Magnetically Modified Biosorbent for Rapid Beryllium Elimination from the Aqueous Environment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_048/0007399
Grantová Agentura České Republiky
PubMed
34772136
PubMed Central
PMC8585364
DOI
10.3390/ma14216610
PII: ma14216610
Knihovny.cz E-zdroje
- Klíčová slova
- beryllium, different Fe content, elimination, kinetics, magnetic biochar, non-linear sorption,
- Publikační typ
- časopisecké články MeSH
Although both beryllium and its compounds display high toxicity, little attention has been focused on the removal of beryllium from wastewaters. In this research, magnetically modified biochar obtained from poor-quality wheat with two distinct FexOy contents was studied as a sorbent for the elimination of beryllium from an aqueous solution. The determined elimination efficiency was higher than 80% in both prepared composites, and the presence of FexOy did not affect the sorption properties. The experimental qmax values were determined to be 1.44 mg/g for original biochar and biochar with lower content of iron and 1.45 mg/g for the biochar with higher iron content. The optimum pH values favorable for sorption were determined to be 6. After the sorption procedure, the sorbent was still magnetically active enough to be removed from the solution by a magnet. Using magnetically modified sorbents proved to be an easy to apply, low-cost, and effective technique.
Zobrazit více v PubMed
Martín-González A., Díaz S., Borniquel S., Gallego A., Gutiérrez J.C. Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants. Res. Microbiol. 2006;157:108–118. doi: 10.1016/j.resmic.2005.06.005. PubMed DOI
Raskin I., Kumar P.B.A.N., Dushenkov S., Salt D.E. Bioconcentration of heavy metals by plants. Curr. Opin. Biotechnol. 1994;5:285–290. doi: 10.1016/0958-1669(94)90030-2. DOI
Åström M.E., Yu C., Peltola P., Reynolds J.K., Österholm P., Nystrand M.I., Augustsson A., Virtasalo J.J., Nordmyr L., Ojala A.E.K. Sources, transport and sinks of beryllium in a coastal landscape affected by acidic soils. Geochim. Cosmochim. Acta. 2018;232:288–302. doi: 10.1016/j.gca.2018.04.025. DOI
World Health Organization . Beryllium in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality. World Health Organization; Geneva, Switzerland: 2009. [(accessed on 24 June 2021)]. Available online: https://apps.who.int/iris/handle/10665/70172.
Armiento G., Bellatreccia F., Cremisini C., Della Ventura G., Nardi E., Pacific R. Beryllium natural background concentration and mobility a reappraisal examining the case of high Be-bearing pyroclastic rocks. Environ. Monit. Assess. 2013;185:559–572. doi: 10.1007/s10661-012-2575-3. PubMed DOI
Willis H.H., Florig H.K. Potential exposures and risks from beryllium-containing products. Risk. Anal. 2002;22:1019–1033. doi: 10.1111/1539-6924.00267. PubMed DOI
Boffetta P., Fryzek J.P., Mandel J.S. Occupational exposure to beryllium and cancer risk: A review of the epidemiologic evidence. Crit. Rev. Toxicol. 2012;42:107–118. doi: 10.3109/10408444.2011.631898. PubMed DOI
Marchand-Adam S., Valeyre D. Chronic pulmonary berylliosis: A model of interaction between environment and genetic predisposition (part 1). Mineralogy, toxicology, epidemiology and risk factors. Rev. Des Mal. Respir. 2005;22:257–269. doi: 10.1016/S0761-8425(05)85479-8. PubMed DOI
Tanveer M., Wang L. Potential targets to reduce beryllium toxicity in plants: A review. Plant Physiol. Biochem. 2019;139:691–696. doi: 10.1016/j.plaphy.2019.04.022. PubMed DOI
Shah A., Tanveer M., Hussain S., Guozheng Y. Beryllium in the environment: Whether fatal for plant growth? Rev. Environ. Sci. Biotechnol. 2016;15:549–561. doi: 10.1007/s11157-016-9412-z. DOI
