Direct and Indirect Effects of Environmental Limitations on White Spruce Xylem Anatomy at Treeline
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
34759941
PubMed Central
PMC8573320
DOI
10.3389/fpls.2021.748055
Knihovny.cz E-resources
- Keywords
- Picea glauca, boreal forest, conduit reinforcement, drought limitation, hydraulic stability, temperature limitation, tree allometry, tree height,
- Publication type
- Journal Article MeSH
Treeline ecosystems are of great scientific interest to study the effects of limiting environmental conditions on tree growth. However, tree growth is multidimensional, with complex interactions between height and radial growth. In this study, we aimed to disentangle effects of height and climate on xylem anatomy of white spruce [Picea glauca (Moench) Voss] at three treeline sites in Alaska; i.e., one warm and drought-limited, and two cold, temperature-limited. To analyze general growth differences between trees from different sites, we used data on annual ring width, diameter at breast height (DBH), and tree height. A representative subset of the samples was used to investigate xylem anatomical traits. We then used linear mixed-effects models to estimate the effects of height and climatic variables on our study traits. Our study showed that xylem anatomical traits in white spruce can be directly and indirectly controlled by environmental conditions: hydraulic-related traits seem to be mainly influenced by tree height, especially in the earlywood. Thus, they are indirectly driven by environmental conditions, through the environment's effects on tree height. Traits related to mechanical support show a direct response to environmental conditions, mainly temperature, especially in the latewood. These results highlight the importance of assessing tree growth in a multidimensional way by considering both direct and indirect effects of environmental forcing to better understand the complexity of tree growth responses to the environment.
CREAF Centre for Research on Ecology and Forestry Applications Barcelona Spain
Department of Physical Geography and Geoecology Charles University Prague Prague Czechia
Institute of Botany and Landscape Ecology University Greifswald Greifswald Germany
See more in PubMed
Abrahamson I. (2015). Fire Effects Information System. Picea glauca. Available online at: https://www.feis-crs.org/feis/ (accessed January 31, 2020)
Anfodillo T., Carraro V., Carrer M., Fior C., Rossi S. (2006). Convergent tapering of xylem conduits in different woody species. New Phytol. 169 279–290. 10.1111/j.1469-8137.2005.01587.x PubMed DOI
Anfodillo T., Petit G., Crivellaro A. (2013). Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA J. 34 352–364. 10.1163/22941932-00000030 DOI
Anfodillo T., Petit G., Sterck F., Lechthaler S., Olson M. E. (2016). Allometric trajectories and “stress”: A quantitative approach. Front. Plant Sci. 7:1681. 10.3389/fpls.2016.01681 PubMed DOI PMC
Antonova G. F., Stasova V. V. (1993). Effects of environmental factors on wood formation in Scots pine stems. Trees 7 214–219. 10.1007/BF00202076 DOI
Arneth A., Harrison S. P., Zaehle S., Tsigaridis K., Menon S., Bartlein P. J., et al. (2010). Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3 525–532. 10.1038/ngeo905 DOI
Attree S. M., Dunstan D. I., Fowke L. C. (1991). Trees III. (Berlin: Springer; )
Barber V., Juday G., Finney B. (2000). Reduced growth of Alaska white spruce in the twentieth century from temperature-induced drought stress. Nature 405 668–672. PubMed
Becker P., Gribben R. J., Lim C. M. (2000). Tapered conduits can buffer hydraulic conductance from path-length effects. Tree Physiol. 20 965–967. 10.1093/treephys/20.14.965 PubMed DOI
Bennett A. C., Mcdowell N. G., Allen C. D., Anderson-Teixeira K. J. (2015). Larger trees suffer most during drought in forests worldwide. Nat. Plants 1:139. 10.1038/nplants.2015.139 PubMed DOI
Bieniek P. A., Bhatt U. S., Walsh J. E., Rupp T. S., Zhang J., Krieger J. R., et al. (2016). Full access dynamical downscaling of ERA-interim temperature and precipitation for Alaska. J. Appl. Meteorol. Climatol. 55 635–654. 10.1175/JAMC-D-15-0153.1 DOI
Björklund J., Seftigen K., Fonti P., Nievergelt D., von Arx G. (2020). Dendroclimatic potential of dendroanatomy in temperature-sensitive Pinus sylvestris. Dendrochronologia 60:125673. 10.1016/j.dendro.2020.125673 DOI
Björklund J., Seftigen K., Schweingruber F., Fonti P., von Arx G., Bryukhanova M. V., et al. (2017). Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers. New Phytol. 216 728–740. 10.1111/nph.14639 PubMed DOI
Brockmann-Jerosch H. (1919). Baumgrenze und Klimacharakter. Pflanzengeographische Kommission der Schweizerischen Naturforschenden Gesellschaft. Beiträge zur geobotanischen Landesaufnahme, Bd. 6. Zürich: Rascher & Cie.
