• This record comes from PubMed

PAK1 and PAK2 in cell metabolism regulation

. 2022 Feb ; 123 (2) : 375-389. [epub] 20211108

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

P21-activated kinases (PAKs) regulate processes associated with cytoskeletal rearrangements, such as cell division, adhesion, and migration. The possible regulatory role of PAKs in cell metabolism has not been well explored, but increasing evidence suggests that a cell metabolic phenotype is related to cell interactions with the microenvironment. We analyzed the impact of PAK inhibition by small molecule inhibitors, small interfering RNA, or gene knockout on the rates of mitochondrial respiration and aerobic glycolysis. Pharmacological inhibition of PAK group I by IPA-3 induced a strong decrease in metabolic rates in human adherent cancer cell lines, leukemia/lymphoma cell lines, and primary leukemia cells. The immediate effect of FRAX597, which inhibits PAK kinase activity, was moderate, indicating that PAK nonkinase functions are essential for cell metabolism. Selective downregulation or deletion of PAK2 was associated with a shift toward oxidative phosphorylation. In contrast, PAK1 knockout resulted in increased glycolysis. However, the overall metabolic capacity was not substantially reduced by PAK1 or PAK2 deletion, possibly due to partial redundancy in PAK1/PAK2 regulatory roles or to activation of other compensatory mechanisms.

See more in PubMed

Kumar R, Sanawar R, Li X, Li F. Structure, biochemistry, and biology of PAK kinases. Gene. 2017;605:20-31.

Coniglio SJ, Zavarella S, Symons MH. Pak1 and Pak2 mediate tumor cell invasion through distinct signaling mechanisms. Mol Cell Biol. 2008;28(12):4162-4172. doi:10.1128/MCB.01532-07

Grebeňová D, Holoubek A, Röselová P, Obr A, Brodska B, Kuželová K. PAK1, PAK1Delta15, and PAK2: similarities, differences and mutual interactions. Sci Rep. 2019;9:17171. doi:10.1038/s41598-019-53665-6

Rane CK, Minden A. P21 activated kinase signaling in cancer. Sem Cancer Biol. 2019;54:40-49.

Binder P, Wang S, Radu M, et al. Pak2 as a novel therapeutic target for cardioprotective endoplasmic reticulum stress response. Circ Res. 2019;124(5):696-711. doi:10.1161/CIRCRESAHA.118.312829

Kanumuri R, Saravanan R, Pavithra V, Sundaram S, Rayala SK, Venkatraman G. Current trends and opportunities in targeting p21 activated kinase-1(PAK1) for therapeutic management of breast cancers. Gene. 2020;760:144991.

Senapedis W, Crochiere M, Baloglu E, Landesman Y. Therapeutic potential of targeting PAK signaling. Anticancer Agents Med Chem. 2016;16(1):75-88.

Kreuzaler P, Panina Y, Segal J, Yuneva M. Adapt and conquer: metabolic flexibility in cancer growth, invasion and evasion. Mol Metab. 2020;33:83-101.

Sousa B, Pereira J, Paredes J. The crosstalk between cell adhesion and cancer metabolism. Int J Mol Sci. 2019;20(8):1933. doi:10.3390/ijms20081933

Lu J, Tan M, Cai Q. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett. 2015;356(2 Pt A):156-164.

Han T, Kang D, Ji D, et al. How does cancer cell metabolism affect tumor migration and invasion? Cell Adh Migr. 2013;7(5):395-403. doi:10.4161/cam.26345

Campbell HK, Salvi AM, O'Brien T, Superfine R, DeMali KA. PAK2 links cell survival to mechanotransduction and metabolism. J Cell Biol. 2019;218(6):1958-1971. doi:10.1083/jcb.201807152

Tunduguru R, Chiu TT, Ramalingam L, Elmendorf JS, Klip A, Thurmond DC. Signaling of the p21-activated kinase (PAK1) coordinates insulin-stimulated actin remodeling and glucose uptake in skeletal muscle cells. Biochem Pharmacol. 2014;92(2):380-388. doi:10.1016/j.bcp.2014.08.033

Gururaj A, Barnes CJ, Vadlamudi RK, Kumar R. Regulation of phosphoglucomutase 1 phosphorylation and activity by a signaling kinase. Oncogene. 2004;23(49):8118-8127.

Varshney P, Dey CS. P21-activated kinase 2(PAK2) regulates glucose uptake and insulin sensitivity in neuronal cells. Mol Cell Endocrinol. 2016;429:50-61.

