The use of polymer compounds in the deposits from the combustion of briquettes in domestic heating as an identifier of fuel quality
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/18_069/0010049 "Research on the identification of combustion of unsuitable fuels
ministerstvo školství, mládeže a tělovýchovy
systems of self-diagnostics of boilers combusting solid fuels for domestic heating"
ministerstvo školství, mládeže a tělovýchovy
the EnviSafeBioC project - contract No PPI/APM/2018/1/00029/U/001
polish national agency for academic exchange
PubMed
34762237
DOI
10.1007/s11356-021-17280-1
PII: 10.1007/s11356-021-17280-1
Knihovny.cz E-zdroje
- Klíčová slova
- Air emissions, Domestic heating, Furniture waste wood, Polymer wood composites, Py-GC/MS,
- MeSH
- dřevo chemie MeSH
- formaldehyd analýza MeSH
- látky znečišťující vzduch * analýza MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- polyurethany analýza MeSH
- vytápění MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- formaldehyd MeSH
- látky znečišťující vzduch * MeSH
- polyurethany MeSH
The utilisation of waste wood from furniture production brings new problems connected with an incomplete thermochemical decomposition of additives (chemicals for improving properties of plastics) in small heating with the addition of sources. Unique organic compounds produced by the combustion of waste wood allow the identification of the type of fuel. The organic compounds contained in the char deposits were analysed by pyrolysis gas chromatography with mass spectrometry. The deposits from the combustion of briquettes from furniture production contain organic compounds originating by decomposition of phenolic resins, aminoplasts (urea-formaldehyde, resorcinol-formaldehyde and melamine), polyurethanes and wood glue. Additives contained in the deposits include plasticisers such as phthalates (DEHP, dibutyl phthalate and diisobutyl phthalate), flame retardants (2-propanol, 1-chlorophosphate (3:1) and p-terphenyl). Deposits from the combustion of briquettes from virgin wood do not contain these compounds. The total amount of compounds identified in the deposits from the boiler, which do not come from virgin wood combustion, varies in the range between 4.25 and 6.25 g/kg. Phthalates (55.5%) and PVAc adhesives (18.6%) are the main anthropogenic compounds in the deposits from domestic boilers.
Zobrazit více v PubMed
Akinterinwa A (2020) Concise chemistry of urea formaldehyde resins and formaldehyde emission. Insights Chem Biochem 1:. https://doi.org/10.33552/ICBC.2020.01.000507
Alakangas E, Koponen K, Sokka L, Keränen J (2015) Classification of used wood to biomass fuel or solid recycled fuel and cascading use in Finland. Proceedings of the Bioenergy 2015: For Boost for Entire Bioenergy Business. Benet Ltd., Jyväskylä, pp 79–86
Anuar Sharuddin SD, Abnisa F, Wan Daud WMA, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Convers Manag 115:308–326. https://doi.org/10.1016/j.enconman.2016.02.037 DOI
Blake PG, Ijadi-Maghsoodi S (1982) Kinetics and mechanism of the thermal decomposition of methyl isocyanate. Int J Chem Kinet 14:945–952. https://doi.org/10.1002/kin.550140813 DOI
Bocchini P, Galletti GC, Camarero S, Martinez AT (1997) Absolute quantitation of lignin pyrolysis products using an internal standard. J Chromatogr A 773:227–232. https://doi.org/10.1016/S0021-9673(97)00114-3 DOI
Boström D, Skoglund N, Grimm A et al (2012) Ash transformation chemistry during combustion of biomass. Energy Fuels 26:85–93. https://doi.org/10.1021/ef201205b DOI
Brebu M, Vasile C (2010) Thermal degradation of lignin – a review. Cellul Chem Technol 44:353–363
Cain WS, Wijk RA, Jalowayski AA et al (2005) Odor and chemesthesis from brief exposures to TXIB. Indoor Air 15:445–457. https://doi.org/10.1111/j.1600-0668.2005.00390.x DOI
