• This record comes from PubMed

Waterborne Isolates of Campylobacter jejuni Are Able to Develop Aerotolerance, Survive Exposure to Low Temperature, and Interact With Acanthamoeba polyphaga

. 2021 ; 12 () : 730858. [epub] 20211027

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Campylobacter jejuni is regarded as the leading cause of bacterial gastroenteritis around the world. Even though it is generally considered to be a sensitive microaerobic pathogen, it is able to survive in the environment outside of the intestinal tract of the host. This study aimed to assess the impact of selected environmental parameters on the survival of 14 C. jejuni isolates of different origins, including 12 water isolates. The isolates were tested for their antibiotic resistance, their ability to survive at low temperature (7°C), develop aerotolerance, and to interact with the potential protozoan host Acanthamoeba polyphaga. The antibiotic susceptibility was determined by standard disk diffusion according to EUCAST. Out of the 14 isolates, 8 were resistant to ciprofloxacin (CIP) and 5 to tetracycline (TET), while only one isolate was resistant to erythromycin (ERY). Five isolates were resistant to two different antibiotic classes. Tetracycline resistance was only observed in isolates isolated from wastewater and a clinical sample. Further, the isolates were tested for their survival at 7°C under both aerobic and microaerobic conditions using standard culture methods. The results showed that under microaerobic conditions, all isolates maintained their cultivability for 4 weeks without a significant decrease in the numbers of bacteria and variation between the isolates. However, significant differences were observed under aerobic conditions (AC). The incubation led to a decrease in the number of cultivable cells, with complete loss of cultivability after 2 weeks (one water isolate), 3 weeks (7 isolates), or 4 weeks of incubation (6 isolates). Further, all isolates were studied for their ability to develop aerotolerance by repetitive subcultivation under microaerobic and subsequently AC. Surprisingly, all isolates were able to adapt and grow under AC. As the last step, 5 isolates were selected to evaluate a potential protective effect provided by A. polyphaga. The cocultivation of isolates with the amoeba resulted in the survival of about 40% of cells treated with an otherwise lethal dose of gentamicin. In summary, C. jejuni is able to adapt and survive in a potentially detrimental environment for a prolonged period of time, which emphasizes the role of the environmental transmission route in the spread of campylobacteriosis.

See more in PubMed

Ahmed J., Wong L. P., Chua Y. P., Channa N., Mahar R. B., Yasmin A., et al. (2020). Quantitative microbial risk assessment of drinking water quality to predict the risk of waterborne diseases in primary-school children. Int. J. Environ. Res. Public Health 17:2774. 10.3390/ijerph17082774 PubMed DOI PMC

Ang C. W., De Klerk M. A., Endtz H. P., Jacobs B. C., Laman J. D., van der Meche F. G. A., et al. (2001). Guillain-Barre′ Syndrome- and Miller Fisher syndrome-associated Campylobacter jejuni lipopolysaccharides induce anti-GM1 and anti-GQ1b antibodies in rabbits. Infect. Immun. 69 2462–2469. 10.1128/IAI.69.4.2462-2469.2001 PubMed DOI PMC

Atack J. M., Kelly D. J. (2009). Oxidative stress in Campylobacter jejuni: responses, resistance and regulation. Future Microbiol. 4, 677–690. 10.2217/fmb.09.44 PubMed DOI

Axelsson-Olsson D., Ellström P., Waldenström J., Haemig P. D., Brudin L., Olsen B. (2007). Acanthamoeba-Campylobacter coculture as a novel method for enrichment of Campylobacter species. Appl. Environ. Microbiol. 73 6864–6869. 10.1128/AEM.01305-07 PubMed DOI PMC

Axelsson-Olsson D., Olofsson J., Svensson L., Griekspoor P., Waldenström J., Ellström P., et al. (2010a). Amoebae and algae can prolong the survival of Campylobacter species in co-culture. Exp. Parasitol. 126 59–64. 10.1016/j.exppara.2009.12.016 PubMed DOI