Navrátil T., Skřivan P., Minařík L., Žlgová A. Beryllium geochemistry in the lesni potok catchment (Czech Republic), 7 years of systematic study. Aquat. Geochem. 2012;8:121–133. doi: 10.1023/A:1021349228632. DOI
Veselý J., Beneš P., Ševčí K. Occurrence and speciation of beryllium in acidified freshwaters. Water Res. 1989;23:711–717. doi: 10.1016/0043-1354(89)90204-2. DOI
Jagoe C.H., Matey V.E., Haines T.A., Komov V.T. Effect of beryllium on fish in acid water is analogous to aluminum toxicity. Aquat. Toxicol. 1993;24:241–256. doi: 10.1016/0166-445X(93)90074-B. DOI
El-Soad A.M.A., El-Magied M.O.A., Atrees M.S., Kovaleva E.G., Lazzara G. Synthesis and characterization of modified sulfonated chitosan for beryllium recovery. Int. J. Biol. Macrom. 2019;139:153–160. doi: 10.1016/j.ijbiomac.2019.07.162. PubMed DOI
Basargin N.N., Miroshnichenko O.V. Beryllium(II) sorption from aqueous solutions by polystyrene-based chelating polymer sorbents. Russ. J. Inorg. Chem. 2012;57:758–762. doi: 10.1134/S0036023612050026. DOI
Othman S.H., Shabaan M., Demerdash M., Saleh M.M. Experimental and theoretical investigation of sorption kinetics of beryllium on Amberlite-IR-120 sorbent. J. Nucl. Mater. 2009;392:427–433. doi: 10.1016/j.jnucmat.2009.04.001. DOI
Ramesh A., Kurakalva R.M., Seshaiah K., Nettem V.C. Removal of beryllium from aqueous solutions by zeolite 4A and bentonite. Sep. Sci. Technol. 2007;37:1123–1134. doi: 10.1081/SS-120002245. DOI
Cao D.-Q., Song X., Fang X.-M., Yang W.-Y., Hao X.-D., Iritani E., Katagiri N. Membrane filtration-based recovery of extracellular polymer substances from excess sludge and analysis of their heavy metal ion adsorption properties. Chem. Eng. J. 2018;354:866–874. doi: 10.1016/j.cej.2018.08.121. DOI
Silva J.E., Paiva A.P., Soares D., Labrincha A., Castro F. Solvent extraction applied to the recovery of heavy metals from galvanic sludge. J. Hazard. Mater. 2005;120:113–118. doi: 10.1016/j.jhazmat.2004.12.008. PubMed DOI
Chen Q., Yao Y., Li X., Lu J., Zhou J., Huang Z. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J. Water Process Eng. 2018;26:289–300. doi: 10.1016/j.jwpe.2018.11.003. DOI
Nemati M., Hosseini S.M., Shabanian M. Novel electrodialysis cation exchange membrane prepared by 2-acrylamido-2-methylpropane sulfonic acid; heavy metal ions removal. J. Hazard. Mater. 2017;3375:90–104. doi: 10.1016/j.jhazmat.2017.04.074. PubMed DOI
Islam M.D.A., Morton D.W., Johnson B.B., Pramanik B.K., Mainali B., Angove M.J. Metal ion and contaminant sorption onto aluminium oxide-based materials: A review and future research. J. Environ. Chem. Eng. 2018;6:6853–6869. doi: 10.1016/j.jece.2018.10.045. DOI
Mirza A., Ahmad R. Novel recyclable (Xanthan gum/montmorillonite) bionanocomposite for the removal of Pb (II) from synthetic and industrial wastewater. Environ. Technol. Innov. 2018;11:241–252. doi: 10.1016/j.eti.2018.06.009. DOI
Akpomie K.D., Dawodu F.A., Adebowale K.O. Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential. Alex. Eng. J. 2015;54:757–767. doi: 10.1016/j.aej.2015.03.025. DOI
Tokarčíková M., Seidlerová J., Motyka O., Životský O., Drobíková K., Mamulová Kutláková K. Easy and low-cost preparation method of magnetic montmorillonite/FexOy composite: Initial study for future applications. Monatsh. Chem. 2020;151:1–10. doi: 10.1007/s00706-019-02536-x. DOI
Mahdavinasa M., Hamzehloueian M., Sarrafi Y. Preparation and application of magnetic chitosan/graphene oxide composite supported copper as a recyclable heterogeneous nanocatalyst in the synthesis of triazoles. Int. J. Biol. Macromol. 2019;138:764–772. doi: 10.1016/j.ijbiomac.2019.07.013. PubMed DOI