Calderón C, Colla M, Jossart J-M et al (2019) Bioenergy Europe statistical report 2019: report pellet. European Pellet Council, Brussels, pp 1–98
Cesprini E, Resente G, Causin V et al (2020) Energy recovery of glued wood waste – a review. Fuel 262:116520. https://doi.org/10.1016/j.fuel.2019.116520 DOI
Chen K, Mackie JC, Wojtalewicz D et al (2011) Toxic pollutants emitted from thermal decomposition of phthalimide compounds. J Hazard Mater 187:407–412. https://doi.org/10.1016/j.jhazmat.2011.01.040 DOI
Cichy W (2012) Combustion of plywood waste in a low power boiler. Drewno 55:21–36
Cohen Y, Aizenshtat Z (1992) Investigation of pyrolytically produced condensates of phenol-formaldehyde resins, in relation to their structure and decomposition mechanism. J Anal Appl Pyrolysis 22:153–178. https://doi.org/10.1016/0165-2370(92)85010-I DOI
Corona B, Shen L, Sommersacher P, Junginger M (2020) Consequential life cycle assessment of energy generation from waste wood and forest residues: the effect of resource-efficient additives. J Clean Prod 259:120948. https://doi.org/10.1016/j.jclepro.2020.120948
de Jesus JHF, Ferreira APG, Szilágyi IM, Cavalheiro ETG (2020) Thermal behavior and polymorphism of the antioxidants: BHA, BHT and TBHQ. Fuel 278:118298. https://doi.org/10.1016/j.fuel.2020.118298 DOI
de Paoli MA, Waldman WR (2019) Bio-Based additives for thermoplastics. Polímeros 29:e2019030. https://doi.org/10.1590/0104-1428.06318 DOI
Deka M, Saikia CN, Baruah KK (2002) Studies on thermal degradation and termite resistant properties of chemically modified wood. Bioresour Technol 84:151–157. https://doi.org/10.1016/S0960-8524(02)00016-0 DOI
Dufton PW (1998) Functional additives for the plastics industry: trends in use and technology; a report from Rapra’s Industry Analysis Group. Rapra Technology Ltd, Shawbury
Dunky M (1998) Urea-formaldehyde (UF) adhesive resins for wood. Int J Adhes Adhes 18:95–107. https://doi.org/10.1016/S0143-7496(97)00054-7 DOI
EN 303–5:2012 (2012) Heating boilers - part 5: heating boilers for solid fuels, manually and automatically stoked, nominal heat output of up to 500 kW - terminology, requirements, testing and marking, pp 1–102
European Chemicals Agency (2019) Plastic additives initiative: supplementary information on scope and methods 15.02.2019. Publications Office, Helsinki
European Chemicals Agency (2020) Describing the uses of additives in plastic material for articles and estimating the related exposure: practical guide for industry. Publications Office, Helsinki
European Parliament and of the Council (2009) Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products
European Parliament and the Council (2018) Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources
Eurostat (2021) Wood products - production and trade. In: Eurostat. https://ec.europa.eu/eurostat/statistics-explained/index.php/Wood_products_-_production_and_trade . Accessed 30 Aug 2021
Feng Y, Mu J, Chen S et al (2012) The influence of urea formaldehyde resins on pyrolysis characteristics and products of wood-based panels. BioResources 7:4600–4613 DOI
Fromm J (2010) Wood formation of trees in relation to potassium and calcium nutrition. Tree Physiol 30:1140–1147. https://doi.org/10.1093/treephys/tpq024 DOI
Gehrmann H-J, Mätzing H, Nowak P et al (2020) Waste wood characterization and combustion behaviour in pilot lab scale. J Energy Inst 93:1634–1641. https://doi.org/10.1016/j.joei.2020.02.001 DOI
Geng S, Haque M-U, Oksman K (2016) Crosslinked poly(vinyl acetate) (PVAc) reinforced with cellulose nanocrystals (CNC): structure and mechanical properties. Compos Sci Technol 126:35–42. https://doi.org/10.1016/j.compscitech.2016.02.013 DOI
Hedayati A, Lindgren R, Skoglund N et al (2021) Ash transformation during single-pellet combustion of agricultural biomass with a focus on potassium and phosphorus. Energy Fuels 35:1449–1464. https://doi.org/10.1021/acs.energyfuels.0c03324 DOI