Axelsson-Olsson D., Svensson L., Olofsson J., Salomon P., Waldenström J., Ellström P., et al. (2010b). Increase in acid tolerance of Campylobacter jejuni through coincubation with amoebae. Appl. Environ. Microbiol. 76 4194–4200. 10.1128/AEM.01219-09 PubMed DOI PMC

Axelsson-Olsson D., Waldenström J., Broman T., Olsen B., Holmberg M. (2005). Protozoan Acanthamoeba polyphaga as a potential reservoir for Campylobacter jejuni. Appl. Environ. Microbiol. 71 987–992. 10.1128/AEM.71.2.987-992.2005 PubMed DOI PMC

Bardon J., Kolar M., Cekanova L., Hejnar P., Koukalova D. (2009). Prevalence of Campylobacter jejuni and its resistance to antibiotics in poultry in the Czech Republic. Zoonoses Public Health 56 111–116. 10.1111/j.1863-2378.2008.01176.x PubMed DOI

Baré J., Sabbe K., Huws S., Vercauteren D., Braeckmans K., van Gremberghe I., et al. (2010). Influence of temperature, oxygen and bacterial strain identity on the association of Campylobacter jejuni with Acanthamoeba castellanii. FEMS Microbiol. Ecol. 74 371–381. 10.1111/j.1574-6941.2010.00955.x PubMed DOI

Bartholomew N., Brunton C., Mitchell P., Williamson J., Gilpin B. (2014). A waterborne outbreak of campylobacteriosis in the South Island of New Zealand due to a failure to implement a multi-barrier approach. J. Water Health 12 555–563. 10.2166/wh.2014.155 PubMed DOI

Bhaduri S., Cottrell B. (2004). Survival of cold-stressed Campylobacter jejuni on ground chicken and chicken skin during frozen storage. Appl. Environ. Microbiol. 70 7103–7109. 10.1128/AEM.70.12.7103-7109.2004 PubMed DOI PMC

Bronnec V., Turoòová H., Bouju A., Cruveiller S., Rodrigues R., Demnerova K., et al. (2016). Adhesion, biofilm formation, and genomic features of Campylobacter jejuni Bf, an atypical strain able to grow under aerobic conditions. Front. Microbiol. 7:1002. 10.3389/fmicb.2016.01002 PubMed DOI PMC

Bronowski C., James C. E., Winstanley C. (2014). Role of environmental survival in transmission of Campylobacter jejuni. FEMS Microbiol. Lett. 356 8–19. 10.1111/1574-6968.12488 PubMed DOI

Bui X. T., Winding A., Qvortrup K., Wolff A., Bang D. D., Creuzenet C. (2012a). Survival of Campylobacter jejuni in co-culture with Acanthamoeba castellanii: role of amoeba-mediated depletion of dissolved oxygen. Environ. Microbiol. 14 2034–2047. 10.1111/j.1462-2920.2011.02655.x PubMed DOI

Bui X. T., Qvortrup K., Wolff A., Bang D. D., Creuzenet C. (2012b). Effect of environmental stress factors on the uptake and survival of Campylobacter jejuni in Acanthamoeba castellanii. BMC Microbiol. 12:232. 10.1186/1471-2180-12-232 PubMed DOI PMC

Buswell C. M., Herlihy Y. M., Lawrence L. M., McGuiggan J. T., Marsh P. D., Keevil C. W., et al. (1998). Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and-rRNA staining. Appl. Environ. Microbiol. 64 733–741. 10.1128/AEM.64.2.733-741.1998 PubMed DOI PMC

Chan K. F., Tran H. L., Kanenaka R. Y., Kathariou S. (2001). Survival of clinical and poultry-derived isolates of Campylobacter jejuni at a low temperature (4°C). Appl. Environ. Microbiol. 67 4186–4191. 10.1128/aem.67.9.4186-4191.2001 PubMed DOI PMC

Chynoweth R. W., Hudson J. A., Thom K. (1998). Aerobic growth and survival of Campylobacter jejuni in foodand stream water. Lett. Appl. Microbiol. 27 341–344. 10.1046/j.1472-765x.1998.00453.x PubMed DOI

