A Study of Compressibility, Compactability and Mucoadhesivity of Tableting Materials for Matrix Systems Based on Chitosan
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV 260 547
Grant of Ministry of Education, Youth and Sports, Czech Republic
PubMed
34771193
PubMed Central
PMC8587853
DOI
10.3390/polym13213636
PII: polym13213636
Knihovny.cz E-zdroje
- Klíčová slova
- chitosan, compactability, compressibility, matrix tablets, mucoadhesion, silicified microcrystalline cellulose,
- Publikační typ
- časopisecké články MeSH
The objective of the present research is to evaluate directly compressible chitosan-based tableting materials for the formulation of mucoadhesive matrix tablets intended for targeted drug release to distal segments of the GIT. The influence of sodium alginate, hypromellose, and silicified microcrystalline cellulose (P90) on compressibility, compactability and lubricant sensitivity ratio was tested. Furthermore, the rheological properties of the hydrated surface layer of the matrix tablets and the mucoadhesion to a mucin substrate were analysed. Compressibility was evaluated using the energy profile of the compression process, compactability by means of the tensile strength of tablets, and lubricant sensitivity ratio was calculated to assess the sensitivity to lubricant. Addition of P90 to chitosan improved compressibility, which is demonstrated by the increase in the energy of plastic deformation and the higher tensile strength of tablets. P90 also significantly reduced the high lubricant sensitivity of chitosan. Presence of retarding components led to a decrease in Emax. All tested matrix tablets revealed a good mucoadhesion without a negative effect of P90 content. The viscosity of a gel layer on the surface of matrix tablets containing hypromellose was higher compared to those with sodium alginate. This was not reflected in the adhesive strength of the tablets. The formulated tableting materials combining chitosan and P90 are a suitable matrix for incorporation of an active ingredient, whose delayed release in the intestine can be achieved by the functionality of the chitosan-sodium alginate complex.
Dr Müller Pharma s r o U Mostku 182 50341 Hradec Kralove Czech Republic
InStar Technologies a s Mrstikova 399 2a 46007 Liberec Czech Republic
Zobrazit více v PubMed
Yilmaz N.D., Çilgi G.K., Yilmaz K. Natural Polysaccharides as Pharmaceutical Excipients. In: Thakur V.K., Thakur M.K., editors. Handbook of Polymers for Pharmaceutical Technologies. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2015. pp. 483–516.
Vandamme T. The Use of Polysaccharides to Target Drugs to the Colon. Carbohydr. Polym. 2002;48:219–231. doi: 10.1016/S0144-8617(01)00263-6. DOI
Hua S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract—Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front. Pharmacol. 2020;11:524. doi: 10.3389/fphar.2020.00524. PubMed DOI PMC
Jain V., Shukla N., Mahajan S.C. Polysaccharides in Colon Specific Drug Delivery. J. Transl. Sci. 2015;1:3–11.
Khvostov M.V., Tolstikova T.G., Borisov S.A., Dushkin A.V. Application of Natural Polysaccharides in Pharmaceutics. Russ. J. Bioorg. Chem. 2019;45:438–450. doi: 10.1134/S1068162019060219. DOI
Torres F.G., Troncoso O.P., Pisani A., Gatto F., Bardi G. Natural Polysaccharide Nanomaterials: An Overview of Their Immunological Properties. Int. J. Mol. Sci. 2019;20:5092. doi: 10.3390/ijms20205092. PubMed DOI PMC
Wang W., Meng Q., Li Q., Liu J., Zhou M., Jin Z., Zhao K. Chitosan Derivatives and Their Application in Biomedicine. Int. J. Mol. Sci. 2020;21:487. doi: 10.3390/ijms21020487. PubMed DOI PMC
Yanovska A., Husak Y., Korniienko V., Holubnycha V., Mishchenko O., Banasiuk R., Radwan-Pragłowska J., Piątkowski M., Janus Ł., Pogorielov M. Development, Characterization and Antimicrobial Properties of Silver Nanoparticles Loaded Chitosan-Alginate Sponges for Biomedical Application. J. Mater. Res. 2021;36:3267–3277. doi: 10.1557/s43578-021-00358-4. DOI
Deineka V., Sulaieva O., Pernakov M., Korniienko V., Husak Y., Yanovska A., Yusupova A., Tkachenko Y., Kalinkevich O., Zlatska A., et al. Hemostatic and Tissue Regeneration Performance of Novel Electrospun Chitosan-Based Materials. Biomedicines. 2021;9:588. doi: 10.3390/biomedicines9060588. PubMed DOI PMC
Shariatinia Z. Pharmaceutical Applications of Chitosan. Adv. Colloid Interface Sci. 2019;263:131–194. doi: 10.1016/j.cis.2018.11.008. PubMed DOI
Chourasia M.K., Jain S.K. Polysaccharides for Colon Targeted Drug Delivery. Drug Deliv. 2004;11:129–148. doi: 10.1080/10717540490280778. PubMed DOI
Safdar R., Omar A.A., Arunagiri A., Regupathi I., Thanabalan M. Potential of Chitosan and Its Derivatives for Controlled Drug Release Applications—A Review. J. Drug Deliv. Sci. Technol. 2019;49:642–659. doi: 10.1016/j.jddst.2018.10.020. DOI