Peng S., Wang S., Hao G., Zhu C.H., Zhang Y., Lv X., Hu Y., Jiang W. Preparation of magnetic flower-like carbon-matrix composites with efficient electromagnetic wave absorption properties by carbonization of MIL-101(Fe) J. Magn. Magn. Mater. 2019;487:165306. doi: 10.1016/j.jmmm.2019.165306. DOI
Lu F., Dong A., Ding G., Xu K., Li J., You L. Magnetic porous polymer composite for high performance adsorption of acid red 18 based on melamine resin and chitosan. J. Mol. Liq. 2019;294:111515. doi: 10.1016/j.molliq.2019.111515. DOI
Li M., Liu H., Chen T., Chen D., Wang C., Wei L., Wang L. Efficient U(VI) adsorption on iron/carbon composites derived from the coupling of cellulose with iron oxides: Performance and mechanism. Sci. Total Environ. 2020;703:135604. doi: 10.1016/j.scitotenv.2019.135604. PubMed DOI
Rozumová L., Životský O., Seidlerová J., Motyka O., Šafařík I., Šafaříková M. Magnetically modified peanut husks as an effective sorbent of heavy metals. J. Environ. Chem. Eng. 2016;4:549–555. doi: 10.1016/j.jece.2015.10.039. DOI
Montanarella L., Lugato E. The application of biochar in the EU: Challenges and opportunities. Agronomy. 2013;3:462–473. doi: 10.3390/agronomy3020462. DOI
Razzaghi F., Obour P.B., Arthur F. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma. 2020;361:114055. doi: 10.1016/j.geoderma.2019.114055. DOI
Werdin J., Fletcher T.D., Rayner J.P., Williams N.S.G., Farrell C. Biochar made from low density wood has greater plant available water than biochar made from high density wood. Sci. Total Environ. 2020;705:135856. doi: 10.1016/j.scitotenv.2019.135856. PubMed DOI
Melia P.M., Busquets R., Hooda P.S., Cundy A.B., Sohi S.P. Driving forces and barriers in the removal of phosphorus from water using crop residue, wood and sewage sludge derived biochars. Sci. Total Environ. 2019;675:623–631. doi: 10.1016/j.scitotenv.2019.04.232. PubMed DOI
Mukherjee A., Zimmerman A.R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma. 2013;193:122–130. doi: 10.1016/j.geoderma.2012.10.002. DOI
Tan X., Liu Y., Zeng G., Wang X., Hu X., Gu Y., Yang Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere. 2015;125:70–85. doi: 10.1016/j.chemosphere.2014.12.058. PubMed DOI
Hu X., Xu J., Wu M., Xing J., Bi W., Wang K., Ma J., Liu X. Effects of biomass pre-pyrolysis and pyrolysis temperature on magnetic biochar properties. J. Anal. Appl. Pyrolysis. 2017;127:196–202. doi: 10.1016/j.jaap.2017.08.006. DOI
Wang S., Tang Y., Li K., Mo Y., Li H., Gu Z. Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater. Bioresour. Technol. 2014;174:67–73. doi: 10.1016/j.biortech.2014.10.007. PubMed DOI
Liang S., Shi S., Zhang H., Qiu J., Yu W., Li M., Gan Q., Yu W., Xiao K., Liu B., et al. One-pot solvothermal synthesis of magnetic biochar from waste biomass: Formation mechanism and efficient adsorption of Cr(VI) in an aqueous solution. Sci. Total Environ. 2019;695:133886. doi: 10.1016/j.scitotenv.2019.133886. PubMed DOI
Zhang X., Lv L., Qin Y., Xu M., Jia X., Chen Z. Removal of aqueous Cr(VI) by a magnetic biochar derived from Melia azedarach wood. Bioresour. Technol. 2018;256:1–10. doi: 10.1016/j.biortech.2018.01.145. PubMed DOI
Safarik I., Safarikova M. One-step magnetic modification of non-magnetic solid materials. Internat. J. Mater. Res. 2014;105:104–107. doi: 10.3139/146.111009. DOI
Trakal L., Veselská V., Šafařík I., Vítková M., Číhalová S., Komárek M. Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour. Technol. 2016;203:318–324. doi: 10.1016/j.biortech.2015.12.056. PubMed DOI
Czech Standard CSN 72 2041, Part 11. TECHNOR Print, s.r.o.; Hradec Králové, Czech Republic: 1977.