Helmenstine AM (2018) Smoke chemistry and chemical composition. In: ThoughtCo. thoughtco.com/smoke-chemistry-607309 . Accessed 30 Aug 2021
Hindersinn RR, Witschard G (1978) The importance of intumescence and char in polymer fire retardance. In: Kuryla WC, Papa AJ (eds) Flame retardancy of polymeric materials. Marcel Dekker Inc., New York, pp 1–107
Hroncová E, Ladomersky J, Valíček J, Dzurenda L (2016) Combustion of biomass fuel and residues: emissions production perspective. In: Kyprianidis KG, Skvaril J (eds) Developments in combustion technology. InTech, London, pp 3–32
Huron M, Oukala S, Lardière J et al (2017) An extensive characterization of various treated waste wood for assessment of suitability with combustion process. Fuel 202:118–128. https://doi.org/10.1016/j.fuel.2017.04.025 DOI
ISO 17225–3:2021 (2021) Solid biofuels - fuel specifications and classes - part 3: graded wood briquettes, pp 1–7
Jamradloedluk J, Lertsatitthanakorn C (2014) Characterization and utilization of char derived from fast pyrolysis of plastic wastes. Procedia Eng 69:1437–1442. https://doi.org/10.1016/j.proeng.2014.03.139 DOI
Jiang H, Wang J, Wu S et al (2012) The pyrolysis mechanism of phenol formaldehyde resin. Polym Degrad Stab 97:1527–1533. https://doi.org/10.1016/j.polymdegradstab.2012.04.016 DOI
Junginger M, Goh CS, Faaij A (eds) (2014) International bioenergy trade: history, status & outlook on securing sustainable bioenergy supply, demand and markets, 1st ed. 2014. Springer Netherlands: Imprint: Springer, Dordrecht
Kaal J, Martínez Cortizas A, Nierop KGJ (2009) Characterisation of aged charcoal using a coil probe pyrolysis-GC/MS method optimised for black carbon. J Anal Appl Pyrolysis 85:408–416. https://doi.org/10.1016/j.jaap.2008.11.007 DOI
Karunadasa KSP, Manoratne CH, Pitawala HMTGA, Rajapakse RMG (2019) Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. J Phys Chem Solids 134:21–28. https://doi.org/10.1016/j.jpcs.2019.05.023 DOI
Kemona A, Piotrowska M (2020) Polyurethane recycling and disposal: methods and prospects. Polymers 12:1752. https://doi.org/10.3390/polym12081752 DOI
Kmita A, Fischer C, Hodor K et al (2018) Thermal decomposition of foundry resins: a determination of organic products by thermogravimetry–gas chromatography–mass spectrometry (TG–GC–MS). Arab J Chem 11:380–387. https://doi.org/10.1016/j.arabjc.2016.11.003 DOI
Lary DJ, Shallcross DE, Toumi R (1999) Carbonaceous aerosols and their potential role in atmospheric chemistry. J Geophys Res Atmospheres 104:15929–15940. https://doi.org/10.1029/1998JD100091 DOI
Li L, Chen Z, Lu J et al (2021) Combustion behavior and thermal degradation properties of wood impregnated with intumescent biomass flame retardants: phytic acid, hydrolyzed collagen, and glycerol. ACS Omega 6:3921–3930. https://doi.org/10.1021/acsomega.0c05778 DOI
Li Y, Xu H, Wang J et al (2019) Personal exposure to PM2.5-bound organic species from domestic solid fuel combustion in rural Guanzhong Basin, China: characteristics and health implication. Chemosphere 227:53–62. https://doi.org/10.1016/j.chemosphere.2019.04.010 DOI
Lim H-J, Sung S-H, Yi S-S, Park J-H (2012) Instrumentation of a thermal-optical carbon analyzer and its sensitivity in organic and elemental carbon determination to analysis protocols. J Environ Sci Int 21:1–9. https://doi.org/10.5322/JES.2012.21.1.1 DOI
Lizarraga E, Zabaleta C, Palop JA (2008) Mechanism of thermal decomposition of thiourea derivatives. J Therm Anal Calorim 93:887–898. https://doi.org/10.1007/s10973-007-8489-6 DOI
Milne GWA (ed) (2005) Gardner’s commercially important chemicals: synonyms, trade names, and properties. Wiley-Interscience, Hoboken