Bunn A. G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia 26 115–124. 10.1016/j.dendro.2008.01.002 DOI
Callaham R. Z. (1962). Geographic variability in growth of forest trees. Tree Growth 1962 311–325.
Carrer M., von Arx G., Castagneri D., Petit G. (2015). Distilling allometric and environmental information from time series of conduit size: the standardization issue and its relationship to tree hydraulic architecture. Tree Physiol. 35 27–33. 10.1093/treephys/tpu108 PubMed DOI
Castagneri D., Fonti P., Von Arx G., Carrer M. (2017). How does climate influence xylem morphogenesis over the growing season? Insights from long-Term intra-ring anatomy in Picea abies. Anna. Bot. 119 1011–1020. 10.1093/aob/mcw274 PubMed DOI PMC
Charney N. D., Babst F., Poulter B., Record S., Trouet V. M., Frank D., et al. (2016). Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol. Lett. 19 1119–1128. 10.1111/ele.12650 PubMed DOI
Cochard H. (2006). Cavitation in trees. Comptes Rendus Physique 7 1018–1026. 10.1016/j.crhy.2006.10.012 DOI
Cortini F., MacIsaac D., Comeau P. (2016). White spruce growth and wood properties over multiple time periods in relation to current tree and stand attributes. Forests 7:49. 10.3390/f7030049 DOI
Cuny H. E., Fonti P., Rathgeber C. B. K., von Arx G., Peters R. L., Frank D. C. (2019). Couplings in cell differentiation kinetics mitigate air temperature influence on conifer wood anatomy. Plant Cell Environ. 42 1222–1232. 10.1111/pce.13464 PubMed DOI
Cuny H. E., Rathgeber C. B. K. (2016). Xylogenesis: Coniferous trees of temperate forests are listening to the climate tale during the growing season but only remember the last words! Plant Physiology. 171 306–317. 10.1104/pp.16.00037 PubMed DOI PMC
Cuny H. E., Rathgeber C. B. K., Frank D., Fonti P., Fournier M. (2014). Kinetics of tracheid development explain conifer tree-ring structure. New Phytol. 203 1231–1241. 10.1111/nph.12871 PubMed DOI
Däniker A. (1932). Biologische Studien über Baum- und Waldgrenze, insbesondere über die klimatischen Ursachen und deren Zusammenhänge. Zürich: Vierteljahrsschrift d. Naturf. Ges.
Denne M. P. (1989). Definition of Latewood According to Mork (1928). IAWA J. 10 59–62. 10.1163/22941932-90001112 DOI
Domec J.-C., Gartner B. L. (2002). How do water transport and water storage differ in coniferous earlywood and latewood? J. Experimen. Bot. 53 2369–2379. 10.1093/jxb/erf100 PubMed DOI
Eldhuset T. D., Nagy N. E., Volařík D., Børja I., Gebauer R., Yakovlev I. A., et al. (2013). Drought affects tracheid structure, dehydrin expression, and above- and belowground growth in 5-year-old Norway spruce. Plant Soil 366 305–320. 10.1007/s11104-012-1432-z DOI
Enquist B. J. (2002). Universal scaling in tree and vascular plant allometry: Toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol. 22 1045–1064. 10.1093/treephys/22.15-16.1045 PubMed DOI
Eusemann P., Schnittler M., Nilsson R. H., Jumpponen A., Dahl M. B., Würth D. G., et al. (2016). Habitat conditions and phenological tree traits overrule the influence of tree genotype in the needle mycobiome–Picea glauca system at an arctic treeline ecotone. New Phytol. 211 1221–1231. 10.1111/nph.13988 PubMed DOI
Fonti P., Bryukhanova M. V., Myglan V. S., Kirdyanov A. V., Naumova O. V., Vaganov E. A. (2013). Temperature-induced responses of xylem structure of Larix sibirica (pinaceae) from the Russian Altay. Am. J. Bot. 100 1332–1343. 10.3732/ajb.1200484 PubMed DOI
Fonti P., von Arx G., García-González I., Eilmann B., Sass-Klaassen U., Gärtner H., et al. (2010). Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185 42–53. 10.1111/j.1469-8137.2009.03030.x PubMed DOI
Fransson P., Brännström A., Franklin O. (2021). A tree’s quest for light-optimal height and diameter growth under a shading canopy. Tree Physiol. 41 1–11. 10.1093/treephys/tpaa110 PubMed DOI PMC
Gärtner H., Nievergelt D. (2010). The core-microtome: A new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia 28 85–92. 10.1016/j.dendro.2009.09.002 DOI
Gärtner H., Schweingruber F. H. (2013). Microscopic preparation techniques for plant stem analysis. Remagen: Verlag Dr. Kessel.
