Feasibility of Real-time Behavior Monitoring Via Mobile Technology in Czech Adults Aged 50 Years and Above: 12-Week Study With Ecological Momentary Assessment
Status PubMed-not-MEDLINE Jazyk angličtina Země Kanada Médium electronic
Typ dokumentu časopisecké články
PubMed
34757317
PubMed Central
PMC8663589
DOI
10.2196/15220
PII: v4i4e15220
Knihovny.cz E-zdroje
- Klíčová slova
- Fitbit, health behavior, mHealth, mobile phone, older adults, physical activity,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Czech older adults have lower rates of physical activity than the average population and lag behind in the use of digital technologies, compared with their peers from other European countries. OBJECTIVE: This study aims to assess the feasibility of intensive behavior monitoring through technology in Czech adults aged ≥50 years. METHODS: Participants (N=30; mean age 61.2 years, SD 6.8 years, range 50-74 years; 16/30, 53% male; 7/30, 23% retired) were monitored for 12 weeks while wearing a Fitbit Charge 2 monitor and completed three 8-day bursts of intensive data collection through surveys presented on a custom-made mobile app. Web-based surveys were also completed before and at the end of the 12-week period (along with poststudy focus groups) to evaluate participants' perceptions of their experience in the study. RESULTS: All 30 participants completed the study. Across the three 8-day bursts, participants completed 1454 out of 1744 (83% compliance rate) surveys administered 3 times per day on a pseudorandom schedule, 451 out of 559 (81% compliance rate) end-of-day surveys, and 736 episodes of self-reported planned physical activity (with 29/736, 3.9% of the reports initiated but returned without data). The overall rating of using the mobile app and Fitbit was above average (74.5 out of 100 on the System Usability Scale). The majority reported that the Fitbit (27/30, 90%) and mobile app (25/30, 83%) were easy to use and rated their experience positively (25/30, 83%). Focus groups revealed that some surveys were missed owing to notifications not being noticed or that participants needed a longer time window for survey completion. Some found wearing the monitor in hot weather or at night uncomfortable, but overall, participants were highly motivated to complete the surveys and be compliant with the study procedures. CONCLUSIONS: The use of a mobile survey app coupled with a wearable device appears feasible for use among Czech older adults. Participants in this study tolerated the intensive assessment schedule well, but lower compliance may be expected in studies of more diverse groups of older adults. Some difficulties were noted with the pairing and synchronization of devices on some types of smartphones, posing challenges for large-scale studies.
Department of Human Movement Studies University of Ostrava Ostrava Czech Republic
Faculty of Science University of Hradec Karlove Hradec Kralove Czech Republic
Faculty of Social Studies Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Salomon J, Wang H, Freeman MK, Vos T, Flaxman AD, Lopez AD, Murray CJ. Healthy life expectancy for 187 countries, 1990–2010: a systematic analysis for the Global Burden Disease Study 2010. Lancet. 2012 Dec;380(9859):2144–62. doi: 10.1016/s0140-6736(12)61690-0. PubMed DOI
Daskalopoulou C, Stubbs B, Kralj C, Koukounari A, Prince M, Prina A. Physical activity and healthy ageing: a systematic review and meta-analysis of longitudinal cohort studies. Ageing Res Rev. 2017 Sep;38:6–17. doi: 10.1016/j.arr.2017.06.003. S1568-1637(17)30030-2 PubMed DOI
Hamrik Z, Sigmundová D, Kalman M, Pavelka J, Sigmund E. Physical activity and sedentary behaviour in Czech adults: results from the GPAQ study. Eur J Sport Sci. 2014 Jul 29;14(2):193–8. doi: 10.1080/17461391.2013.822565. PubMed DOI PMC
Mudrak J, Slepicka P, Elavsky S. Social cognitive determinants of physical activity in Czech older adults. J Aging Phys Act. 2017 Apr;25(2):196–204. doi: 10.1123/japa.2015-0125. doi: 10.1123/japa.2015-0125.2015-0125 PubMed DOI