Moreno AI, Font R (2015) Pyrolysis of furniture wood waste: decomposition and gases evolved. J Anal Appl Pyrolysis 113:464–473. https://doi.org/10.1016/j.jaap.2015.03.008 DOI
Moreno AI, Font R, Conesa JA (2017) Combustion of furniture wood waste and solid wood: kinetic study and evolution of pollutants. Fuel 192:169–177. https://doi.org/10.1016/j.fuel.2016.12.022 DOI
Moreno AI, Font R, Conesa JA (2016a) Characterization of gaseous emissions and ashes from the combustion of furniture waste. Waste Manag 58:299–308. https://doi.org/10.1016/j.wasman.2016.09.046 DOI
Moreno AI, Font R, Conesa JA (2016b) Physical and chemical evaluation of furniture waste briquettes. Waste Manag 49:245–252. https://doi.org/10.1016/j.wasman.2016.01.048 DOI
Mukoyama T, Shimoda N, Satokawa S (2015) Catalytic decomposition of methanethiol to hydrogen sulfide over TiO DOI
Muzyka R, Chrubasik M, Pogoda M et al (2019) Py–GC–MS and PCA analysis approach for the detection of illegal waste combustion processes in central heating furnaces. Chromatographia 82:1101–1109. https://doi.org/10.1007/s10337-019-03747-4 DOI
Niu Y, Tan H, Hui S (2016) Ash-related issues during biomass combustion: alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Prog Energy Combust Sci 52:1–61. https://doi.org/10.1016/j.pecs.2015.09.003 DOI
Noguchi M, Yamasaki A (2020) Volatile and semivolatile organic compound emissions from polymers used in commercial products during thermal degradation. Heliyon 6:e03314. https://doi.org/10.1016/j.heliyon.2020.e03314 DOI
Osemeahon SA, Nkafamiya II, Maitera ON, Akinterinwa A (2015) Synthesis and characterization of emulsion paint binder from a copolymer composite of dimethylol urea/polystyrene. J Polym Compos 3:11–21
Pagacz J, Hebda E, Janowski B et al (2018) Thermal decomposition studies on polyurethane elastomers reinforced with polyhedral silsesquioxanes by evolved gas analysis. Polym Degrad Stab 149:129–142. https://doi.org/10.1016/j.polymdegradstab.2018.01.028 DOI
Peng L, Lu C, Zhou J et al (2005) Smoldering combustion of horizontally oriented polyurethane foam with controlled air supply. Fire Saf Sci 8:693–704. https://doi.org/10.3801/IAFSS.FSS.8-693 DOI
Qiao L, Easteal AJ (2001) Aspects of the performance of PVAc adhesives in wood joints. Pigment Resin Technol 30:79–87. https://doi.org/10.1108/03699420110381599 DOI
Rabaçal M, Fernandes U, Costa M (2013) Combustion and emission characteristics of a domestic boiler fired with pellets of pine, industrial wood wastes and peach stones. Renew Energy 51:220–226. https://doi.org/10.1016/j.renene.2012.09.020 DOI
Rajamma R, Ball RJ, Tarelho LAC et al (2009) Characterisation and use of biomass fly ash in cement-based materials. J Hazard Mater 172:1049–1060. https://doi.org/10.1016/j.jhazmat.2009.07.109 DOI
Rimez B, Rahier H, Van Assche G et al (2008) The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), Part I: experimental study of the degradation mechanism. Polym Degrad Stab 93:800–810. https://doi.org/10.1016/j.polymdegradstab.2008.01.010 DOI
Růžičková J, Kucbel M, Raclavská H et al (2019) Comparison of organic compounds in char and soot from the combustion of biomass in boilers of various emission classes. J Environ Manage 236:769–783. https://doi.org/10.1016/j.jenvman.2019.02.038 DOI
Růžičková J, Raclavská H, Šafář M et al (2021) Environmental risks related to organic compounds from the combustion of paper briquettes in domestic boilers. J Hazard Mater 418:126291. https://doi.org/10.1016/j.jhazmat.2021.126291 DOI
Šafář M, Raclavská H, Kryštofová K, et al (2017) Problems with utilisation of engineering wood for energy purposes. Proceedings of the 18th International Scientific Conference on Electric Power Engineering (EPE). IEEE, Kouty nad Desnou, pp 1–6
Sandberg D (2016) Additives in wood products - today and future development. In: Kutnar A, Muthu SS (eds) Environmental impacts of traditional and innovative forest-based bioproducts. Springer Singapore, Singapore, pp 105–172 DOI