Gauthier S., Bernier P., Kuuluvainen T., Shvidenko A. Z., Schepaschenko D. G. (2015). Boreal forest health and global change. Science 349 819–822. 10.1126/science.aaa9092 PubMed DOI
Gillooly J. F., Brown J. H., West G. B., Savage V. M., Charnov E. L. (2001). Effects of size and temperature on metabolic rate. Science 293 2248–2251. 10.1126/science.1061967 PubMed DOI
Gooch J. W. (2011). “Hagen-Poiseuille Equation,” in Encyclopedic Dictionary of Polymers, ed. Gooch J. W. (New York, NY: Springer; ).
Grace J., Berninger F., Nagy L. (2002). Impacts of climate change on the tree line. Anna. Bot. 90 537–544. 10.1093/aob/mcf222 PubMed DOI PMC
Grams T. E. E., Andersen C. P. (2007). Competition for resources in trees: physiological versus morphological plasticity in progress in botany. Berlin: Springer. 356–381. 10.1007/978-3-540-36832-8_16 DOI
Grothendieck G. (2013). nls2: Non-linear regression with brute force. Available online at: https://cran.r-project.org/package=nls2 (accessed March 08, 2013)
Hacke U. G., Lachenbruch B., Pittermann J., Mayr S., Domec J.-C., Schulte P. J. (2015). Functional and Ecological Xylem Anatomy. (Berlin: Springer International Publishing; ), 10.1007/978-3-319-15783-2 DOI
Hacke U. G., Sperry J. S. (2001). Functional and ecological xylem anatomy. Pers. Plant Ecol. Evol. Syst. 4 97–115. 10.1078/1433-8319-00017 DOI
Hacke U. G., Sperry J. S., Pockman W. T., Davis S. D., McCulloh K. A. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126 457–461. 10.1007/s004420100628 PubMed DOI
Hassegawa M., Savard M., Lenz P. R. N., Duchateau E., Gélinas N., Bousquet J., et al. (2019). White spruce wood quality for lumber products: priority traits and their enhancement through tree improvement. Forestry 93 1–22. 10.1093/forestry/cpz050 DOI
Huang S., Titus S. J., Wiens D. P. (1992). Comparison of nonlinear height–diameter functions for major Alberta tree species. Can. J. Forest Res. 22 1297–1304. 10.1139/x92-172 PubMed DOI
IPCC. (2021). “Climate Change 2021: The Physical Science Basis”. in Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, eds MassonDelmotte V., Zhai P., Pirani A., Connors S. L., Pean C., Berger S., et al. (Cambridge: Cambridge University Press; ).
Johnstone J. F., Allen C. D., Franklin J. F., Frelich L. E., Harvey B. J., Higuera P. E., et al. (2016). Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14:369–378. 10.1002/fee.1311 DOI
Juday G. P., Barber V., Rupp S., Zasada J., Wilmking M. (2003). A 200-Year perspective of climate variability and the response of white spruce in interior alaska. in Climate Variability and Ecosystem Response at Long-Term Ecological Research Sites. Oxford: Oxford University Press.226–250.
Jyske T., Holtta T., Makinen H., Nojd P., Lumme I., Spiecker H. (2010). The effect of artificially induced drought on radial increment and wood properties of Norway spruce. Tree Physiol. 30 103–115. 10.1093/treephys/tpp099 PubMed DOI
Kašpar J., Anfodillo T., Treml V. (2019). Tree size mostly drives the variation of xylem traits at the treeline ecotone. Trees Struct. Funct. 33 1657–1665. 10.1007/s00468-019-01887-6 DOI
Körner C. (2007). Climatic Treelines: Conventions. Global Patterns, Causes (Klimatische Baumgrenzen: Konventionen, globale Muster, Ursachen). Erdkunde 4 316–324.