Cirillo J. D., Cirillo S. L., Yan L., Bermudez L. E., Falkow S., Tompkins L. S. (1999). Intracellular growth in Acanthamoeba castellanii affects monocyte entry mechanisms and enhances virulence of Legionella pneumophila. Infect. Immun. 67 4427–4434. 10.1128/IAI.67.9.4427-4434.1999 PubMed DOI PMC

Cole K., Donoghue A. M., Blore P. J., Holliman J. S., Cox N. A., Musgrove M. T., et al. (2004). Effects of aeration and storage temperature on Campylobacter concentrations in poultry semen. Poult. Sci. 83 1734–1738. 10.1093/ps/83.10.1734 PubMed DOI

Davis L., DiRita V. (2008). Growth and laboratory maintenance of Campylobacter jejuni. Curr. Protoc. Microbiol. 8 8A.1.1–8A.1.7. 10.1002/9780471729259.mc08a01s10 PubMed DOI

Dirks B. P., Quinlan J. J. (2014). Development of a modified gentamicin protection assay to investigate the interaction between Campylobacter jejuni and Acanthamoeba castellanii ATCC 30010. Exp. Parasitol. 140 39–43. 10.1016/j.exppara.2014.03.012 PubMed DOI

French N. P., Midwinter A., Holland B., Collins-Emerson J., Pattison R., Colles F., et al. (2009). Molecular epidemiology of Campylobacter jejuni isolates from wild-bird fecal material in children’s playgrounds. Appl. Environ. Microbiol. 75 779–783. 10.1128/AEM.01979-08 PubMed DOI PMC

Gilpin B. J., Walker T., Paine S., Sherwood J., Mackereth G., Wood T., et al. (2020). A large scale waterborne campylobacteriosis outbreak, Havelock North, New Zealand. J. Infect. 81 390–395. 10.1016/j.jinf.2020.06.065 PubMed DOI

Greub G., Raoult D. (2002). Crescent bodies of Parachlamydia acanthamoeba and its life cycle within Acanthamoeba polyphaga: an electron micrograph study. Appl. Environ. Microbiol. 68 3076–3084. 10.1128/AEM.68.6.3076-3084.2002 PubMed DOI PMC

Griekspoor P., Olofsson J., Axelsson-Olsson D., Waldenström J., Olsen B. (2013). Multilocus sequence typing and FlaA sequencing reveal the genetic stability of Campylobacter jejuni enrichment during coculture with Acanthamoeba polyphaga. Appl. Environ. Microbiol. 79 2477–2479. 10.1128/AEM.02918-12 PubMed DOI PMC

Guk J.-H., Kim J., Song H., Kim J., An J.-U., Kim J., et al. (2019). Hyper-aerotolerant Campylobacter coli from duck sources and its potential threat to public health: virulence, antimicrobial resistance, and genetic relatedness. Microorganisms 7:579. 10.3390/microorganisms7110579 PubMed DOI PMC

Guzman-Herrador B., Carlander A., Ethelberg S., de Blasio B. F., Kuusi M., Lundet V., et al. (2015). Waterborne outbreaks in the Nordic countries, 1998 to 2012. Euro Surveill. 20:21160. 10.2807/1560-7917.es2015.20.24.21160 PubMed DOI

Hänninen M.-L., Haajanen H., Pummi T., Wermundsen K., Katila M.-L., Sarkkinen H., et al. (2003). Detection and typing of Campylobacter jejuni and Campylobacter coli and analysis of indicator organisms in three waterborne outbreaks in Finland. Appl. Environ. Microbiol. 69 1391–1396. 10.1128/aem.69.3.1391-1396.2003 PubMed DOI PMC

Hazeleger W. C., Janse J. D., Koenraad P. M., Beumer R. R., Rombouts F. M., Abee T. (1995). Temperature-dependent membrane fatty acid and cell physiology changes in coccoid forms of Campylobacter jejuni. Appl. Environ. Microbiol. 61 2713–2719. 10.1128/AEM.61.7.2713-2719.1995 PubMed DOI PMC