Schimpke R, Klinger M, Krzack S, Meyer B (2017) Determination of the initial ash sintering temperature by cold compression strength tests with regard to mineral transitions. Fuel 194:157–165. https://doi.org/10.1016/j.fuel.2016.12.066 DOI
Singh H, Jain AK (2008) Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: a comprehensive review. J Appl Polym Sci 111:1115–1143. https://doi.org/10.1002/app.29131 DOI
Song B, Hall P (2020) Densification of biomass and waste plastic blends as a solid fuel: hazards, advantages, and perspectives. Front Energy Res 8:58. https://doi.org/10.3389/fenrg.2020.00058 DOI
Steenari B-M, Karlsson LG, Lindqvist O (1999) Evaluation of the leaching characteristics of wood ash and the influence of ash agglomeration. Biomass Bioenergy 16:119–136. https://doi.org/10.1016/S0961-9534(98)00070-1 DOI
Szatyłowicz E, Skoczko I (2019) Evaluation of the PAH content in soot from solid fuels combustion in low power boilers. Energies 12:4254. https://doi.org/10.3390/en12224254 DOI
Szczurek A, Maciejewska M, Zajiczek Ż, Mościcki K (2021) Detection of emissions from the combustion of wood-based materials being furniture industry waste. Atmospheric Pollut Res 12:375–385. https://doi.org/10.1016/j.apr.2020.11.018 DOI
Teuber L, Osburg V-S, Toporowski W et al (2016) Wood polymer composites and their contribution to cascading utilisation. J Clean Prod 110:9–15. https://doi.org/10.1016/j.jclepro.2015.04.009 DOI
Torero JL, Fernandez-Pello AC (1996) Forward smolder of polyurethane foam in a forced air flow. Combust Flame 106:89–109. https://doi.org/10.1016/0010-2180(95)00245-6 DOI
Trick KA, Saliba TE (1995) Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 33:1509–1515. https://doi.org/10.1016/0008-6223(95)00092-R DOI
Trivedi MK, Tallapragada RM, Branton A et al (2015) Characterization of physical, thermal and spectral properties of biofield treated 2,6-dichlorophenol. Am J Chem Eng 3:66–73. https://doi.org/10.5281/ZENODO.177456 DOI
Ülker O (2016) Wood adhesives and bonding theory. In: Rudawska A (ed) Adhesives - applications and properties. InTech
Vershinina KY, Shlegel NE, Strizhak PA (2019) Relative combustion efficiency of composite fuels based on of wood processing and oil production wastes. Energy 169:18–28. https://doi.org/10.1016/j.energy.2018.12.027 DOI
Wang ZD, Yoshida M, George B (2013) Theoretical study on the thermal decomposition of thiourea. Comput Theor Chem 1017:91–98. https://doi.org/10.1016/j.comptc.2013.05.007 DOI
Wei S, Pintus V, Schreiner M (2012) Photochemical degradation study of polyvinyl acetate paints used in artworks by Py–GC/MS. J Anal Appl Pyrolysis 97:158–163. https://doi.org/10.1016/j.jaap.2012.05.004 DOI
Wypych A (2017) Databook of plasticizers, 2nd edn. ChemTec Publishing, Toronto
Xu D, Yu K, Qian K (2018) Thermal degradation study of rigid polyurethane foams containing tris(1-chloro-2-propyl)phosphate and modified aramid fiber. Polym Test 67:159–168. https://doi.org/10.1016/j.polymertesting.2018.01.034 DOI
Yao X, Xu K, Yan F, Liang Y (2017) The influence of ashing temperature on ash fouling and slagging characteristics during combustion of biomass fuels. BioResources 12:1593–1610 DOI
Yorulmaz SY, Atimtay AT (2009) Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Process Technol 90:939–946. https://doi.org/10.1016/j.fuproc.2009.02.010 DOI
Zhang Y, Silcock P, Jones JR, Eyres GT (2020) Changes in wood smoke volatile composition by manipulating the smoke generation conditions. J Anal Appl Pyrolysis 148:104769. https://doi.org/10.1016/j.jaap.2019.104769 DOI
Zhao L, Liu Y, Xu Z et al (2011) State of research and trends in development of wood adhesives. For Stud China 13:321–326. https://doi.org/10.1007/s11632-013-0401-9 DOI