Sigmundová D, Sigmund E, Hamřík Z, Kalman M, Pavelka J, Frömel K. Sedentary Behaviour and Physical Activity of Randomised Sample of Czech Adults Aged 20-64 Years: IPAQ and GPAQ Studies between 2002 and 2011. Cent Eur J Public Health. 2015 Nov;23 Suppl(Supplement):91–6. doi: 10.21101/cejph.a4142. doi: 10.21101/cejph.a4142. PubMed DOI
van de Straat V, Bracke PL. How well does Europe sleep? A cross-national study of sleep problems in European older adults. Int J Public Health. 2015 Sep;60(6):643–50. doi: 10.1007/s00038-015-0682-y. doi: 10.1007/s00038-015-0682-y. PubMed DOI
Murray J, Brennan SF, French DP, Patterson CC, Kee F, Hunter RF. Effectiveness of physical activity interventions in achieving behaviour change maintenance in young and middle aged adults: a systematic review and meta-analysis. Soc Sci Med. 2017 Nov;192:125–33. doi: 10.1016/j.socscimed.20109.021. doi: 10.1016/j.socscimed.2017.09.021.S0277-9536(17)30556-7 PubMed DOI
O'Brien N, McDonald S, Araújo-Soares V, Lara J, Errington L, Godfrey A, Meyer TD, Rochester L, Mathers JC, White M, Sniehotta FF. The features of interventions associated with long-term effectiveness of physical activity interventions in adults aged 55-70 years: a systematic review and meta-analysis. Health Psychol Rev. 2015 Jul 03;9(4):417–33. doi: 10.1080/17437199.2015.1012177. doi: 10.1080/17437199.2015.1012177. PubMed DOI
Kumar S, Nilsen WJ, Abernethy A, Atienza A, Patrick K, Pavel M, Riley WT, Shar A, Spring B, Spruijt-Metz D, Hedeker D, Honavar V, Kravitz R, Lefebvre RC, Mohr DC, Murphy SA, Quinn C, Shusterman V, Swendeman D. Mobile health technology evaluation: the mHealth evidence workshop. Am J Prev Med. 2013 Aug;45(2):228–36. doi: 10.1016/j.amepre.2013.03.017. S0749-3797(13)00277-8 PubMed DOI PMC
Elavsky S, Knapova L, Klocek A, Smahel D. Mobile health interventions for physical activity, sedentary behavior, and sleep in adults aged 50 years and older: a systematic literature review. J Aging Phys Act. 2019 Aug 01;27(4):565–93. doi: 10.1123/japa.2017-0410.japa.2017-0410 PubMed DOI
Romeo A, Edney S, Plotnikoff R, M R R, Ryan J, Sanders I, Crozier A, Maher C. Can smartphone apps increase physical activity? Systematic review and meta-analysis. J Med Internet Res. 2019 Mar 19;21(3):e12053. doi: 10.2196/12053. v21i3e12053 PubMed DOI PMC
Stephenson A, McDonough SM, Murphy MH, Nugent CD, Mair JL. Using computer, mobile and wearable technology enhanced interventions to reduce sedentary behaviour: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2017 Aug 11;14(1):105. doi: 10.1186/s12966-017-0561-4. 10.1186/s12966-017-0561-4 PubMed DOI PMC
Stone A, Shiffman S, Atienza A, Nebeling L. The Science of Real-Time Data Capture : Self-Reports in Health Research. Oxford, United Kingdom: Oxford University Press; 2007. pp. 1–416.
Heron K, Everhart RS, McHale SM, Smyth JM. Using Mobile-Technology-Based Ecological Momentary Assessment (EMA) Methods With Youth: a systematic review and recommendations. J Pediatr Psychol. 2017 Nov 01;42(10):1087–107. doi: 10.1093/jpepsy/jsx078.3798723 PubMed DOI
Nahum-Shani I, Smith SN, Spring BJ, Collins LM, Witkiewitz K, Tewari A, Murphy SA. Just-in-Time Adaptive Interventions (JITAIs) in Mobile Health: key components and design principles for ongoing health behavior support. Ann Behav Med. 2018 May 18;52(6):446–62. doi: 10.1007/s12160-016-9830-8. 10.1007/s12160-016-9830-8 PubMed DOI PMC
Yusif S, Hafeez-Baig A, Soar J. e-Health readiness assessment factors and measuring tools: a systematic review. Int J Med Inform. 2017 Nov;107:56–64. doi: 10.1016/j.ijmedinf.2017.08.006. doi: 10.1016/j.ijmedinf.2017.08.006.S1386-5056(17)30205-8 PubMed DOI
Lupač P, Chrobáková A, Sládek J. The internet in the Czech Republic 2014. Faculty of Arts, Charles University, Prague. 2015. [2021-09-21]. https://www.academia.edu/12609849/The_Internet_in_the_Czech_Republic_2014 .