Rabiskova M., Kubova-Dvorackova K., Kofronva L. Stability Testing of Alginate-Chitosan Films. Ceska Slov. Farm. 2012;61:26–33. PubMed
Zargar V., Asghari M., Dashti A. A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications. ChemBioEng Rev. 2015;2:204–226. doi: 10.1002/cben.201400025. DOI
Li J., Zhuang S. Antibacterial Activity of Chitosan and Its Derivatives and Their Interaction Mechanism with Bacteria: Current State and Perspectives. Eur. Polym. J. 2020;138:109984. doi: 10.1016/j.eurpolymj.2020.109984. DOI
Andrews G.P., Laverty T.P., Jones D.S. Mucoadhesive Polymeric Platforms for Controlled Drug Delivery. Eur. J. Pharm. Biopharm. 2009;71:505–518. doi: 10.1016/j.ejpb.2008.09.028. PubMed DOI
Hejazi R., Amiji M. Chitosan-Based Gastrointestinal Delivery Systems. J. Control. Release. 2003;89:151–165. doi: 10.1016/S0168-3659(03)00126-3. PubMed DOI
Dobrynin A., Rubinstein M. Theory of Polyelectrolytes in Solutions and at Surfaces. Prog. Polym. Sci. 2005;30:1049–1118. doi: 10.1016/j.progpolymsci.2005.07.006. DOI
Berger J., Reist M., Mayer J., Felt O., Gurny R. Structure and Interactions in Chitosan Hydrogels Formed by Complexation or Aggregation for Biomedical Applications. Eur. J. Pharm. Biopharm. 2004;57:35–52. doi: 10.1016/S0939-6411(03)00160-7. PubMed DOI
Li L., Wang L., Shao Y., Ni R., Zhang T., Mao S. Drug Release Characteristics from Chitosan—Alginate Matrix Tablets Based on the Theory of Self-Assembled Film. Int. J. Pharm. 2013;450:197–207. doi: 10.1016/j.ijpharm.2013.04.052. PubMed DOI
Badwan A., Rashid I., Omari M., Darras F. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications. Mar. Drugs. 2015;13:1519–1547. doi: 10.3390/md13031519. PubMed DOI PMC
Mir V., Heinamaki J., Antikainen O., Revoredo O., Colarte A., Nieto O., Yliruusi J. Direct Compression Properties of Chitin and Chitosan. Eur. J. Pharm. Biopharm. 2008;69:964–968. doi: 10.1016/j.ejpb.2008.01.029. PubMed DOI
Rojas J., Hernandez C., Trujillo D. Effect of the Alkaline Treatment Conditions on the Tableting Performance of Chitin Obtained from Shrimp Heads. Afr. J. Pharm. Pharmacol. 2014;8:211–219.
Aucamp M.E. Master’s Thesis. North West University; Potchefstroom, South Africa: 2004. Assessment of the Tableting Properties of Chitosan through Wet Granulation and Direct Compression Formulations.
Ragnarsson G. Force-Displacement and Network Measurements. In: Alderborn G., Nyström C., editors. Pharmaceutical Powder Compaction Technology. Marcel Dekker Inc.; New York, NY, USA: 1996. pp. 77–96.
Stamm A., Mathis C. Compressibility of Solid Excipients for Direct Compression. Acta Pharm. Technol. 1976;22:7–16.
Fell J.T., Newton J.M. Determination of Tablet Strength by the Diametral-Compression Test. J. Pharm. Sci. 1970;59:688–691. doi: 10.1002/jps.2600590523. PubMed DOI
Bos C.E., Bolhuis G.K., van Doorne H., Lerk C.F. Native Starch in Tablet Formulations: Properties on Compaction. Pharm. Weekbl. 1987;9:274–282. doi: 10.1007/BF01953630. PubMed DOI
van Veen B., Bolhuis G.K., Wu Y.S., Zuurman K., Frijlink H.W. Compaction Mechanism and Tablet Strength of Unlubricated and Lubricated (Silicified) Microcrystalline Cellulose. Eur. J. Pharm. Biopharm. 2005;59:133–138. doi: 10.1016/j.ejpb.2004.05.009. PubMed DOI
Mužíková J., Nováková P. A Study of the Properties of Compacts from Silicified Microcrystalline Celluloses. Drug Dev. Ind. Pharm. 2007;33:775–781. doi: 10.1080/03639040601050197. PubMed DOI
Moreton R.C. Cellulose Silicified Microcrystalline. In: Sheskey P.J., Cook W.G., Cable C.G., editors. Handbook of Pharmaceutical Excipients. Pharmaceutical Press London and American Pharmaceutical Association; Washington, DC, USA: 2017. pp. 204–206.
Li J., Wu Y. Lubricants in Pharmaceutical Solid Dosage Forms. Lubricants. 2014;2:21–43. doi: 10.3390/lubricants2010021. DOI
Bolhuis G.K., Lerk C.F. Ordered Mixing with Lubricant and Glidant in Tableting Mixtures. J. Pharm. Pharmacol. 2011;33:790. doi: 10.1111/j.2042-7158.1981.tb13933.x. PubMed DOI
Douglas J.F. Weak and Strong Gels and the Emergence of the Amorphous Solid State. Gels. 2018;4:19. doi: 10.3390/gels4010019. PubMed DOI PMC
Rencber S., Cheaburu-Yilmaz C.N., Köse F.A., Yaprak Karavana S., Yilmaz O. Preparation and Characterization of Alginate and Chitosan IPC Based Gel Formulation for Mucosal Application. Cellul. Chem. Technol. 2019;53:655–665. doi: 10.35812/CelluloseChemTechnol.2019.53.64. DOI
Bappaditya C., Nursazreen A., Pinaki S., Uttam K.M. Mucoadhesive Polymers and Their Mode of Action: A Recent Update. J. Appl. Pharm. Sci. 2017;7:195–203.
Cazorla-Luna R., Martín-Illana A., Notario-Pérez F., Ruiz-Caro R., Veiga M.-D. Naturally Occurring Polyelectrolytes and Their Use for the Development of Complex-Based Mucoadhesive Drug Delivery Systems: An Overview. Polymers. 2021;13:2241. doi: 10.3390/polym13142241. PubMed DOI PMC