz Eylul University Buca Izmir Turkey
Department of Instrumental Analysis and Environmental Chemistry IQOG CSIC Madrid Spain
Lancaster Environment Centre Lancaster University UK
NILU Norwegian Institute for Air Research Kjeller Norway
Queensland Alliance for Environmental Health Sciences The University of Queensland Australia
Zobrazit více v PubMed
Abalos M., Abad E., Van Leeuwen S.P.J., De Boer J., Lindström G., Van Bavel B., Fiedler H. Results for PCDD/PCDF and dl-PCBs in the first round of UNEPs biennial global interlaboratory assessment on persistent organic pollutants. TrAC - Trends Anal. Chem. 2013;46:98–109. doi: 10.1016/j.trac.2012.11.003. DOI
Borůvková J., Gregor J., Šebková K., Bednářová Z., Kalina J., Hůlek R., Dušek L., Holoubek I., Klánová J. Masaryk Univ.; 2015. GENASIS – Global Environmental Assessment and Information System [Online] [WWW Document] 2015 [cit. 2017-06-19]. Available http//www.genasis.cz. Version 2.0. ISSN 1805-3181.
Chaemfa C., Barber J.L., Gocht T., Harner T., Holoubek I., Klánová J., Jones K.C. Field calibration of polyurethane foam (PUF) disk passive air samplers for PCBs and OC pesticides. Environ. Pollut. 2008;156:1290–1297. PubMed
Chaemfa C., Wild E., Davison B., Barber J.L., Jones K.C. A study of aerosol entrapment and the influence of wind speed, chamber design and foam density on polyurethane foam passive air samplers used for persistent organic pollutants. J. Environ. Monit. 2009;11:1135–1139. PubMed
Fiedler H., van der Veen I., De Boer J. 2017. Bi-ennial Global Interlaboratory Assessment on Persistent Organic Pollutants – Third Round 2016/2017. Geneva.
Fiedler H., van der Veen I., de Boer J. Global interlaboratory assessments of perfluoroalkyl substances under the Stockholm Convention on persistent organic pollutants. TrAC - Trends Anal. Chem. 2020;124 doi: 10.1016/j.trac.2019.03.023. DOI
Holt E., Bohlin-Nizzetto P., Borůvková J., Harner T., Kalina J., Melymuk L., Klánová J. Using long-term air monitoring of semi-volatile organic compounds to evaluate the uncertainty in polyurethane-disk passive sampler-derived air concentrations. Environ. Pollut. 2017;220:1100–1111. doi: 10.1016/j.envpol.2016.11.030. PubMed DOI
Kalina J., Scheringer M., Borůvková J., Kukučka P., Přibylová P., Bohlin-Nizzetto P., Klánová J. Passive air samplers as a tool for assessing long-term trends in atmospheric concentrations of semivolatile organic compounds. Environ. Sci. Technol. 2017;51:7047–7054. doi: 10.1021/acs.est.7b02319. PubMed DOI
Klánová J., Harner T. The challenge of producing reliable results under highly variable conditions and the role of passive air samplers in the Global Monitoring Plan. Trends Analyt. Chem. 2013;46:139–149.
Lee S.C., Harner T., Pozo K., Shoeib M., Wania F., Muir D.C.G., Barrie L.A., Jones K.C. Polychlorinated naphthalenes in the Global Atmospheric Passive sampling (GAPS) study. Environ. Sci. Technol. 2007;41:2680–2687. PubMed
Markovic M.Z., Prokop S., Staebler R.M., Liggio J., Harner T. Evaluation of the particle infiltration efficiency of three passive samplers and the PS-1 active air sampler. Atmos. Environ. 2015;112:289–293.
Melymuk L., Goosey E., Riddell N., Diamond M.L. Interlaboratory study of novel halogenated flame retardants: INTERFLAB. Anal. Bioanal. Chem. 2015;407:6759–6769. doi: 10.1007/s00216-015-8843-7. PubMed DOI
Melymuk L., Diamond M.L., Riddell N., Wan Y., Vojta Š., Chittim B. Challenges in the analysis of novel flame retardants in indoor dust: results of the INTERFLAB 2 interlaboratory evaluation. Environ. Sci. Technol. 2018;52:9295–9303. doi: 10.1021/acs.est.8b02715. PubMed DOI
Muñoz-Arnanz J., Roscales J.L., Ros M., Vicente A., Jiménez B. Towards the implementation of the Stockholm Convention in Spain: five-year monitoring (2008–2013) of POPs in air based on passive sampling. Environ. Pollut. 2016;217:107–113. doi: 10.1016/j.envpol.2016.01.052. PubMed DOI
Muñoz-Arnanz J., Roscales J.L., Vicente A., Ros M., Barrios L., Morales L., Abad E., Jiménez B. Assessment of POPs in air from Spain using passive sampling from 2008 to 2015. Part II: Spatial and temporal observations of PCDD/Fs and dl-PCBs. Sci. Total Environ. 2018;634:1669–1679. doi: 10.1016/j.scitotenv.2018.04.164. PubMed DOI
Nilsson H., van Bavel B., van der Veen I. 2014. United Nations Environmental Programme, Bi-ennial Global Interlaboratory Assessment on Persistent Organic Pollutants – Second Round 2012/2013. Geneva, Switzerland.