Senioři v mezinárodním srovnání - 2017. Czech Statistical Office. 2017. [2021-05-14]. https://www.czso.cz/csu/czso/seniori-v-cr-v-datech-2017 .
Ramsey JL, Neupert SD, Mroczek DK, Spiro A. The effects of daily co-occurrence of affect on older adults' reactivity to health stressors. Psychol Health. 2016 Dec 24;31(3):364–78. doi: 10.1080/08870446.2015.1111368. PubMed DOI PMC
Fritz H, Tarraf W, Saleh DJ, Cutchin MP. Using a smartphone-based ecological momentary assessment protocol with community dwelling older African Americans. J Gerontol B Psychol Sci Soc Sci. 2017 Sep 01;72(5):876–87. doi: 10.1093/geronb/gbw166. gbw166 PubMed DOI PMC
Moore RC, Depp CA, Wetherell JL, Lenze EJ. Ecological momentary assessment versus standard assessment instruments for measuring mindfulness, depressed mood, and anxiety among older adults. J Psychiatr Res. 2016 Apr;75:116–23. doi: 10.1016/j.jpsychires.2016.01.011.S0022-3956(16)30010-3 PubMed DOI PMC
Maher J, Rebar AL, Dunton GF. Ecological momentary assessment is a feasible and valid methodological tool to measure older adults' physical activity and sedentary behavior. Front Psychol. 2018;9:1485. doi: 10.3389/fpsyg.2018.01485. doi: 10.3389/fpsyg.2018.01485. PubMed DOI PMC
Liu H, Lou VW. Developing a smartphone-based ecological momentary assessment protocol to collect biopsychosocial data with community-dwelling late-middle-aged and older adults. Transl Behav Med. 2019 Jul 16;9(4):711–9. doi: 10.1093/tbm/iby096. doi: 10.1093/tbm/iby096.5160124 PubMed DOI
Cain AE, Depp CA, Jeste DV. Ecological momentary assessment in aging research: a critical review. J Psychiatr Res. 2009 Jul;43(11):987–96. doi: 10.1016/j.jpsychires.2009.01.014. S0022-3956(09)00019-3 PubMed DOI PMC
Stawski RS, MacDonald SW, MacDonald MJ. The Encyclopedia of Adulthood and Aging. Hoboken, New Jersey, United States: John Wiley & Sons, Inc; 2015. Measurement burst design.
Godin G. The Godin-Shephard leisure-time physical activity questionnaire. Health Fit J Canada. 2011;4(1):18–22. doi: 10.14288/hfjc.v4i1.8. DOI
Gardiner P, Clark BK, Healy GN, Eakin EG, Winkler EA, Owen N. Measuring older adults' sedentary time: reliability, validity, and responsiveness. Med Sci Sports Exerc. 2011 Nov;43(11):2127–33. doi: 10.1249/MSS.0b013e31821b94f7. PubMed DOI
Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989 May;28(2):193–213. doi: 10.1016/0165-1781(89)90047-4. PubMed DOI
Cella D, Riley W, Stone A, Rothrock N, Reeve B, Yount S, Amtmann D, Bode R, Buysse D, Choi S, Cook K, Devellis R, DeWalt D, Fries JF, Gershon R, Hahn EA, Lai JS, Pilkonis P, Revicki D, Rose M, Weinfurt K, Hays R, PROMIS Cooperative Group The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005-2008. J Clin Epidemiol. 2010 Nov;63(11):1179–94. doi: 10.1016/j.jclinepi.2010.04.011. S0895-4356(10)00173-3 PubMed DOI PMC
Ware J, Kosinski M, Keller S D. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996 Mar;34(3):220–33. doi: 10.1097/00005650-199603000-00003. doi: 10.1097/00005650-199603000-00003. PubMed DOI
Clark M, Coward C, Rothschild C. Mobile information literacy: building digital and information literacy skills for mobile-first and mobile-centric populations through public libraries. Proceedings of the 2nd AfLIA Conference & 4th Africa Library Summit; 2nd AfLIA Conference & 4th Africa Library Summit; May 14-20, 2017; Yaoundé, Cameroon. 2017.
Covello S, Lei J. A review of digital literacy assessment instruments. Syracuse University, School of Education. 2010. [2021-09-21]. https://www.academia.edu/7935447/A_Review_of_Digital_Literacy_Assessment_Instruments .