Lange J., Carrer M., Pisaric M. F. J., Porter T. J., Seo J., Trouillier M., et al. (2020). Moisture−driven shift in the climate sensitivity of white spruce xylem anatomical traits is coupled to large−scale oscillation patterns across northern treeline in northwest North America. Glob. Change Biol. 26 1842–1856. 10.1111/gcb.14947 PubMed DOI
Lenth R. V. (2016). Least-Squares Means: The R Package lsmeans. J. Statist. Softw. 69 1–33. 10.18637/jss.v069.i01 DOI
Lenz P., MacKay J., Rainville A., Cloutier A., Beaulieu J. (2011). The influence of cambial age on breeding for wood properties in Picea glauca. Tree Genet. Genomes 7 641–653. 10.1007/s11295-011-0364-8 DOI
Li M.-H., Yang J. (2004). Effects of microsite on growth of Pinus cembra in the subalpine zone of the Austrian Alps. Anna. Forest Sci. 61 319–325. 10.1051/forest:2004025 DOI
Lines E. R., Zavala M. A., Purves D. W., Coomes D. A. (2012). Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Glob. Ecol Biogeography 21 1017–1028. 10.1111/j.1466-8238.2011.00746.x DOI
Little E. L., Viereck L. A. (1971). Atlas of United States trees. Washington, DC: U.S. Dept. of Agriculture, Forest Service
Lloyd A. H., Duffy P. A., Mann D. H. (2013). Nonlinear responses of white spruce growth to climate variability in interior Alaska. Can. J. Forest Res. 43 331–343. 10.1139/cjfr-2012-0372 PubMed DOI
Lloyd A. H., Fastie C. L. (2002). Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Clim. change 52 481–509. 10.1023/a:1014278819094 DOI
Marquis B., Duval P., Bergeron Y., Simard M., Thiffault N., Tremblay F. (2021). Height growth stagnation of planted spruce in boreal mixedwoods: Importance of landscape, microsite, and growing-season frosts. Forest Ecol. Manag. 479:118533. 10.1016/j.foreco.2020.118533 DOI
Mencuccini M., Hölttä T., Petit G., Magnani F. (2007). Sanio’s laws revisited. Size-dependent changes in the xylem architecture of trees. Ecol. Lett. 10 1084–1093. 10.1111/j.1461-0248.2007.01104.x PubMed DOI
Myburg A. A., Lev-Yadun S., Sederoff R. R. (2013). Xylem Structure and Function. eLS 2013 1–19. 10.1002/9780470015902.a0001302.pub2 DOI
Nienstaedt H., Zasada J. C. (1990). Picea glauca (Moench) Voss white spruce. Silvics North Am. 1 204–226.
Pampuch T., Anadon-Rosell A., Zacharias M., von Arx G., Wilmking M. (2020). Xylem anatomical variability in white spruce at treeline is largely driven by spatial clustering. Front. Plant Sci. 11:1–10. 10.3389/fpls.2020.581378 PubMed DOI PMC
Petit G., Anfodillo T., Carraro V., Grani F., Carrer M. (2011). Hydraulic constraints limit height growth in trees at high altitude. New Phytol. 189 241–252. 10.1111/j.1469-8137.2010.03455.x PubMed DOI
Pfitzner J. (1976). Poiseuille and his law. Anaesthesia 31 273–275. 10.1111/j.1365-2044.1976.tb11804.x PubMed DOI
Pinheiro J., Bates D., DebRoy S., Sarkar D. R Core Team. (2020). {nlme}: Linear and Nonlinear Mixed Effects Models. Available online at: https://cran.r-project.org/package=nlme (accessed September 7, 2021)
Pittermann J., Sperry J. S. (2006). Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size. Plant Physiol. 140 374–382. 10.1104/pp.105.067900 PubMed DOI PMC
Pittermann J., Sperry J. S., Wheeler J. K., Hacke U. G., Sikkema E. H. (2006). Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant Cell Environ. 29 1618–1628. 10.1111/j.1365-3040.2006.01539.x PubMed DOI
Prendin A. L., Petit G., Carrer M., Fonti P., Björklund J., Von Arx G. (2017). New research perspectives from a novel approach to quantify tracheid wall thickness. Tree Physiol. 37 1–8. 10.1093/treephys/tpx037 PubMed DOI
Puchi P. F., Castagneri D., Rossi S., Carrer M. (2020). Wood anatomical traits in black spruce reveal latent water constraints on the boreal forest. Glob. Change Biol. 26 1767–1777. 10.1111/gcb.14906 PubMed DOI
R Core Team (2020). R: A language and environment for statistical computing. Vienna: R Core Team.
Rossi S., Girard M. J., Morin H. (2014). Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob. Change Biol. 20 2261–2271. 10.1111/gcb.12470 PubMed DOI
Sanio K. (1872). Ueber die Grösse der Holzzellen bei der gemeinen Kiefer (Pinus silvestris). Jahrbücher für wissenschaftliche Botanik. 8 401–420.