Hazeleger W. C., Wouters J. A., Rombouts F. M., Abee T. (1998). Physiological activity of Campylobacter jejuni far below the minimal growth temperature. Appl. Environ. Microbiol. 64 3917–3922. 10.1128/AEM.64.10.3917-3922.1998 PubMed DOI PMC

Horrocks S. M., Anderson R. C., Nisbet D. J., Ricke S. C. (2009). Incidence and ecology of Campylobacter jejuni and coli in animals. Anaerobe 15 18–25. 10.1016/j.anaerobe.2008.09.001 PubMed DOI

Hyllestad S., Iversen A., MacDonald E., Amato E., Borge B. ÅS., Bøe A., et al. (2020). Large waterborne Campylobacter outbreak: use of multiple approaches to investigate contamination of the drinking water supply system, Norway, June 2019. Euro Surveill. 25:2000011. 10.2807/1560-7917.ES.2020.25.35.2000011 PubMed DOI PMC

Jones D. M., Sutcliffe E. M., Curry A. (1991). Recovery of viable but non-culturable Campylobacter jejuni. J. Gen. Microbiol. 137 2477–2482. 10.1099/00221287-137-10-2477 PubMed DOI

Kaakoush N. O., Castaño-Rodríguez N., Mitchell H. M., Man S. M. (2015). Global epidemiology of Campylobacter infection. Clin. Microbiol. Rev. 28 687–720. 10.1128/CMR.00006-15 PubMed DOI PMC

Kaakoush N. O., Miller W. G., De Reuse H., Mendz G. L. (2007). Oxygen requirement and tolerance of Campylobacter jejuni. Res. Microbiol. 158 644–650. 10.1016/j.resmic.2007.07.009 PubMed DOI

Karki A. B., Marasini D., Oakey C. K., Mar K., Fakhr M. K. (2018). Campylobacter coli from retail liver and meat products is more aerotolerant than Campylobacter jejuni. Front. Microbiol. 9:2951. 10.3389/fmicb.2018.02951 PubMed DOI PMC

Kemp R., Leatherbarrow A. J. H., Williams N. J., Hart C., Clough H. E., Turner J., et al. (2005). Prevalence and genetic diversity of Campylobacter spp. in environmental water samples from a 100-square-kilometer predominantly dairy farming area. Appl. Environ. Microbiol. 71 1876–1882. 10.1128/AEM.71.4.1876-1882.2005 PubMed DOI PMC

Khan I. U. H., Gannon V., Jokinen C. C., Kent R., Koning W., Lapen D. R., et al. (2014). A national investigation of the prevalence and diversity of thermophilic Campylobacter species in agricultural watersheds in Canada. Water Res. 61 243–252. 10.1016/j.watres.2014.05.027 PubMed DOI

Kiatsomphob S., Taniguchi T., Tarigan E., Latt K. M., Jeon B., Misawa N. (2019). Aerotolerance and multilocus sequence typing among Campylobacter jejuni strains isolated from humans, broiler chickens, and cattle in Miyazaki Prefecture, Japan. J. Vet. Med. Sci. 81 1144–1151. 10.1292/jvms.19-0228 PubMed DOI PMC

King C. H., Shotts E. B., Jr., Wooley R. E., Porter K. G. (1988). Survival of coliforms and bacterial pathogens within protozoa during chlorination. Appl. Environ. Microbiol. 54 3023–3033. 10.1128/aem.54.12.3023-3033.1988 PubMed DOI PMC

Kuhn K. G., Falkenhorst G., Emborg H.-D., Ceper T., Torpdahl M., Krogfelt K. A., et al. (2017). Epidemiological and serological investigation of a waterborne Campylobacter jejuni outbreak in a Danish town. Epidemiol. Infect. 145 701–709. 10.1017/S0950268816002788 PubMed DOI PMC

Kuhn K. G., Nygård K. M., Löfdahl M., Trönnberg L., Rimhanen-Finne R., Sunde L. S., et al. (2020). Campylobacteriosis in the Nordic countries from 2000 to 2015: trends in time and space. Scand. J. Public Health 48 862–869. 10.1177/1403494819875020 PubMed DOI