Tokarčíková M., Tokarský J., Mamulová Kutláková K., Seidlerová J. Testing the stability of magnetic iron oxides/kaolinite nanocomposite under various pH conditions. J. Solid State Chem. 2017;253:329–335. doi: 10.1016/j.jssc.2017.06.004. DOI
Schiewer S., Balaria A. Biosorption of Pb2+ by original and protonated citrus peels: Equilibrium, kinetics, and mechanism. Chem. Eng. J. 2009;146:211–219. doi: 10.1016/j.cej.2008.05.034. DOI
Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar. 1898;24:1–39.
Ho Y.S., McKay G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998;70:115–124. doi: 10.1016/S0923-0467(98)00076-1. DOI
Weber W.J., Morris J.C. Kinetics of adsorption carbon from solutions. J. Sanit. Eng. Div. 1963;89:31–60. doi: 10.1061/JSEDAI.0000430. DOI
Wu F.-C., Tseng R.-L., Juang R.-S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 2009;153:1–8. doi: 10.1016/j.cej.2009.04.042. DOI
Freundlich H.M. Over the Adsorption in Solution. J. Phys. Chem. A. 1906;57:385–470.
Taha M.H. Sorption of U(VI), Mn (II), Cu(II), Zn(II), and Cd(II) from multi-component phosphoric acid solutions using MARATHON C resin. Environ. Sci. Pollut. Res. 2021;28:12475–12489. doi: 10.1007/s11356-020-11256-3. PubMed DOI
Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918;40:1361–1403. doi: 10.1021/ja02242a004. DOI
McKay G., Blair H.S., Gardner I.R. Adsorption of dyes on chitin. I. Equilibrium studies. J. Appl. Polym. Sci. 1982;27:3043–3057. doi: 10.1002/app.1982.070270827. DOI
Eren Z., Acar F.N. Adsorption of Reactive Black 5 from an aqueous solution: Equilibrium and kinetic studies. Desalination. 2006;194:1–10. doi: 10.1016/j.desal.2005.10.022. DOI
Sips R. On the Structure of a Catalyst Surface. II. J. Chem. Phys. 1950;18:1024–1026. doi: 10.1063/1.1747848. DOI
Vijayaraghavan K., Padmesh T.V.N., Palanivelu K., Velan M. Biosorption of nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. J. Hazard. Mater. 2006;133:304–308. doi: 10.1016/j.jhazmat.2005.10.016. PubMed DOI
Tanhaei B., Ayati A., Iakovleva E., Sillanpää M. Efficient carbon interlayed magnetic chitosan adsorbent for anionic dye removal: Synthesis, characterization and adsorption study. Int. J. Biol. Macromol. 2020;164:3621–3631. doi: 10.1016/j.ijbiomac.2020.08.207. PubMed DOI
Redlich O., Peterson D.L. A useful adsorption isotherm. J. Phys. Chem. 1959;63:1024. doi: 10.1021/j150576a611. DOI
Zhang X., Lin Q., Luo S., Ruan K., Peng K. Preparation of novel oxidized mesoporous carbon with excellent adsorption performance for removal of malachite green and lead ion. Appl. Surf. Sci. 2018;442:322–331. doi: 10.1016/j.apsusc.2018.02.148. DOI
Li H., Dong X., da Silva E.B., de Oliveira L.M., Chen Y., Ma L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere. 2017;178:466–478. doi: 10.1016/j.chemosphere.2017.03.072. PubMed DOI
He X., Liu Z., Niu W., Yang L., Zhou T., Qin D., Niu Z., Yuan Q. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy. 2018;143:746–756. doi: 10.1016/j.energy.2017.11.062. DOI
Shen Z., Hou D., Jin F., Shi J., Fan X., Tsang D.C.W., Alessi D.S. Effect of production temperature on lead removal mechanisms by rice straw biochars. Sci. Total Environ. 2019;655:751–758. doi: 10.1016/j.scitotenv.2018.11.282. PubMed DOI