Pellacani S. Digital literacy survey. ECDL Foundation. 2016. [2021-09-17]. https://www.commonspaces.eu/en/oer/digital-literacy-survey-ecdl-foundation/
Hargittai E. Survey measures of web-oriented digital literacy. Soc Sci Comput Rev. 2016 Aug 18;23(3):371–9. doi: 10.1177/0894439305275911. DOI
Ng W. Can we teach digital natives digital literacy? Comput Educ. 2012 Nov;59(3):1065–78. doi: 10.1016/j.compedu.2012.04.016. DOI
Rodíguez-de-Dios I, Igartua J, González-Vázquez A. Development and validation of a digital literacy scale for teenagers. Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality; TEEM'16: 4th International Conference on Technological Ecosystems for Enhancing Multiculturality; November 2 - 4, 2016; Salamanca Spain. 2016. pp. 1067–72. DOI
Tang C, Chaw L. Digital Literacy: a prerequisite for effective learning in a blended learning environment? Electron J e-Learning. 2016;14(1):54–65.
van der Vaart R, Drossaert C. Development of the digital health literacy instrument: measuring a broad spectrum of health 1.0 and health 2.0 skills. J Med Internet Res. 2017 Jan 24;19(1):e27. doi: 10.2196/jmir.6709. v19i1e27 PubMed DOI PMC
van Deursen A, Helsper E, Eynon R. Measuring digital skills : from digital skills to tangible outcomes project report. University of Twente. 2014. [2021-09-21]. http://www.oii.ox.ac.uk/publications/Measuring_Digital_Skills.pdf .
Brooke J. Usability Evaluation In Industry. Boca Raton, Florida, United States: CRC Press; 1996. SUS: A 'Quick and Dirty' usability scale; pp. 1–6.
Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psychol. 2006 Jan;3(2):77–101. doi: 10.1191/1478088706qp063oa. DOI
OECD . Education at a Glance 2020. Paris, France: OECD iLibrary; 2020. pp. 1–476.
Silver L. Smartphone ownership is growing rapidly around the world, but not always equally. Pew Research Center. 2019. [2021-09-17]. https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/
Knapova L, Klocek A, Elavsky S. The role of psychological factors in older adults' readiness to use ehealth technology: cross-sectional questionnaire study. J Med Internet Res. 2020 May 28;22(5):e14670. doi: 10.2196/14670. v22i5e14670 PubMed DOI PMC
Moore R, Kaufmann CN, Rooney AS, Moore DJ, Eyler LT, Granholm E, Woods SP, Swendsen J, Heaton RK, Scott JC, Depp CA. Feasibility and acceptability of ecological momentary assessment of daily functioning among older adults with HIV. Am J Geriatr Psychiatry. 2017 Aug;25(8):829–40. doi: 10.1016/j.jagp.2016.11.019. S1064-7481(16)30323-2 PubMed DOI PMC
Schonlau M, Fricker R, Elliott M. Conducting Research Surveys via E-mail and the Web. Santa Monica, California, United States: RAND Corporation; 2002. pp. 1–142.
Klocek A, Šmahelová M, Knapová L, Elavsky S. GPs’ perspectives on eHealth use in the Czech Republic: a cross-sectional mixed-design survey study. BJGP Open. 2019 Jul 23;3(3):101655. doi: 10.3399/bjgpopen19X101655. doi: 10.3399/bjgpopen19x101655. PubMed DOI PMC
Tedesco S, Sica M, Ancillao A, Timmons S, Barton J, O'Flynn B. Validity evaluation of the Fitbit Charge2 and the Garmin vivosmart HR+ in free-living environments in an older adult Cohort. JMIR Mhealth Uhealth. 2019 Jun 19;7(6):e13084. doi: 10.2196/13084. v7i6e13084 PubMed DOI PMC
Liang Z, Chapa-Martell MA. Accuracy of Fitbit wristbands in measuring sleep stage transitions and the effect of user-specific factors. JMIR Mhealth Uhealth. 2019 Jun 06;7(6):e13384. doi: 10.2196/13384. v7i6e13384 PubMed DOI PMC
Gomersall SR, Ng N, Burton NW, Pavey TG, Gilson ND, Brown WJ. Estimating physical activity and sedentary behavior in a free-living context: a pragmatic comparison of consumer-based activity trackers and ActiGraph accelerometry. J Med Internet Res. 2016 Sep 07;18(9):e239. doi: 10.2196/jmir.5531. v18i9e239 PubMed DOI PMC