Martin S., Penttinen P., Hedin G., Ljungström M., Allestam G., Andersson Y., et al. (2006). A case-cohort study to investigate concomitant waterborne outbreaks of Campylobacter and gastroenteritis in Söderhamn, Sweden, 2002-3. J. Water Health 4 417–424. 10.2166/wh.2006.0025 PubMed DOI

Miettinen I. T., Zacheus O., von Bonsdorff C. H., Vartiainen T. (2001). Waterborne epidemics in Finland in 1998-1999. Water Sci. Technol. 43 67–71. 10.2166/wst.2001.0713 PubMed DOI

Moreira N. A., Bondelind M. (2017). Safe drinking water and waterborne outbreaks. J. Water Health 15 83–96. 10.2166/wh.2016.103 PubMed DOI

Mouftah S. F., Cobo-Díazb J. F., Álvarez-Ordóñez A., Mousaa A., Calland J. K., Pascoe B., et al. (2021). Stress resistance associated with multi-host transmission and enhanced biofilm formation at 42°C among hyper-aerotolerant generalist Campylobacter jejuni. Food Microbiol. 95:103706. 10.1016/j.fm.2020.103706 PubMed DOI

Mulder A. C., Franz E., de Rijk S., Versluis M. A. J., Coipan C., Buij R., et al. (2020). Tracing the animal sources of surface water contamination with Campylobacter jejuni and Campylobacter coli. Water Res. 187 116421. 10.1016/j.watres.2020.116421 PubMed DOI

Nadimpalli M. L., Marks S. J., Montealegre M. C., Gilman R. H., Pajuelo M. J., Saito M., et al. (2020). Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission. Nat. Microbiol. 5 787–795. 10.1038/s41564-020-0722-0 PubMed DOI

Nelson J. M., Smith K. E., Vugia D. J., Rabatsky-Ehr T., Segler S. D., Kassenborg H. D., et al. (2004). Prolonged diarrhea due to ciprofloxacin-resistant campylobacter infection. J. Infect. Dis. 190 1150–1157. 10.1086/42328 PubMed DOI

Oh E., McMullen L., Chui L., Jeon B. (2017). Differential survival of hyper-aerotolerant Campylobacter jejuni under different gas conditions. Front. Microbiol. 8:954. 10.3389/fmicb.2017.00954 PubMed DOI PMC

Oh E., McMullen L., Jeon B. (2015a). High prevalence of hyper-aerotolerant Campylobacter jejuni in retail poultry with potential implication in human infection. Front. Microbiol. 6:1263. 10.3389/fmicb.2015.01263 PubMed DOI PMC

Oh E., McMullen L., Jeon B. (2015b). Impact of oxidative stress defense on bacterial survival and morphological change in Campylobacter jejuni under aerobic conditions. Front. Microbiol. 6:295. 10.3389/fmicb.2015.00295 PubMed DOI PMC

Olofsson J., Axelsson-Olsson D., Brudin L., Olsen B., Ellström P. (2013). Campylobacter jejuni actively invades the amoeba Acanthamoeba polyphaga and survives within non digestive vacuoles. PLoS One 8:e78873. 10.1371/journal.pone.0078873 PubMed DOI PMC

Olofsson J., Berglund P. G., Olsen B., Ellström P., Axelsson-Olsson D. (2015). The abundant free-living amoeba, Acanthamoeba polyphaga, increases the survival of Campylobacter jejuni in milk and orange juice. Infect. Ecol. Epidemiol. 5:28675. 10.3402/iee.v5.28675 PubMed DOI PMC

O’Reilly C. E., Bowen A. B., Perez N. E., Sarisky J. P., Shepherd C. A., Miller M. D., et al. (2007). Outbreak working group a waterborne outbreak of gastroenteritis with multiple etiologies among resort island visitors and residents: Ohio, 2004. Clin. Infect. Dis. 44 506–512. 10.1086/511043 PubMed DOI