Cheng TY, Yang YC, Wang HP, et al. Pyruvate kinase M2 promotes pancreatic ductal adenocarcinoma invasion and metastasis through phosphorylation and stabilization of PAK2 protein. Oncogene. 2018;37(13):1730-1742. doi:10.1038/s41388-017-0086-y

Gupta A, Ajith A, Singh S, Panday RK, Samaiya A, Shukla S. PAK2-c-Myc-PKM2 axis plays an essential role in head and neck oncogenesis via regulating Warburg effect. Cell Death Dis. 2018;9:825. doi:10.1038/s41419-018-0887-0

Kim JH, Seo Y, Jo M, et al. Interrogation of kinase genetic interactions provides a global view of PAK1-mediated signal transduction pathways. J Biol Chem. 2020;295(50):16906-16919.

Rouquette-Jazdanian AK, Kortum RL, Li W, et al. miR-155 controls lymphoproliferation in LAT mutant mice by restraining T-cell apoptosis via SHIP-1/mTOR and PAK1/FOXO3/BIM pathways. PLoS One. 2015;10(6):e0131823. doi:10.1371/journal.pone.0131823

Kuželová K, Obr A, Röselová P, et al. Group I p21-activated kinases in leukemia cell adhesion to fibronectin. Cell Adh Migr. 2021;15(1):18-36. doi:10.1080/19336918.2021.1872760

Kuželová K, Grebeňová D, Holoubek A, Röselová P, Obr A. Group I PAK inhibitor IPA-3 induces cell death and affects cell adhesivity to fibronectin in human hematopoietic cells. PloS One. 2014;9(3):e92560. doi:10.1371/journal.pone.0092560

Pandolfi A, Stanley RF, Yu Y, et al. PAK1 is a therapeutic target in acute myeloid leukemia and myelodysplastic syndrome. Blood. 2015;126(9):1118-1127. doi:10.1182/blood-2014-12-618801

Jiang Y, Nakada D. Cell intrinsic and extrinsic regulation of leukemia cell metabolism. Int J Hematol. 2016;103(6):607-616. doi:10.1007/s12185-016-1958-6

Herst PM, Howman RA, Neeson PJ, Berridge MV, Ritchie DS. The level of glycolytic metabolism in acute myeloid leukemia blasts at diagnosis is prognostic for clinical outcome. J Leukoc Biol. 2011;89(1):51-55. doi:10.1189/jlb.0710417

Chen WL, Wang JH, Zhao AH, et al. A distinct glucose metabolism signature of acute myeloid leukemia with prognostic value. Blood. 2014;124(10):1645-1654. doi:10.1182/blood-2014-02-554204

Shalom-Barak T, Knaus UG. A p21-activated kinase-controlled metabolic switch up-regulates phagocyte NADPH oxidase. J Biol Chem. 2002;277(43):40659-65. doi:10.1074/jbc.M206650200

Tsuji-Takayama K, Kamiya T, Nakamura S, et al. Establishment of multiple leukemia cell lines with diverse myeloid and/or megakaryoblastoid characteristics from a single Ph1 positive chronic myelogenous leukemia blood sample. Hum Cell. 1994;7(3):167-171.

Deacon SW, Beeser A, Fukui JA, et al. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol. 2008;15(4):322-331. doi:10.1016/j.chembiol.2008.03.005

Licciulli S, Maksimoska J, Zhou C, et al. FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. J Biol Chem. 2013;288(40):29105-14. doi:10.1074/jbc.M113.510933

Chen W, Ghobrial RM, Li XC, Kloc M. Inhibition of RhoA and mTORC2/Rictor by Fingolimod (FTY720) induces p21-activated kinase 1, PAK-1 and amplifies podosomes in mouse peritoneal macrophages. Immunobiology. 2018;223(11):634-647.

Wang Z, Jia G, Li Y, et al. Clinicopathological signature of p21-activated kinase 1 in prostate cancer and its regulation of proliferation and autophagy via the mTOR signaling pathway. Oncotarget. 2017;8(14):22563-22580. doi:10.18632/oncotarget.15124

Parrini MC, Camonis J, Matsuda M, de Gunzburg J. Dissecting activation of the PAK1 kinase at protrusions in living cells. J Biol Chem. 2009;284(36):24133-24143. doi:10.1074/jbc.M109.015271

Sells MA, Knaus UG, Bagrodia S, Ambrose DM, Bokoch GM, Chernoff J. Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr Biol. 1997;7(3):202-210.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...