Magioglou E., Frontistis Z., Vakros J., Manariotis I.D., Mantzavinos D. Activation of persulfate by biochars from valorized olive stones for the degradation of sulfamethoxazole. Catalysts. 2019;9:419. doi: 10.3390/catal9050419. DOI
Wang Z., Pakoulev A., Pang Y., Dlott D.D. Vibrational substructure in the OH stretching transition of water and HOD. J. Phys. Chem. A. 2004;108:9054–9063. doi: 10.1021/jp048545t. DOI
Komnitsas K., Zaharaki D. Morphology of modified biochar and its potential for phenol removal from aqueous solutions. Front. Environ. Sci. 2016;4:26. doi: 10.3389/fenvs.2016.00026. DOI
Wang Y., Sun H., Ang H.M., Tade M.O., Wang S. Magnetic Fe3O4/carbon sphere/cobalt composites for catalytic oxidation of phenol solutions with sulfate radicals. Chem. Eng. J. 2014;245:1–9. doi: 10.1016/j.cej.2014.02.013. DOI
Wang C., Gu L., Liu X., Zhang X., Cao L., Hu X. Sorption behavior of Cr(VI) on pineapple-peel-derived biochar and the influence of coexisting pyrene. Int. Biodeter. Biodegr. 2016;111:78–84. doi: 10.1016/j.ibiod.2016.04.029. DOI
Sun F., Sun W.-L., Sun H.-M., Ni J.-R. Biosorption behavior and mechanism of beryllium from aqueous solution by aerobic granule. Chem. Eng. J. 2011;172:783–791. doi: 10.1016/j.cej.2011.06.062. DOI
Mai N.T., Nguyen A.M., Pham N.T.T., Nguyen A.T.Q., Nguyen T.T., Do C.L., Nguyen N.H., Dultz S., Nguyen M.N. Colloidal interactions of micro-sized biochar and a kaolinitic soil clay. Sci. Total Environ. 2020;738:139844. doi: 10.1016/j.scitotenv.2020.139844. PubMed DOI
Buffle J. Complexation of Reactions in Aquatic Systems—An Analytical Approach Ellis Horward Limited. Ellis Horwood Ltd.; Chichester, UK: 1988.
Yao L., Ye Z.-F., Tong M.-P., Lai P., Ni J.-R. Removal of Cr3+ from aqueous solution by biosorption with aerobic granules. J. Hazard. Mater. 2009;165:250–255. doi: 10.1016/j.jhazmat.2008.09.110. PubMed DOI
Boschi V., Willenbring J.K. Beryllium desorption from minerals and organic ligands over time. Chem. Geol. 2016;439:52–58. doi: 10.1016/j.chemgeo.2016.06.009. DOI
Özcan A., Öncü E.M., Özcan A.S. Adsorption of Acid Blue 193 from aqueous solutions onto DEDMA-sepiolite. J. Hazard. Mater. 2006;129:244–252. doi: 10.1016/j.jhazmat.2005.08.037. PubMed DOI
Lorenc-Grabowska E., Gryglewicz G. Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes. Pigm. 2007;74:34–40. doi: 10.1016/j.dyepig.2006.01.027. DOI
Tokarčíková M., Seidlerová J., Motyka O., Životský O., Drobíková K., Gabor R. Experimental verification of regenerable magnetically modified montmorillonite and its application for heavy metals removal from metallurgical waste leachates. J. Water Process. Eng. 2021;39:101691. doi: 10.1016/j.jwpe.2020.101691. DOI
Chen B., Chen Z., Lv S. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour. Technol. 2011;102:716–723. doi: 10.1016/j.biortech.2010.08.067. PubMed DOI
Li Y., Zhu S., Liu Q., Chen Z., Gu Z., Zhu C., Lu T., Zhang D., Ma J. N-doped porous carbon with magnetic particles formed in situ for enhanced Cr(VI) removal. Water Res. 2013;47:4188–4197. doi: 10.1016/j.watres.2012.10.056. PubMed DOI
Yousefi S.R., Shemirani F., Jamali M.R., Salavati-Niasari M. Extraction and preconcentration of ultra trace amounts of beryllium from aqueous samples by nanometer mesoporous silica functionalized by 2,4-dihydroxybenzaldehyde prior to ICP OES determination. Microchim. Acta. 2010;169:241–248. doi: 10.1007/s00604-010-0342-0. DOI