Paruch L., Paruch A. M., Sørheim R. (2020). DNA-based faecal source tracking of contaminated drinking water causing a large Campylobacter outbreak in Norway 2019. Int. J. Hyg. Environ. Health 224:113420. 10.1016/j.ijheh.2019.113420 PubMed DOI

Pedati C., Koirala S., Safranek T., Buss B. F., Carlson A. V. (2019). Campylobacteriosis outbreak associated with contaminated municipal water supply – Nebraska, 2017. MMWR Morb. Mortal. Wkly. Rep. 68 169–173. 10.15585/mmwr.mm6807a1 PubMed DOI PMC

Rees J. H., Soudain S. E., Gregson N. A., Hughes R. A. C. (1995). Campylobacter jejuni infection and Guillain–Barre′ syndrome. N. Engl. J. Med. 333 1374–1379. 10.1056/NEJM199511233332102 PubMed DOI

Reyes-Batlle M., Martín-Rodríguez A. J., López-Arencibia A., Sifaoui I., Liendo A. R., Estrella C. J. B., et al. (2017). In vitro interactions of Acanthamoeba castellanii Neff and Vibrio harveyi. Exp. Parasitol. 183 167–170. 10.1016/j.exppara.2017.09.003 PubMed DOI

Rodrigues R. C., Pocheron A.-L., Hernould M., Haddad N., Tresse O., Cappelier J.-M. (2015). Description of Campylobacter jejuni Bf, an atypical aero-tolerant strain. Gut Pathog. 7:30. 10.1186/s13099-015-0077-x PubMed DOI PMC

Rollins D. M., Colwell R. R. (1986). Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 52 531–538. 10.1128/AEM.52.3.531-538.1986 PubMed DOI PMC

Rowbotham T. J. (1980). Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J. Clin. Pathol. 33 1179–1183. 10.1136/jcp.33.12.1179 PubMed DOI PMC

Sawabe T., Suda W., Ohshima K., Hattori M., Sawabe T. (2016). First microbiota assessments of children’s paddling pool waters evaluated using 16S rRNA gene-based metagenome analysis. J. Infect. Public Health 9 362–365. 10.1016/j.jiph.2015.11.008 PubMed DOI

Serichantalergs O., Dalsgaard A., Bodhidatta L., Krasaesub S., Pitarangsi C., Srijan A., et al. (2007). Emerging fluoroquinolone and macrolide resistance of Campylobacter jejuni and Campylobacter coli isolates and their serotypes in Thai children from 1991 to 2000. Epidemiol. Infect. 135 1299–1306. 10.1017/S0950268807008096 PubMed DOI PMC

Shagieva E., Teren M., Michova H., Strakova N., Karpiskova R., Demnerova K. (2020). Adhesion, biofilm formation, and luxS sequencing of Campylobacter jejuni isolated from water in the Czech Republic. Front. Cell. Infect. Microbiol. 10:596613. 10.3389/fcimb.2020.596613 PubMed DOI PMC

Siddiqui R., Khan N. A. (2012). Biology and pathogenesis of Acanthamoeba. Parasit. Vectors 5:6. 10.1186/1756-3305-5-6 PubMed DOI PMC

Silva J., Leite D., Fernandes M., Mena C., Gibbs P. A., Teixeira P. (2011). Campylobacter spp. as a foodborne pathogen: a review. Front. Microbiol. 2:200. 10.3389/fmicb.2011.00200 PubMed DOI PMC

Skandalis N., Maeusli M., Papafotis D., Miller S., Lee B., Theologidis I., et al. (2021). Environmental spread of antibiotic resistance. Antibiotics 10:640. 10.3390/antibiotics10060640 PubMed DOI PMC

Skarp C. P. A., Hänninen M.-L., Rautelin H. I. K. (2016). Campylobacteriosis: the role of poultry meat. Clin. Microbiol. Infect. 22 103–109. 10.1016/j.cmi.2015.11.019 PubMed DOI

Smith A., Reacher M., Smerdon W., Adak G. K., Nichols G., Chalmers R. M. (2006). Outbreaks of waterborne infectious intestinal disease in England and Wales, 1992-2003. Epidemiol. Infect. 134 1141–1149. 10.1017/S0950268806006406 PubMed DOI PMC