Pozo K., Harner T., Wania F., Muir D.C.G., Jones K.C., Barrie L.A. Toward a global network for persistent organic pollutants in air: results from the GAPS study. Environ. Sci. Technol. 2006;40:4867–4873. PubMed
Pozo K., Harner T., Lee S.C., Wania F., Muir D.C.G., Jones K.C. Seasonally resolved concentrations of persistent organic pollutants in the global atmosphere from the first year of the GAPS study. Environ. Sci. Technol. 2009;43:796–803. doi: 10.1021/es802106a. PubMed DOI
Přibylová P., Kares R., Borůvková J., Cupr P., Prokeš R., Kohoutek J., Holoubek I., Klánová J. Levels of persistent organic pollutants and polycyclic aromatic hydrocarbons in ambient air of Central and Eastern Europe. Atmos. Pollut. Res. 2012;3:494–505.
Rauert C., Harner T., Schuster J.K., Eng A., Fillmann G., Castillo L.E., Fentanes O., Villa Ibarra M., Miglioranza K.S.B., Moreno Rivadeneira I., Pozo K., Aristizábal Zuluaga B.H. Atmospheric concentrations of new persistent organic pollutants and emerging chemicals of concern in the group of Latin America and Caribbean (GRULAC) region. Environ. Sci. Technol. 2018;52:7240–7249. doi: 10.1021/acs.est.8b00995. PubMed DOI
Roscales J.L., Muñoz-Arnanz J., Ros M., Vicente A., Barrios L., Jiménez B. Assessment of POPs in air from Spain using passive sampling from 2008 to 2015. Part I: Spatial and temporal observations of PBDEs. Sci. Total Environ. 2018;634:1657–1668. doi: 10.1016/j.scitotenv.2018.03.043. PubMed DOI
Roscales J.L., Muñoz-Arnanz J., Ros M., Vicente A., Jiménez B. Does the number of field blanks influence reported air POP concentrations in monitoring programs based on PUF-PAS? Organohalogen Compd. 2018;80:509–512.
Schlabach M., Farag-clement R., Hung H., Kallenborn R. 2012. AMAP/EMEP/NCP Inter-laboratory Study for POP Analysis 2010. EMEP Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe.
Shoeib M., Harner T. Characterization and comparison of three passive air samplers for persistent organic pollutants. Environ. Sci. Technol. 2002;36:4142–4151. PubMed
Su Y., Hung H. Inter-laboratory comparison study on measuring semi-volatile organic chemicals in standards and air samples. Environ. Pollut. 2010;158:3365–3371. doi: 10.1016/j.envpol.2010.07.041. PubMed DOI
Su Y., Hung H., Stern G., Sverko E., Lao R., Barresi E., Rosenberg B., Fellin P., Li H., Xiao H. Bias from two analytical laboratories involved in a long-term air monitoring program measuring organic pollutants in the Arctic: a quality assurance/quality control assessment. J. Environ. Monit. 2011;13:3111–3118. doi: 10.1039/c1em10513b. PubMed DOI
Tkatcheva V., Ali B., Reiner E.J. 2013. Northern Contaminants Interlaboratory Quality Assurance Program (NCP III – Phase 7) [WWW Document]www.aadnc-aandc.gc.ca/eng/1100100035611/1100100035612 URL.
UNEP . 2009. Stockholm Convention Global Monitoring Plan for Persistent Organic Pollutants: First Global Monitoring Report. Geneva.
van Bavel B., van Leeuwen S., de Boer J. 2012. Bi-ennial Global Interlaboratory Assessment on Persistent Organic Pollutants – First Round 2010/2011. Geneva, Switzerland.
van der Veen I., Fiedler H., de Boer J. Bi-ennial Global Interlaboratory Assessment on Persistent Organic Pollutants – Third Round 2016/2017. Organohalogen Compd. 2017;79:575–578.
Van Leeuwen S.P.J., De Boer J., Van Leeuwen S.P.J., Van Bavel B. First worldwide UNEP interlaboratory study on persistent organic pollutants (POPs), with data on polychlorinated biphenyls and organochlorine pesticides. TrAC - Trends Anal. Chem. 2013;46:110–117. doi: 10.1016/j.trac.2012.12.020. DOI
Wania F., Shunthirasingham C. Passive air sampling for semi-volatile organic chemicals. Environ. Sci. Process. Impacts. 2020;22:1925–2002. doi: 10.1039/D0EM00194E. PubMed DOI
White K.B., Kalina J., Scheringer M., Přibylová P., Kukučka P., Kohoutek J., Prokeš R., Klánová J. Temporal trends of persistent organic pollutants across Africa after a decade of MONET passive air sampling. Environ. Sci. Technol. 2021;55(14):9413–9424. doi: 10.1021/acs.est.0c03575. PubMed DOI