Sherriff R. L., Miller A. E., Muth K., Schriver M., Batzel R. (2017). Spruce growth responses to warming vary by ecoregion and ecosystem type near the forest-tundra boundary in south-west Alaska. J. Biogeogra. 44 1457–1468. 10.1111/jbi.12968 DOI
SNAP. (2019). Scenarios network for Alaska and arctic planning. Available online at: http://ckan.snap.uaf.edu/dataset. (accessed June 23, 2019)
Soja A. J., Tchebakova N. M., French N. H. F., Flannigan M. D., Shugart H. H., Stocks B. J., et al. (2007). Climate-induced boreal forest change: Predictions versus current observations. Glob. Planet. Change 56 274–296. 10.1016/j.gloplacha.2006.07.028 DOI
Stovall A. E. L., Shugart H., Yang X. (2019). Tree height explains mortality risk during an intense drought. Nat. Commun. 10:4385. 10.1038/s41467-019-12380-6 PubMed DOI PMC
Tagesson T., Schurgers G., Horion S., Ciais P., Tian F., Brandt M., et al. (2020). Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4 202–209. 10.1038/s41559-019-1090-0 PubMed DOI
Trouillier M., van der Maaten-Theunissen M., Harvey J., Würth D., Schnittler M., Wilmking M. (2018). Visualizing individual tree differences in tree-ring studies. Forests 9:216. 10.3390/f9040216 DOI
Trouillier M., van der Maaten-Theunissen M., Scharnweber T., Würth D., Burger A., Schnittler M., et al. (2019). Size matters—a comparison of three methods to assess age- and size-dependent climate sensitivity of trees. Trees Struct. Funct. 33 183–192. 10.1007/s00468-018-1767-z DOI
Ueyama M., Iwata H., Harazono Y., Euskirchen E. S., Oechel W. C., Zona D. (2013). Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA). Ecol. Appl. 23 1798–1816. 10.1890/11-0875.1 PubMed DOI
Urban J., Holušová K., Menšík L., Čermák J., Kantor P. (2013). Tree allometry of Douglas fir and Norway spruce on a nutrient-poor and a nutrient-rich site. Trees Struct. Funct. 27 97–110. 10.1007/s00468-012-0771-y DOI
von Arx G., Carrer M. (2014). Roxas -A new tool to build centuries-long tracheid-lumen chronologies in conifers. Dendrochronologia 32 290–293. 10.1016/j.dendro.2013.12.001 DOI
von Arx G., Crivellaro A., Prendin A. L., Čufar K., Carrer M. (2016). Quantitative Wood Anatomy—Practical Guidelines. Front. Plant Sci. 7:1–13. 10.3389/fpls.2016.00781 PubMed DOI PMC
West G. B., Brown J. H., Enquist B. J. (1999). A general model for the structure and allometry of plant vascular systems. Nature 400 664–667. 10.1038/23251 DOI
Whitman E., Parisien M. A., Thompson D. K., Flannigan M. D. (2019). Short-interval wildfire and drought overwhelm boreal forest resilience. Sci. Rep. 9 1–12. 10.1038/s41598-019-55036-7 PubMed DOI PMC
Wieser G. (2020). Alpine and polar treelines in a changing environment. Forests 11:254. 10.3390/f11030254 DOI
Wilmking M., Buras A., Eusemann P., Schnittler M., Trouillier M., Würth D., et al. (2017). High frequency growth variability of White spruce clones does not differ from non-clonal trees at Alaskan treelines. Dendrochronologia 44 187–192. 10.1016/j.dendro.2017.05.005 DOI
Wilmking M., Juday G. P. (2005). Longitudinal variation of radial growth at Alaska’s northern treeline - Recent changes and possible scenarios for the 21st century. Glob. Planet. Change 47 282–300. 10.1016/j.gloplacha.2004.10.017 DOI
Yasue K., Funada R., Kobayashi O., Ohtani J. (2000). The effects of tracheid dimensions on variations in maximum density of Picea glehnii and relationships to climatic factors. Trees Struct. Funct. 14 223–229. 10.1007/PL00009766 DOI
Zacharias M., Pampuch T., Heer K., Avanzi C., Würth D. G., Trouillier M., et al. (2021). Population structure and the influence of microenvironment and genetic similarity on individual growth at Alaskan white spruce treelines. Sci. Total Environ. 798:149267. 10.1016/j.scitotenv.2021.149267 PubMed DOI
Zobel B. J., van Buijtenen J. P. (1989). Wood Variation and Wood Properties. Berlin: Springer. 10.1007/978-3-642-74069-5_1 DOI