Snelling W. J., McKenna J. P., Lecky D. M., Dooley J. S. G. (2005). Survival of Campylobacter jejuni in waterborne protozoa. Appl. Environ. Microbiol. 71 5560–5571. 10.1128/AEM.71.9.5560-5571.2005 PubMed DOI PMC

Strakova N., Shagieva E., Ovesna P., Korena K., Michova H., Demnerová K., et al. (2021). The effect of environmental conditions on the occurrence of Campylobacter jejuni and Campylobacter coli in wastewater and surface waters. J. Appl. Microbiol. [Epub ahead of print]. 10.1111/jam.15197 PubMed DOI PMC

Tatchou-Nyamsi-König J.-A., Moreau A., Fédérighi M., Block J.-C. (2007). Behaviour of Campylobacter jejuni in experimentally contaminated bottled natural mineral water. J. Appl. Microbiol. 103 280–288. 10.1111/j.1365-2672.2006.03239.x PubMed DOI

Ternhag A., Törner A., Svensson Å, Ekdahl K., Giesecke J. (2008). Short- and long-term effects of bacterial gastrointestinal infections. Emerg. Infect. Dis. 14 143–148. 10.3201/eid1401.070524 PubMed DOI PMC

Terzieva S. I., McFeters G. A. (1991). Survival and injury of Escherichia coli, Campylobacter jejuni, and Yersinia enterocolitica in stream water. Can. J. Microbiol. 37 785–790. 10.1139/m91-135 PubMed DOI

EFSA (2021). The European union one health 2019 Zoonoses report. EFSA J. 19:e06406. 10.2903/j.efsa.2021.6406 PubMed DOI PMC

Thomas C., Hill D. J., Mabey M. (1999). Evaluation of the effect of temperature and nutrients on the survival of Campylobacter spp. in water microcosms. J. Appl. Microbiol. 86 1024–1032. 10.1046/j.1365-2672.1999.00789.x PubMed DOI

Tzani M., Mellou K., Kyritsi M., Kolokythopoulou F., Vontas A., Sideroglou T., et al. (2020). Evidence for waterborne origin of an extended mixed gastroenteritis outbreak in a town in Northern Greece, 2019’. Epidemiol. Infect. 149:e83. 10.1017/S0950268820002976 PubMed DOI PMC

Uhlmann S., Galanis E., Takaro T., Mak S., Gustafson L., Embree G., et al. (2009). Where’s the pump? Associating sporadic enteric disease with drinking water using a geographic information system, in British Columbia, Canada, 1996-2005. J. Water Health 7 692–698. 10.2166/wh.2009.108 PubMed DOI

Vieira A., Ramesh A., Seddon A. M., Karlyshev A. V. (2017). CmeABC multidrug efflux pump contributes to antibiotic resistance and promotes Campylobacter jejuni survival and multiplication in Acanthamoeba polyphaga. Appl. Environ. Microbiol. 83 e1600–e1617. 10.1128/AEM.01600-17 PubMed DOI PMC

Whiley H., van den Akker B., Giglio S., Bentham R. (2013). The role of environmental reservoirs in human campylobacteriosis. Int. J. Environ. Res. Public Health 10 5886–5907. 10.3390/ijerph10115886 PubMed DOI PMC

Winiecka-Krusnell J., Wreiber K., von Euler A., Engstrand L., Linder E. (2002). Free-living amoebae promote growth and survival of Helicobacter pylori. Scand. J. Infect. Dis. 34 253–256. 10.1080/00365540110080052 PubMed DOI

Yamahara K. M., Sassoubre L. M., Goodwin K. D., Boehm A. B. (2012). Occurrence and persistence of bacterial pathogens and indicator organisms in beach sand along the California coast. Appl. Environ. Microbiol. 78 1733–1745. 10.1128/AEM.06185-11 PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Genotyping of Campylobacter jejuni and prediction tools of its antimicrobial resistance

. 2024 Feb ; 69 (1) : 207-219. [epub] 20231010

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...